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Abstract: Changing climate is expected to cause more extreme weather patterns in many parts of
the world. In the Carpathian Basin, it is expected that the frequency of intensive precipitation will
increase causing inland excess water (IEW) in parts of the plains more frequently, while currently the
phenomenon already causes great damage. This research presents and validates a new methodology
to determine the extent of these floods using a combination of passive and active remote sensing
data. The method can be used to monitor IEW over large areas in a fully automated way based on
freely available Sentinel-1 and Sentinel-2 remote sensing imagery. The method is validated for two
IEW periods in 2016 and 2018 using high-resolution optical satellite data and aerial photographs.
Compared to earlier remote sensing data-based methods, our method can be applied under unfavorite
weather conditions, does not need human interaction and gives accurate results for inundations larger
than 1000 m2. The overall accuracy of the classification exceeds 99%; however, smaller IEW patches
are underestimated due to the spatial resolution of the input data. Knowledge on the location and
duration of the inundations helps to take operational measures against the water but is also required to
determine the possibilities for storage of water for dry periods. The frequent monitoring of the floods
supports sustainable water management in the area better than the methods currently employed.

Keywords: inland excess water; flood; water management; radar remote sensing; optical remote
sensing; automation

1. Introduction

Due to its physical geography, the Carpathian Basin in Central Europe is under the influence of
extreme differences in weather patterns during the year. On one hand, periods of high precipitation
can cause floods at the end of the winter; on the other hand, during the summer, long dry periods can
cause drought at the same locations [1]. The floods cover large parts of flat areas with a shallow layer of
water for a period of several weeks to months. Contrary to riverine and coastal floods, the inundations
occur when, due to limited runoff, infiltration and evaporation, the superfluous water remains on
the surface or at places where groundwater, flowing towards lower areas, appears on the surface
by leakage through porous soils [2]. The phenomenon exists in other low-lying countries, though
especially in Hungary a long tradition of research related to the floods exists. Sometimes, the floods are
referred to as inland water or excess water, but the authors prefer to use the term inland excess water
(IEW) to indicate that they develop due to surplus water and that their geographic location is inshore.
This prevents confusion because inland water can refer to any inshore water body, while excess water
can be riverine or coastal floods as well.

In terms of daily precipitation intensity, many climate change models predict that in the summer
an increasing number of days with high rainfall (more than 20 mm daily precipitation) will happen,
but that due to a decrease in available water resources (e.g., lower groundwater levels), no significant
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change in IEW hazard is expected at regional scale. Local environmental factors, like agricultural
practices, relative relief differences and soil characteristics, play an important role in the development
of IEW; thus, increased inundations in the study area are expected in summer and autumn resulting
from heavy rainfall, which may even be enhanced by wet microbursts [3–5]. These extremes cause
severe water management problems. A common technical-engineering solution for the problem is to
try to pump away the water as fast as possible. Although sometimes feasible, when the water level in
rivers is also not high, this solution is not sustainable. One of the potential integrated and sustainable
solutions to the inland excess water problem is to store the surplus water in agricultural areas for
later periods of drought [6,7]. Also, IEW can be allowed to remain on areas designated as (temporary)
wetlands, supporting ecosystem restoration. For such complex water management, it is important to
understand where IEW develops. The methodology presented in this article aims to support water
management for the sustainable use of the surplus water.

When the needs of the population for agricultural land, urban settlements or others meet the
inundations, it can result in serious financial, environmental and social problems. The length of IEW
periods fluctuates between days, weeks and several months [1,8]. In Hungary more than 24% of the
arable land is in areas moderately or highly endangered by inland excess water [9].

The IEW problem is not new; already in the 19th century IEW was mentioned as a natural
hazard [7]. Many engineers and scientists have worked to find solutions to reduce the damage from
the extreme amount of water. Before it is possible to take action against the problem, it is necessary to
understand the phenomenon and identify the factors and processes that cause the formation of inland
excess water. Also, it is important to determine the location and size of the inundations to be able to
plan storage possibilities or take operative measures to mitigate and prevent further damage. When it
is known precisely where and when IEW occurs, it may be possible to forecast the location, size and
duration of future floods and to develop preventive policies [10].

