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Abstract: In this paper, we revisit the theoretical framework for energy demand. We then use this 
theoretical framework to empirically model the Saudi Arabian industrial electricity demand. We 
show, in the case of Saudi Arabian data, that imposing parsimonious energy demand specification 
on data without testing relevant assumptions can lead to biased estimations and noticeably poor 
approximations, while imposing general energy demand specification without accounting for the 
data properties can lead to redundant estimations and lower approximation than what could be 
obtained otherwise. Combining the theory with the data can provide unbiased and irredundant 
estimations with high levels of approximations. Hence, this paper recommends, based on the 
empirical findings, that a better strategy would be the combination of theoretical coherence with 
data coherence in the General to Specific Modeling (GtSM) framework for the empirical analyses of 
energy demand. 

Keywords: energy demand modeling; general to specific modeling; combination of theory with 
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1. Introduction 

Undoubtedly, energy is one of the key factors of not only economic activity but also social life. 
Moreover, it is impossible to imagine modern life without the existence of energy. As a result, 
countless numbers of studies have investigated different aspects of energy, including economic, 
environmental, and demographics. The supply- and demand-side of energy have been investigated 
extensively in the literature to enhance our understanding. It would not be incorrect if we state that 
the demand-side of energy has been examined more extensively when compared to the supply-side. 
One of the crucial aspects of this is to understand how various economic, technical, and demographic 
factors shape our demand for energy, and this has been the core task of modeling and forecasting 
exercises for a variety of domains such as academia, government agencies, and the private sector. 
Therefore, we believe that any research that helps us to understand or enhance our existing 
knowledge about the theoretical and empirical aspects of energy demand has a value and is worth 
considering. 

Numerous empirical studies have investigated energy demand as a function of income and 
energy price (see, e.g., energy demand model surveys in [1–4]). However, if one revisits the theory of 
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energy demand, as we do in Section 2, she/he will notice that this functional specification is a nested 
parsimonious form of a general specification. In other words, it is derived from the specification, in 
which the energy demand is a function of not only income/output and energy price, but also prices 
of other production factors, based on making some assumptions on the prices of other factors. Unlike 
in theoretical studies, in the empirical analysis of energy demand, these assumptions may or may not 
be held for a given country depending upon the dataset used and the time period considered (see, 
e.g., [2,5]) The natural question that arises here is which functional specification of energy demand 
should be used in empirical analysis? The General to Specific Modeling (GtSM) methodology 
provides insights in answering this empirically important question. The GtSM methodology 
articulates that the general model/specification of a given process should be considered first, and it 
should include all of the theoretically and empirically relevant variables to achieve a higher 
probability for approximating the Data Generating Process (DGP), which is never known, but 
researchers try to approximate at the maximum level. Then, a final parsimonious specification of the 
process can be achieved by checking various theoretical and empirical assumptions and excluding 
insignificant variables while testing properties (such as the Gaussian conditions of the residuals, or 
the misspecification and stability of the estimated relationship) of the final specification in each step 
of the exclusion ([6] inter alia). In other words, the GtSM framework advocates for the consideration 
of the combination of theoretical coherence with the data/statistical coherence in obtaining a final 
parsimonious specification from a general unrestricted specification. A number of seminal studies 
also suggest nesting a theory-driven approach within a data-driven approach in empirical modeling 
in macroeconomics ([7–11] inter alia). 

The objective of this paper is to show the usefulness of the combination of theoretical coherence 
with data coherence in the GtSM framework for the empirical modeling of energy demand. 

It is worth mentioning that we do not claim at all that we derive a new energy demand theory 
or develop a framework that combines theory-driven and data-driven approaches here. Rather, our 
objective here is to show the usefulness of the combination of energy demand theory with 
data/statistical coherence in the GtSM framework for the empirical estimation of energy demand 
relationships, using Saudi Arabian data as a case study. 

We believe that revisiting energy demand theory would also be useful as it reminds (young) 
empirical researchers (a) how different industrial energy demand specifications can be theoretically 
derived. This would also help researchers to augment/modify energy demand specifications with 
other economic, social, or demographic factors if needed; (b) the specifications can be used in the 
empirical analysis, as they best fit the research objective given the data availability, but it should be 
remembered that they are based on different assumptions. 

To be practically useful for empirical researchers, we revisit the theory of energy demand by re-
deriving the specifications that link it to different variables in Section 2. Then, we apply these 
specifications to Saudi Arabian data through empirical estimations, and show the results from both 
the combination of the theory with the data and those from imposing the theory without accounting 
for the information coming from the data in Section 3. The results show that imposing general energy 
demand specification by ignoring the statistical properties of the data leads to redundant estimations 
and a lower level of approximations than what can be obtained otherwise, while imposing 
parsimonious specification of energy demand on the data without testing relevant assumptions leads 
to biased estimations and considerably poor approximations. Combining the theory with the data in 
the GtSM framework produces unbiased and irredundant estimations with high levels of 
approximations. 