Four major approaches to map and monitor IEW can be identified [10]. The oldest approach
is visual observation of inland excess water patches. The first in situ inland excess water maps in
Hungary date from the middle of the 20th century; since then, observations have been carried out
during every rainy period in areas affected by IEW. This approach is labor intensive and can easily
lead to errors due to misinterpretation and differences in observation methodology. Aggregating the in
situ maps over time can be useful to create maps showing the vulnerability to inland excess water
floods at an approximate scale of 1:100,000. Monitoring is not possible using the field observations,
since normally only the maximum observed inundation during an IEW period is drawn on a map.
Pálfai [11] was one of the first to perform hazard mapping based on factors causing inland excess
water resulting in the national inland excess water index map. Since then, many national, regional and
local versions of this approach have been published (e.g., [12–17]). The maps provide information on
the vulnerability of an area to IEW, but do not give information about actual occurrences, nor about
the development of the phenomenon. Modelling of inland excess water has been performed using
hydrological modelling packages as well [18,19]. This approach can result in detailed models of the
inundations, but requires large amounts of accurate input data, which is often only available for very
small areas.

The fourth approach to map and monitor IEW is based on remote sensing data and algorithms.
Data collected from small (drones), medium (aerial photographs) and large (satellite imagery) areas have
been used to detect inland excess water. The field of remote sensing provides a set of well-understood
methods that can be applied in a standardized method allowing to create uniform IEW maps of large
areas with good spatial resolution. Data from different passive sensors have been extensively used
for this purpose, for example [20–26]. The disadvantage of passive data is their limited usability
during bad weather conditions, which often occur during IEW periods. Therefore, approaches using
active satellite data to detect IEW or other shallow temporal water bodies have been published as
well [10,23,27–32]. In general, radar data have been used for water and especially flood identification
in many studies. For example, Bolanos et al. [33] developed a method to detect open water bodies
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using a dual threshold method with high-resolution Radarsat 2 data. Also, approaches of combined
monitoring of surface water with optical and radar data have appeared [34,35].

With the development of ESA’s Copernicus program, a large fleet of satellites has appeared that
provides data for a large range of applications. The Sentinel-1 satellites have been among the first
platforms in the program and provide data using an active remote sensing instrument. The data set is
an improvement over earlier radar data sets because it provides continuous, near global data with a
high temporal interval [36]. The Sentinel-2 satellites in the constellation are multispectral satellites with
a high temporal interval as well. The combined use of Sentinel-1 and Sentinel-2 data has been studied
for different applications, like land use/land cover classification [37–39] and wetlands mapping [40].

Although flood detection based on Sentinel-2 has been studied before [41,42], a fully automated
approach based on a combination of Sentinel-1 and -2 to determine the extent of non-permanent
shallow water bodies has not been published to the knowledge of the authors.

The aim of our research is to develop a methodology that is capable of continuously monitoring
inland excess water over large areas to improve complex water management. Our research questions
are (1) what combination of satellite data can be used for large-scale IEW mapping, (2) which methods
can be fully automated to be able to create standardized, repeatable, weekly IEW maps and (3) what is
the accuracy of the methodology? In 2017, a first attempt was made to combine passive and active
satellite data to create regional scale inland excess water maps. Results of IEW detection based on the
combined satellite data sources were promising but were still quite error prone [10]. Therefore, the
algorithms were improved and fully automated. Here, we present a new workflow that is capable
of fully automatic processing of freely available data of Sentinel-1A, Sentinel-1B, Sentinel-2A and
Sentinel-2B into weekly inland excess water maps at regional or national scales. We also present
validation of the results based on independent high-resolution satellite data and aerial photographs.

2. Materials and Methods

2.1. Study Area

The study area is 5913 km2 in the southeast of the Great Hungary Plain, enclosed by the Tisza,
Körös and Maros rivers and the Hungarian–Romanian border (Figure 1). The elevation is between 77
and 107 m (above Baltic mean sea level). The vulnerability to inland excess water of the area falls in
the categories moderately endangered or strongly endangered [11].
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The areas that are most vulnerable are southeast of the city of Orosháza, the low-lying plains in
the west, the valley of the lower Tisza and the areas close to the Körös river. There is a close relation
between these areas and the regularly flooded regions prior to the 19th century river regulations [15].
Due to the geomorphological characteristics of the Maros alluvial fan, IEW can also develop on the
higher areas, which can cause significant damage at the border of the alluvial fan [2].