Thus, it may not be always possible and/or plausible to impose theory without considering the 
properties of a given data set. This can stem from the incompatibleness of the existing theories with 
the available data measures/proxies that can be caused mainly by vagueness and incompleteness of 
the theories, as well as the unavailability and inaccuracy of data, among other reasons (see e.g., 
[2,5,7,8] and references therein). Therefore, the key recommendation of this paper, which may be 
useful for empirical researchers, is that it is always better to apply the combination of theory-driven 
and data-driven approaches in the GtSM framework for the empirical modeling of energy demand. 
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The contribution of this paper is that it empirically shows the usefulness of the combination of 
theoretical coherence with data/statistical coherence in the GtSM framework for the empirical 
analysis of energy demand, given that such an approach is not widely used in the energy demand 
literature. Additionally, this study contributes to the energy demand literature of Saudi Arabia, 
which is the world’s primary oil exporter and has tremendous impact on energy markets and thus 
on global economic activities. To the best of our knowledge, this is the second paper, after [12], that 
applies the recommended approach to Saudi Arabian industrial energy data and investigates the 
drivers of industrial electricity demand. However, the objective of [12] was not to show usefulness of 
the combination of theoretical coherence with statistical coherence in the GtSM framework with 
empirical examples of modeling energy demand. The study provides information on how and to 
what extent the drivers of the non-oil industrial electricity demand shape it over time. Saudi Arabia 
embarks with the energy price and fiscal reforms in line with Saudi Vision 2030, a masterplan for the 
future development of the country since 2016 [13,14]. Hence, the estimated elasticities can be useful 
for analysis and forecasting as they can inform policymaking about at what magnitude the ongoing 
reforms can change the electricity demand in the non-oil industry through changes in prices and 
income. This information set would also be useful for the global energy and economic outlook 
because of Saudi Arabia’s imperative role in international energy markets. 

2. Revisiting the Theory of the Energy Demand Equations 

2.1. Cost Minimization Approach 

This section describes the theoretical framework for the derivation of the functional 
specifications of energy demand for firms that produce goods and/or services. The aim of this section 
(and Appendix A) is to revisit the task of how energy demand specifications for firms can be 
theoretically derived. The same exercise can be done using the profit maximization approach, as in 
[15]. 

The Cobb–Douglas production function [16], which relates the output to the production factors 
is given as: 𝑄 = 𝐴𝐾 𝐿 𝐸 𝑀  (1) 

where Q, K, L, E, and M are output, capital, labor, energy consumption, and materials, respectively; 𝛼,𝛽, 𝛾 𝑎𝑛𝑑 𝛿 are positive constants. 
It can be assumed that, (a) a cost function exists as a dual function of the production function; 

(b) factor pricing is based on average cost and fixed markup; (c) there is also a preference function in 
the economy, and thus the demand for goods and services is a function of price and income; (d) all 
the functions follow the Cobb–Douglas type of specification; and (e) first-order conditions are derived 
assuming cost minimization. Based on these assumptions, the following energy demand equation 
can be derived, as described in Appendix A: 𝑙𝑛𝐸 =  𝛼 +  𝛼 ln 𝑝 +  𝛽 ln 𝑝 +  𝛿 ln 𝑝 +  𝛾 𝑙𝑛𝑝 +  𝜂 𝑙𝑛𝑄 (2) 

where: 𝛼 = , 𝛼 = , 𝛽 = , 𝛿 =
, 𝛾 = ( ) , 𝜂 =  

(3) 

Since 𝛼,𝛽, 𝛾 𝑎𝑛𝑑 𝛿 are positive numbers, one can see from the above notations that 𝛼 ,𝛽 ,𝛿  and 𝜂  are positive numbers, while 𝛾  is a negative number. As a result, we derived a formula 
for the energy demand of the firms, which expresses it as a function of capital, labor, material and 
energy prices, and total output. 

As discussed in [17] the demand functions of the economy for each product can be written as: 𝑄 = 𝑓 (𝑃 ,𝑃 ,𝑃 , … ,𝑃 ,𝑌), 𝑖 = 1, … ,𝑛 (4) 
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where Pi’s are prices and Y is the total income. This function (in logs) can be written explicitly as:  𝑙𝑛𝑄 =  𝜃 +  𝜃 ln 𝑝 +  𝜃 ln 𝑝 +  𝜃 ln 𝑝 +  𝜃 𝑙𝑛𝑝 +  𝜃 𝑙𝑛𝑌 (5) 

where 𝜃 𝑠 are negative numbers, for i=1 to 4, while 𝜃 > 0. Assuming market equilibrium, as in [17], 
one can solve (2) and (5) together. In other words, if we substitute  𝑙𝑛𝑄 in (2) with its expression in 
(5) and rearrange according to the coefficients, we find: 𝑙𝑛𝐸 =  (𝛼 + 𝜂 𝜃 ) + (𝛼 + 𝜂 𝜃 )ln 𝑝 + (𝛽 + 𝜂 𝜃 ) ln 𝑝 +  (𝛿+ 𝜂 𝜃 ) ln 𝑝 +  (𝛾 + 𝜂 𝜃 )𝑙𝑛𝑝 + 𝜂 𝜃 𝑙𝑛𝑌 (6) 

Equation (6) can be written in the following simpler form: 𝑙𝑛𝐸 =  𝛼 + 𝛼 ln 𝑝 + 𝛽 ln 𝑝 +  𝛿 ′ ln 𝑝 + 𝛾 ′𝑙𝑛𝑝 + 𝜂 𝑙𝑛𝑌 (7) 

where, 𝛼 = 𝛼 + 𝜂 𝜃 ,𝛼 = 𝛼 + 𝜂 𝜃 ,𝛽 = 𝛽 + 𝜂 𝜃 ,𝛿 = 𝛿 + 𝜂 𝜃 , 𝛾 = 𝛾 + 𝜂 𝜃  𝑎𝑛𝑑 𝜂 = 𝜂 𝜃  
Equation (7) is the derived energy demand equation and it shows that the demand for energy is 

a function of the prices of production factors and the total income. Based on the signs of 𝛾 , 𝜂 ,𝜃  𝑎𝑛𝑑 𝜃 , it can be seen that 𝛾 < 0,𝑤ℎ𝑖𝑙𝑒 𝜂 > 0. The comprehensive discussion of the signs of 
coefficients can be found in [15] and [17]. 

Apparently, the difference between Equations (2) and (7) is that the former links energy demand 
to output while the latter considers it as a function of income alongside the price measures. 

Equation (7) can be reduced to Equation (8), in which the prices of other inputs are omitted based 
on some assumptions outlined below and energy demand is linked just to its own price and income. 𝑙𝑛𝐸 =  𝛼 + 𝛼 ln 𝑝 + 𝛼 𝑙𝑛𝑌 (8) 

Similarly, by making some assumptions Equation (2) can be reduced to Equation (8), where 𝑌 is 
substituted by 𝑄. 

Seminal studies such as [15] and [17] assume that the price of capital goods is linearly dependent 
on GDP deflator and the price of labor is proportional to GDP deflator, and they end up with Equation 
(8). Other studies assume long-run homogeneity among the price of energy and other factors 
included in the energy demand equation and modify it, where the explanatory variables are just 
energy price and income/output. Notably, Equation (8) is the widely used specification in the 
empirical analyses of energy demand.  

An error term should be added to the right-side of the equations discussed above to make them 
econometric specifications. 

Lastly, depending on the research objective, Equations (2) and (7) can be further modified 
theoretically to include other socioeconomic variable(s) of interest in them. For example, [15] 
modified Equation (2) by replacing industrial production with industrial capital stock, while [12] 
modified Equation (7) by including a demographic variable. 

3. The Energy Demand Equations in Empirical Analysis 

In this section, as an empirical application, we econometrically estimate Equations (2), (7), and 
(8) using time series data over the 1980–2018 period. The period is dictated by the availability of the 
time series data. The aim of this section is to show the result of imposing the theory by ignoring data 
properties and the results emerging from the combination of the theory with the data. Equally, one 
may apply the equations to the cross-sectional or panel data, but given the availability of the required 
data across the countries or across the industrial branches, especially when it comes to prices of 
capital and intermediate consumption data, we opt for the time series estimation here. As a country, 
we select Saudi Arabia because of the convenience of obtaining the required time series data. 
Additionally, it is the biggest oil exporter and has remarkable impact on energy markets and 
economic activities globally. Of course, different countries can be selected as case studies. We 
consider electricity consumption in the Saudi Arabian non-oil industry as a measure of energy, and, 
again, different energy products in different industry branches can be considered. 

Table 1. presents the variables we used in the empirical analysis and their descriptions. 
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Table 1. Variables and their descriptions. 

Variable Notation Description/definition Source  
Electricity 
consumption 

𝐸 The demand for electricity in non-oil industrial 
sector, mtoe.* 

IEA [18] 

Output in non-oil 
manufacturing in real 
terms 

𝑄  

This is the sum of value added and intermediate 
consumption both in  manufacturing (excluding 
petroleum manufacturing) in million SAR at 2010 
prices.  

GSTAT 
[19]and 
OEGEM [20] 

Value added in non-oil 
manufacturing in real 
terms 

𝑄  
The value added in manufacturing excluding 
petroleum manufacturing, in million SAR at 2010 
prices.  

GSTAT [19] 

Price of electricity 
consumed in industry 
in real terms 

𝑃  

𝑃 = 𝑃𝑃 ∗ 100 𝑃  is the nominal price of the electricity consumed in 
industry in SAR/toe. 𝑃  is the deflator of the non-oil manufacturing 
value added, which is calculated as below: 𝑃 = 𝑄𝑄𝑣 ∗ 100 𝑄  is the nominal value added in non-oil 
manufacturing, in million SAR. 

Own calcula-
tion using 
GSTAT [19] 
data 

Cost of capital in real 
terms 

𝑃  
This is the United States Seven-Year Treasury note 
yield, at constant maturity, adjusted for the US 
inflation rate, %. 

OEGEM [20] 

Average annual wage 
in real terms 

𝑃  

𝑃 = 𝑊𝐶𝑃𝐼 ∗ 100 𝑊  is the average annual wage in nominal term, 
which is calculated as below: 𝑊 = 𝐸𝑅𝐸𝑇 𝐸𝑅 is the total earnings in thousand SAR. 𝐸𝑇 is total employment in thousand persons.  𝐶𝑃𝐼 is Consumer Price Index, 2010=100. 

Own calcula-
tion using 
GSTAT [19] 
data 

Price of intermediate 
consumption in real 
terms 

𝑃  

𝑃 = 𝑃𝑃 ∗ 100 𝑃  is the deflator of the non-oil value added, 
which is calculated as below: 𝑃 = 𝑄𝑁𝑄𝑅 ∗ 100 𝑄𝑁  is the nominal value added in non-oil 
manufacturing, in million SAR. 𝑄𝑅  is the real value added in non-oil 
manufacturing, in million SAR at 2010 prices. 