The development of inland excess water in the study area is favored by the fact that 84% of
the soils are clayey, 50% of them have poor water absorption and unfavorable water management
characteristics, and their upper, middle and lower layers are easily saturated. Eighty eight percent of
the agricultural land is arable land, which is because more than 75% of the soils are fertile chernozem.
The build-up area ratio in the study area is 5%.

The development of IEW is closely, but not exclusively, related to the period with high precipitation
in January, February and March. For this reason, our research period is focused on, respectively,
March 2016 and March 2018 (Figure 2). In 2016, during the period between January and March
the precipitation was continuously above the 1971–2000 long-term average for that period, while in
February it was even twice as high as normally. After the high precipitation period in the second half
of February, between March 14–20, just before and during the satellite data acquisition, also quite a lot
of rain fell. The temperature of 5–10 ◦C was several degrees above the normal temperature in February
and March, causing increased evaporation.
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Figure 2. Daily precipitation and temperature data on the study area between 01 January–31 March in
2016 and 2018 respectively and the deviation of the monthly precipitation amount from the 1971–2000
climatic normal value based on a summation of the 5 closest meteorological stations (Hungarian
Meteorological Service, OGIMET) (the colored days on the x-axis show the remote sensing data
acquisition dates in 2016 and 2018).

In February 2016, everywhere on the Great Hungarian Plain inland excess water developed.
In March, IEW in Hungary peaked at a maximum 82,427 ha [43]. The year 2016 can be considered a
moderate IEW year in terms of total area covered by water.

In February, as well as in March 2018, the precipitation was twice as high as the national long-term
average between 1971–2000 for those months. In fact, in the south part of the study area, the
precipitation was already above the seasonal average in January. At the end of February, a cold period
with precipitation started, which resulted in a considerable layer of snow. The warmer period in
the middle of March caused the snow to melt and the soil to get saturated by melting water. Also,
substantial rainfall fell during March, especially on the 18th. The satellite imagery from March 28, 29,
30 and 31 used in the study shows the development of IEW at the end of March. The total area covered
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by IEW in Hungary was 73,184 ha [43], slightly less than in 2016. This year should also be considered a
moderate IEW year.

2.2. Data

The presented inland excess water mapping workflow integrates different remote sensing datasets
with auxiliary vector and raster data. The satellite images were obtained from the scientific data hub of
the Copernicus Earth observation program of ESA [44].

2.2.1. Sentinel Satellite Data

Sentinel-1 satellite constellation offers C-band radar data, day and night, and under all weather
conditions. At the study area, the two satellites provide images about every third day in three
descending and two ascending paths. The applied Interferometric Wide (IW) swath mode covers a
250 km wide area and has 5 × 20 m spatial resolution. Level 1 Ground Range Detected (GRD) products
containing both Vertical–Vertical (VV) and Vertical–Horizontal (VH) polarizations were automatically
downloaded for the selected time frame and preprocessed in several steps. For the validation of the
research methodology, in total, 9 radar images were processed for 2016 and 21 for 2018 (Table 1).

Table 1. Remotely sensed input data.

Satellite/Sensor Dates of Data Using
in the Validation

Polarization/Spectral
Bands

Spatial
Resolution/Coverage

Sentinel-1A/1B

16 March 2016
20 March 2016
28 March 2018
29 March 2018
30 March 2018
31 March 2018

C-band (5405 GHz)
VV/VH

5 × 20 m (resampled to
10 × 10 m)

250 km width

Sentinel-2A/2B
18 March 2016
28 March 2018
31 March 2018

B2: 492.4/492.1 nm
B3: 559.8/559.0 nm
B4: 664.6/664.9 nm
B5: 704.1/703.8 nm
B6: 740.5/739.1 nm
B7: 782.8/779.7 nm
B8: 832.8/832.9 nm