Own calcula-
tion using 
GSTAT [19] 
data 

Note: IEA=International Energy Agency; GSTAT=General Authority for Statistics of Saudi Arabia; 
OEGEM=Oxford Economics Global Economic Model database. 

We conclude that the variable is electricity consumption in the non-oil industrial sector based 
on our understanding of the IEA definitions for industry and energy industry own use.    

We use the United States Seven-Year Treasury note yield as a proxy for the Saudi long-run 
interest rate because such long-run interest rate data for Saudi Arabia is not available, to the best of 
our knowledge. There are interest rates on Saudi riyal deposits for one-, three-, six- and 12-month 
maturities that are available from the Saudi Arabian Monetary Authority annual statistics [21]. 
However, these interest rates are (a) short-run interest rates, and (b) available only from 1997. It is 
worth noting that earlier studies on the Saudi economy also faced the same issue of obtaining accurate 
interest rate data with a long sample size, and hence ended up either using the interest rates of foreign 
countries, especially the US, or dropping interest rates from their analyses (see [12,22–28]). The key 
justification point for those studies, as well as for us here, in using the US interest rate as a proxy for 
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the Saudi interest rate, is that Saudi Arabian monetary policy strictly follows the monetary policy of 
the US because the exchange rate of the Saudi riyal has been pegged to the US dollar at the constant 
rate of 3.75 SAR/$ since 1986. Hence, Saudi interest rates closely track the US Federal Funds rate (see 
[29–31] inter alia). There is no available time series data on the price of the intermediate consumption 
that we are aware of; hence, we use also a proxy for it. The proxy is constructed as the ratio of the 
non-oil manufacturing price deflator to the non-oil sector price deflator, as Table 1 describes. 

Figure 1 illustrates the natural logarithm and growth rate trajectories of the variables 
documented in Table 1. Without providing detailed information about the stochastic properties of 
the variables, note that they all are unit root processes at their natural logarithm levels and are 
stationary at their growth rate forms. In other words, they follow an integrated order of one, i.e., I (1) 
process. Details of the unit root test results are available from the authors upon request. 

Panel A. Time profiles of the variables in logs. 𝑒 𝑝  𝑝  
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Figure 1. Time trajectories of the variables. 
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Since the variables are I (1) processes, we test whether the variables are cointegrated and 
estimated the level relationship among them. For this exercise, we use the Fully Modified Ordinary 
Least Squares (FMOLS) estimator developed by [32,33], as this method avoids over-parametrization 
and addresses the endogeneity issue. In line with our aim in this section, we consider the following options 
in our econometric analysis: (i) general energy demand specifications, i.e., Equations (2) and (7), are 
imposed on the data without considering the statistical properties of the variables; (ii) general energy 
demand specifications applied to the data and the statistical properties of the variables are accounted for, 
i.e., the combination of theory and data in the GtSM framework; (iii) parsimonious energy demand 
specification, i.e., Equation (8), is imposed on the data without considering the statistical properties of the 
omitted variables. Tables 2 and 3 document the estimation and testing results. 

Table 2. FMOLS estimation and test results for Equations (2) and (8). 

 
Panel A.  
Estimation of 
Equation (2) 

Panel B.  
Estimation of 
Equation (2) without 𝒑𝒌 

 

Panel C.  
Estimation of Equation 
(8), where total output 
is used 

Estimated long-run elasticities    
Regressor   Coef. P-value   Coef. P-value  Coef. P-value 𝑝    0.097 0.643   − −  − − 𝑝    1.453 0.000   1.505 0.000  − − 𝑝    1.980 0.086   1.493 0.087  − − 𝑝  −0.224 0.200 −0.285 0.075  0.630 0.392 𝑞    0.608 0.001   0.532 0.000  0.892 0.021 

        𝑆𝐸𝑅 0.171098 0.168028  0.604501 𝑅  0.969779 0.970854  0.622769 
        

Post-estimation test results    
Q 0.368 0.544 0.316 0.574  0.809 0.000 𝐽𝐵 0.369 0.832 0.849 0.654  6.330 0.042 𝐹 for 𝑝  − − 0.200 0.658  0.567 0.456 𝐹 for 𝑝  − − − −  507.355 0.000 𝐹 for 𝑝  − − − −  51.613 0.000 

        
Cointegration test results    𝐸𝐺  −5.492 0.027 −5.545 0.011  −2.623 0.440 𝐸𝐺  −34.067 0.024 −34.239 0.009  −5.674 0.852 
Notes: 𝑒 is the dependent variable in the estimations. 𝑆𝐸𝑅 is standard error of regression. 𝑅  is 
adjusted R-Squared. Q is the Q-statistic of the first order auto-correlation coefficient with the null 
hypothesis that the residuals are not correlated. 𝐽𝐵 is the Jarque–Bera statistic of normality test with 
the null hypothesis that the residuals are normally distributed. 𝐹 is the F-statistics of the omitted 
variable test with the null hypothesis that a tested variable can be omitted. 𝐸𝐺  and 𝐸𝐺  are the degree 
of freedom adjusted Engle–Granger tau- and z-statistics. Coef. and P-value mean the coefficient and its 
probability value.  For simplicity, intercepts are not reported. Estimation period: 1980–2018. 
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Table 3. FMOLS estimation and test results for Equations (7) and (8). 

 
Panel D.  
Estimation of 
Equation (7) 

Panel E.  
Estimation of 
Equation (7) without 𝒑𝒌 

 

Panel F.  
Estimation of Equation 
(8), where income is 
used 

Estimated long-run elasticities    
Regressor Coef. P-value Coef. P-value  Coef. P-value 𝑝  0.030 0.885 − −  − − 𝑝  1.368 0.000 1.439 0.000  − − 𝑝  1.838 0.111 1.621 0.056  − − 𝑝  −0.218 0.217 −0.249 0.105  0.364 0.727 𝑞  0.540 0.002 0.499 0.000  1.019 0.029 

        
     𝑆𝐸𝑅 0.170074 0.169650  0.608458 𝑅  0.970140 0.970289  0.672940 
        

Post-estimation test results    
Q 0.594 0.441 0.669 0.413  31.490 0.000 𝐽𝐵 0.164 0.921 0.922 0.631  0.687 0.709 𝐹 for 𝑝  − − 0.029 0.865  0.808 0.375 𝐹 for 𝑝  − − − −  399.451 0.000 𝐹 for 𝑝  − − − −  67.250 0.000 

        
Cointegration test results    𝐸𝐺  −5.351 0.035 −5.378 0.015  −1.853 0.795 𝐸𝐺  −33.126 0.031 −33.258 0.013  −5.137 0.881 

        
Notes: 𝑒 is the dependent variable in the estimations.  𝑆𝐸𝑅 is standard error of regression. 𝑅  is 
adjusted R-Squared. Q is the Q-statistic of the first order auto-correlation coefficient with the null 
hypothesis that the residuals are not correlated. 𝐽𝐵 is the Jarque–Bera statistic of normality test with 
the null hypothesis that the residuals are normally distributed. 𝐹 is the F-statistics of the omitted 
variable test with the null hypothesis that a tested variable can be omitted. 𝐸𝐺  and 𝐸𝐺  are the degree 
of freedom adjusted Engle–Granger tau- and z-statistics. Coef. and P-value mean the coefficient and its 
probability value.  For simplicity, intercepts are not reported.  Estimation period: 1980–2018. 

Three useful observations can be extracted from Tables 2 and 3. 
• Panels A and D report the results of estimations for Equations (2) and (7), 

respectively. All the explanatory variables have theoretically expected signs. 
Apparently, the cost of capital is highly statistically insignificant in both estimations. 
These are the results from option (i): that is, we impose the theory of energy demand 
on the data and ignore information coming from data, i.e., the insignificance of the 
capital cost. Our results are theory-driven only, and, hence, we position ourselves at 
the upper part of Pagan’s curve [7,11]. 

• Panels B and E report the results of estimations for Equations (2) and (7) without the 
cost of capital, respectively. In other words, we follow option (ii), such that we first 
apply general energy demand specifications to the data and also account for the 
statistical insignificance of the cost of capital and exclude it from the analysis in the 
GtSM framework. All the remaining variables have theoretically expected signs and 
are statistically significant at different levels. In other words, the estimation results 
are from nesting the theory of energy demand with the data in the GtSM framework, 
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i.e., they are both theory driven and data driven, and, thus, we position ourselves at 
the middle part of Pagan’s curve [7,11] .  

• Panels C and F report the results of estimations of Equation (8), where the 
explanatory variables are only energy price and output/income. In other words, the 
estimation results are from option (iii). On data, we impose the parsimonious energy 
demand specification, which omits the theoretically predicted variables of prices of 
capital, labor, and intermediate consumption based on some assumptions made by 
default, as discussed in Section 2, without testing the statistical significance of the 
variables omitted to see whether they can contribute to the explanation of the energy 
demand pattern. Obviously, we miss some important information, which could 
come from the prices of labor and intermediate consumption, as the omitted variable 
tests indicate in Tables 2 and 3. Apparently, the electricity price has an incorrect sign 
and is statistically insignificant, most likely due to omitting the important variables 
(see, e.g., the discussions in [34–37]). Obviously, if we could follow GtSM and 
consider both the theoretical coherence and the statistical coherence, we would not 
end up with such a poor specification of energy demand. 

Thus, the question that occurs here is, “which of the above options should we give preference in 
our energy demand modeling for policy analysis and or forecasting?”. In our explanation below, we 
tried to justify a preferred specification, theoretically and statistically. 

Undoubtedly, one should not prefer to model energy demand as we do in Panels C and F 
following option (iii) because such a framework for energy demand analysis yields theoretically poor 
(i.e., the omission of the important variables, and the incorrect sign for the energy price) and 
statistically poor results (the insignificance of the energy price, higher 𝑆𝐸𝑅, and lower 𝑅  compared 
to other options, auto-correlation in the residuals, and omitted variable issue). Additionally, this 
specification, as a nested parsimonious form of the general specification, is based on assumptions of 
linear dependency, proportionality, or homogeneity between the prices of energy and other factors, 
which might not be representative for the country in question, Saudi Arabia in our case, given the 
data used and the period covered. 

Perhaps theory-driven researchers, such as Computable General Equilibrium (CGE) or Dynamic 
Stochastic General Equilibrium (DSGE) modelers, would prefer to model energy demand as we do 
in Panels A and D following option (i). The researchers who are in favor of nesting theory-driven and 
data-driven approaches and following the GtSM framework would prefer modeling energy demand 
as we do in Panels B and E. 

With our respect to both types of researcher, we believe that modeling energy demand following 
option (ii), as it is done in Panels B and E, is the relevant option to consider because of the following 
statistical and theoretical reasons. 

Statistically, in our case, this is because of the fact that the estimated specifications without the 
cost of capital outperform those with the cost of capital, as the former have lower standard errors and 
higher levels of approximations compared to the latter. Additionally, the results of the omitted 
variable test indicate no information loss from excluding the cost of capital variable from the 
estimations. 

Theoretically, the following points should be recalled briefly: 
1. Sometimes a variable articulated by the theory cannot be exactly measured in 

practice due to data inaccuracy and unavailability issues, and proxies can provide 
poor estimates and thus do not help us to approximate the Data Generation Process 
(DGP) of the variable under interest. This is exactly what we face in our analysis here. 
The theory in Section 2 articulates the cost of capital as an explanatory variable of 
energy demand. However, we cannot find the exact cost of capital data for non-oil 
manufacturing. It can be argued that this is not the case solely for Saudi Arabia, and, 
even for many developing and developed countries, the cost of capita data is not 
available for the different branches of industry.   Following earlier studies, we proxy 
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it, but it appears that the selected proxy does not contribute to the DGP of industrial 
energy demand, and it was statistically insignificant. 

2. Often, theories are vague about variables when it comes to considering the variables 
in the empirical analysis, and the selected variables may not contribute to the DGP. 
For example, money demand theories consider income as a scale variable in 
explaining the behavior of money balance. However, it is not quite clear which 
income measure should be considered in the empirical analysis. Therefore, GDP, 
retail turnover, consumption, government expenditure, and industrial production 
index have all been considered in the empirical analyses of money demand [38]. 

3. All theories are based on certain assumptions, and these assumptions may not be 
held for the country of interest or for the time period considered (see, [2]). 

4. Theories do not tell us anything about structural breaks and location shifts, which 
can play a considerable role in explaining a given process. 

Details of the points listed above, alongside others, are comprehensively discussed in [7] and in 
the references therein. 

To conclude, imposing theory without accounting for the properties of the data may lead to 
biased results and, thus, to misleading policy suggestions. Thus, the recommendation of this paper, 
based on the empirical results above, is that it would be a better strategy to consider the combination 
of theoretical coherence and statistical/data coherence in the empirical analyses of energy demand. 

From the Saudi Arabian standpoint, there would be value in briefly discussing the estimation 
results that we obtained by following the recommended approach of combining the theory with the 
data, although it is not our primary objective in this research. Apparently, the estimated elasticities 
of the electricity demand with respect to the prices of labor, intermediate consumption, and electricity 
reported in Panels B and E are quite similar to each other in terms of their signs, sizes, and significance 
levels obtained. This suggests that, regardless of whether we consider total output or value added of 
non-oil manufacturing, the impacts of the prices on the electricity demand follow almost the same 
pattern. Speaking through the estimated elasticities, holding other factors constant and in the long-
run, a 1% increase (decrease) in the prices of labor and intermediate consumption leads to a 1.5–1.4% 
and 1.5–1.6% increase (decrease) in the electricity demand in non-oil industry, respectively, while a 
1% raise in the electricity price reduces its demand by -0.3 or–0.2%. Besides, if non-oil manufacturing 
value added or output grows by 1%, then demand for electricity grows by 0.5%. The results are 
theoretically coherent as they are in line with our discussion in Section 2. They also represent the 
characteristics of the Saudi Arabian economy as follows. Saudi Arabia, the world’s primary oil 
exporter, has huge energy subsidies and, therefore, the price of energy including electricity has 
administratively been set very low in nominal terms and even decreases when it is adjusted for 
inflation (see, e.g., [12,39,40]) Even after the last increase in 2016, which followed energy price and 
fiscal reform programs, it was just about 0.05 USD per kWh. We think that this explains why the 
estimated labor price and the intermediate consumption price elasticities of electricity demand are 
elastic: more electricity will be used as it is very cheap if the prices of these factors are high. As an 
example, in the case of a resource-poor country (Greece), [41] finds long-run elasticities of energy 
demand with respect to the price of capital and the price of labor as low as 0.14 and 0.02, respectively. 
The cheap electricity price also explains why the magnitude of the own price and income/output 
elasticities of electricity demand are small. Since it was historically set up to be very cheap, any 
increases do not make significant changes in the decision of non-oil industry regarding electricity 
consumption. For example, the price was increased by 20% in 2016 relative to 2015, but this huge 
increase in percentage terms raised the price from 0.04 USD/kWh to just about 0.05 USD/kWh. 

4. Concluding Remarks 

Numerous studies have analyzed industrial energy demand as a function of income and energy 
price. By revisiting energy demand theory, one can see that this is a nested parsimonious functional 
specification of the general energy demand specifications, in which other explanatory variables are 
dropped by making some assumptions. Unlike theoretical investigations, in the empirical analysis of 
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energy demand, these assumptions may and may not be valid for a county of interest, depending 
upon the dataset used and the time period considered. Then, the question becomes, “which functional 
specification of the energy demand should one use in her/his empirical research?”. In the case study 
of the empirical modeling of Saudi Arabian industrial electricity demand, we find that (a) imposing 
parsimonious energy demand specification on the data without checking the relevant assumptions 
of the data can result in biased estimations and remarkably poor approximations; (b) imposing 
general energy demand specifications without considering the properties of the data can end up with 
redundant estimations and lower approximation; (c) combining the theory with the data in GtSM 
framework can produce unbiased and irredundant estimations with high levels of approximations. 
Thus, we attempted empirically to show the usefulness of the combination of theoretical coherence 
with data coherence in the framework of the GtSM, to answer the question. 

Additionally, the estimated elasticities can be beneficial for policy analysis and forecasting as 
they provide information about to what extent the ongoing energy price and fiscal reforms can 
change the demand for electricity in the non-oil industry through changes in prices and income in 
Saudi Arabia. This information set may also be useful for the global energy and economic outlook, 
given Saudi Arabia’s key position in international energy markets. 
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Appendix A. 

Derivation of Energy Demand Equation 

A firm’s target is to minimize the total cost, in other words to define the quantities of Q, K, L, E, 
and M which gives minimum value to the following total cost function: 𝐶 = 𝑝 𝐾 + 𝑝 𝐿 + 𝑝 𝐸 + 𝑝 𝑀 (A1) 

where 𝐶 is total cost and 𝑝 ,𝑝 ,𝑝 ,𝑝  are capital, labor, energy, and material prices, respectively. 
Then, treating the total cost function as an objective function and the production function as a 

constraint, the exercise can be formulated as a constrained optimization problem: 𝐶 = 𝑝 𝐾 + 𝑝 𝐿 + 𝑝 𝐸 + 𝑝 𝑀 → 𝑀𝑖𝑛 (A2) 

subject to  𝑄 = 𝑓(𝐾, 𝐿,𝐸,𝑀) = 𝐴𝐾 𝐿 𝐸 𝑀  (A3) 

Using the Lagrange multipliers method for constrained optimization, we can modify our 
optimization set up as follows (let’s call it G): 𝐺 = 𝐶 + 𝜆(𝑄 − 𝑓(𝐾, 𝐿,𝐸,𝑀)) → 𝑀𝑖𝑛 (A4) 

which becomes: 𝐺 = 𝑝 𝐾 + 𝑝 𝐿 + 𝑝 𝐸 + 𝑝 𝑀 + 𝜆(𝑄 − 𝐴𝐾 𝐿 𝐸 𝑀 ) → 𝑀𝑖𝑛 (A5) 

Now, we have an unconstrained optimization problem with objective function G, as given 
above. 
Based on the Lagrange multipliers method, we should calculate the partial derivatives with respect 

to K, L, E, M, and 𝜆. The derivatives are given below: 
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⎩⎪⎨
⎪⎧ 𝐺 = 𝑄 − 𝐴𝐾 𝐿 𝐸 𝑀𝐺 = 𝑝 − 𝜆𝐴𝛼𝐾 𝐿 𝐸 𝑀𝐺 = 𝑝 − 𝜆𝐴𝛽𝐾 𝐿 𝐸 𝑀𝐺 = 𝑝 − 𝜆𝐴𝛾𝐾 𝐿 𝐸 𝑀𝐺 = 𝑝 − 𝜆𝐴𝛿𝐾 𝐿 𝐸 𝑀

 (A6) 

As a next step, in order to find the extremum point, we should equate all the above derivatives 
to zero: 

⎩⎪⎨
⎪⎧  𝑄 − 𝐴𝐾 𝐿 𝐸 𝑀 = 0 𝑝 − 𝜆𝐴𝛼𝐾 𝐿 𝐸 𝑀 = 0 𝑝 − 𝜆𝐴𝛽𝐾 𝐿 𝐸 𝑀 = 0 𝑝 − 𝜆𝐴𝛾𝐾 𝐿 𝐸 𝑀 = 0𝑝 − 𝜆𝐴𝛿𝐾 𝐿 𝐸 𝑀 = 0

 (A7) 

Let’s take the second terms of each equation to the right side of the equations and then take logs 
of both sides; then we will obtain the following system of equations: 

⎩⎪⎨
⎪⎧ 𝑙𝑛𝑄 = 𝑙𝑛𝐴 + 𝛼𝑙𝑛𝐾 + 𝛽𝐿𝑛𝐿 + 𝛾𝑙𝑛𝐸 + 𝛿𝑙𝑛𝑀𝑙𝑛𝑝 = 𝑙𝑛𝜆𝛼𝐴 + (𝛼 − 1)𝑙𝑛𝐾 + 𝛽𝑙𝑛𝐿 + 𝛾𝑙𝑛𝐸 + 𝛿𝑙𝑛𝑀𝑙𝑛𝑝 = 𝑙𝑛𝜆𝛽𝐴 + 𝛼𝑙𝑛𝐾 + (𝛽 − 1)𝑙𝑛𝐿 + 𝛾𝑙𝑛𝐸 + 𝛿𝑙𝑛𝑀𝑙𝑛𝑝 = 𝑙𝑛𝜆𝛾𝐴 + 𝛼𝑙𝑛𝐾 + 𝛽𝑙𝑛𝐿 + (𝛾 − 1)𝑙𝑛𝐸 + 𝛿𝑙𝑛𝑀𝑙𝑛𝑝 = 𝑙𝑛𝜆𝛿𝐴 + 𝛼𝑙𝑛𝐾 + 𝛽𝑙𝑛𝐿 + 𝛾𝑙𝑛𝐸 + (𝛿 − 1)𝑙𝑛𝑀 (A8) 

Since our purpose is to derive a formula for energy demand function, we should express all 
other variables in terms of energy demand, namely E.  

Let’s express K, L, and M in terms of E and then consider this expression in the first equation of 
the last system of equations. Subtracting the fourth equation of the system from the second one and 
using the property of logarithmic function, we obtain: 𝑙𝑛 𝑝𝑝 = 𝑙𝑛 𝛼𝛾 − 𝑙𝑛𝐾 + 𝑙𝑛𝐸 (A9) 

Modifying this equation a little, we can derive a formula relating K to E: 𝑙𝑛𝐾 = −𝑙𝑛 + 𝑙𝑛 + 𝑙𝑛𝐸  or 𝑙𝑛𝐾 = 𝑙𝑛 𝐸   and therefore: K= 𝐸 (A10) 

In a similar way, subtracting the fourth equation consequently from the third and fifth equations 
we obtain the formulas relating L and M to E: 

L= 𝐸 (A3) 

M= 𝐸 (A12) 

Considering (A10), (A11) and (A12) in the first equation of the system (A8) we end up with: 𝑙𝑛𝑄 = 𝑙𝑛𝐴 + 𝛼ln (𝑝𝑝 𝛼𝛾 𝐸) + 𝛽ln (𝑝𝑝 𝛽𝛾 𝐸) + 𝛾𝑙𝑛𝐸 + 𝛿ln (𝑝𝑝 𝛿𝛾 𝐸) (A13) 

Using the properties of the logarithmic function, (A13) can be modified as follows: 𝑙𝑛𝑄 = 𝑙𝑛𝐴 + 𝛼 ln + 𝛼 ln + 𝛼𝑙𝑛𝐸 + 𝛽 ln + 𝛽 ln +𝛽𝑙𝑛𝐸 + 𝛾𝑙𝑛𝐸 + 𝛿 ln + 𝛿 ln + 𝛿𝑙𝑛𝐸) 
(A14) 

Rearranging (A14) and combining the constant terms and coefficient of lnE we obtain: 
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𝑙𝑛𝑄 = 𝑙𝑛𝐴 + 𝛼 ln 𝛼𝛾 + 𝛽 ln 𝛽𝛾 + 𝛿 ln 𝛿𝛾 + 𝛼 ln 𝑝𝑝 + 𝛽 ln 𝑝𝑝+ 𝛿 ln 𝑝𝑝 + [𝛼 + 𝛽 + 𝛾 + 𝛿]𝑙𝑛𝐸 
(A15) 

Let’s find lnE from this expression: [𝛼 + 𝛽 + 𝛾 + 𝛿]𝑙𝑛𝐸= 𝑙𝑛𝑄 − 𝑙𝑛𝐴 + 𝛼 ln 𝛼𝛾 + 𝛽 ln 𝛽𝛾 + 𝛿 ln 𝛿𝛾− 𝛼 ln 𝑝𝑝 − 𝛽 ln 𝑝𝑝 − 𝛿 ln 𝑝𝑝  

(A16) 

Taking into account the fact that (−ln ( )) = 𝑙𝑛  , we can modify (A16) as follows: [𝛼 + 𝛽 + 𝛾 + 𝛿]𝑙𝑛𝐸= 𝑙𝑛𝑄 + −𝑙𝑛𝐴 + 𝛼 ln 𝛾𝛼 + 𝛽 ln 𝛾𝛽 + 𝛿 ln 𝛾𝛿+ 𝛼 ln 𝑝𝑝 + 𝛽 ln 𝑝𝑝 + 𝛿 ln 𝑝𝑝  

(A17) 

Now, in order to obtain expression for lnE, let’s divide both sides of (A17) by the coefficient of 
lnE: 

𝑙𝑛𝐸 = 1[𝛼 + 𝛽 + 𝛾 + 𝛿] 𝑙𝑛𝑄 + −𝑙𝑛𝐴 + 𝛼 ln 𝛾𝛼 + 𝛽 ln 𝛾𝛽 + 𝛿 ln 𝛾𝛿[𝛼 + 𝛽 + 𝛾 + 𝛿]+ 𝛼[𝛼 + 𝛽 + 𝛾 + 𝛿] ln 𝑝𝑝 + 𝛽[𝛼 + 𝛽 + 𝛾 + 𝛿] ln 𝑝𝑝+ 𝛿[𝛼 + 𝛽 + 𝛾 + 𝛿] ln 𝑝𝑝  

(A18) 

In order to have energy, capital, labor, and material prices as individual variables in the right-
hand side, Equation (A18) can be modified into Equation (A19), as expressed below: 

𝑙𝑛𝐸 = 1[𝛼 + 𝛽 + 𝛾 + 𝛿] 𝑙𝑛𝑄 + −𝑙𝑛𝐴 + 𝛼 ln 𝛾𝛼 + 𝛽 ln 𝛾𝛽 + 𝛿 ln 𝛾𝛿[𝛼 + 𝛽 + 𝛾 + 𝛿]+ 𝛼[𝛼 + 𝛽 + 𝛾 + 𝛿] ln 𝑝 + 𝛽[𝛼 + 𝛽 + 𝛾 + 𝛿] ln 𝑝+ 𝛿[𝛼 + 𝛽 + 𝛾 + 𝛿] ln 𝑝 + (−𝛼 − 𝛽 − 𝛿)[𝛼 + 𝛽 + 𝛾 + 𝛿]𝑝  

(A19) 

Equation (A19) here can be simplified to Equation (2) in Section 2. 
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