B8A: 864.7/864.0 nm
B11: 1613.7/1610.4 nm
B12: 2202.4/2185.7 nm

10 m (B2, B3, B4, B8)
20 m (B5, B6, B7, B8A,

B11, B12)
100 × 100 km2

SPOT 7 14 March 2016

Blue: 450/520 nm
Green: 530/590 nm
Red: 625/695 nm

Near Infrared: 760/890 nm

1.5 m
400 km2

PhaseOne P65+ 28 March 2018 RGB 10 cm
20 km2

Sentinel-2 multispectral imaging satellites provide optical data with a five-day revisiting period
(Table 1). From the available 13 spectral bands, covering the spectra from the visible part through near
infrared to short-wave infrared, only 10 bands with 10 and 20 m spatial resolution were used in the
analysis. In the first validation period in 2016, only the Sentinel-2A satellite was in orbit and just the
Level 1C (L1C) data product was available for download. In 2018, also data from Sentinel-2B, at Level
2A (L2A, Bottom-of-Atmosphere (BoA) reflectance values) was accessible. In the Sentinel-2 granule
system, the study area is fully covered by four 100 × 100 km tiles: 34TDT, 34TDS, 34TET and 34TES.
Altogether, optical images from three different dates were processed in this research.
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2.2.2. Validation Data

In the validation process, independent remote sensing data, acquired by satellite and aerial sensors,
were used. In 2016, reference data of inland excess water patches was generated from a SPOT-7 image.
In 2018, an orthophoto was used to create the reference data set.

The acquisition date of the pan-sharpened SPOT-7 image was 14 March 2016. The spatial resolution
of the orthorectified data was 1.5 m due to pan sharpening of the original 6 m multispectral bands. The
image covered an area of 400 km2 in the northwest part of the study area (Figure 3).
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Aerial photographs were taken on 28 March 2018 with a 60 MP RGB camera deployed on a Cessna
172 airplane. The generated orthophoto mosaic had 10 cm spatial resolution and covered an area of
approximately 20 km2 in the northwest of the study area.

2.2.3. Auxiliary Data

The satellite data-based algorithm requires multiple mask files to identify and evaluate inland
excess water inundations. Permanent water bodies in the study area, like lakes and rivers, were
extracted and stored in a training mask file (reference areas). Based on this mask, reference statistics
were calculated that were used by the three algorithms of the workflow to identify pixels with water.
The mask was initially derived from vector maps stored in the hydro-geographic database of the
General Directorate of Water Management. These maps were manually updated using very high
resolution satellite images stored in Google Earth. Only open water was digitized, while avoiding
vegetation along the shores and shadows. In total, 1400 ha of training pixels was extracted evenly
spread over the study area.

The presented algorithm only assesses areas where temporary inundations can develop; therefore,
built-up areas, anthropogenic land cover like large roads, railroads and large buildings were excluded,
using buffers of respectively 10 and 20 m. Also, permanent water bodies were not considered as
IEW. This way only areas with nature, agriculture and forest were considered as potential IEW areas.
Based on these criteria, areas were extracted from the National High Resolution Layer (nHRL) with a
10 m spatial resolution created by the Lechner Knowledge Center. Furthermore, large-scale vector
maps stored in the hydro-geographic database of the General Directorate of Water Management were
extracted and used to update the potential IEW areas. In this way, 12% of the study area was excluded
for evaluation as IEW area.

2.3. Methodology

A large number of satellite images needs to be processed to be able to create the weekly inland
excess water maps. This requires automation of the data processing workflow (Figure 4). For this
purpose, a set of Python scripts was developed that combined standard libraries like gdal and numpy
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with arcpy for GIS operations. Two sets of scripts ran with a different interval. The daily set comprised
downloading, preprocessing and processing data when new satellite images became available, while
the second set ran on a weekly basis and integrated the daily results into the weekly map.
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2.3.1. Downloading the Base Satellite Data

Sentinel-1 and -2 data can be downloaded free of charge from ESA’s Copernicus Open Access
Hub. With the help of a Python script, the Wget program (www.gnu.org/software/wget) was called to
search for relevant Sentinel images. A list with images was returned and processed to extract the image
URLs. These URLs were fed to Wget, and the files were downloaded sequentially. If, due to overload

www.gnu.org/software/wget
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of the ESA server or other reasons, the file was not downloaded correctly, the process was restarted
automatically after a defined time interval. The script was restarted every day in the week that was
processed because sometimes data only became available a few days later instead of immediately
after acquisition.

2.3.2. Preprocessing

Sentinel-1 data were preprocessed using the ESA SNAP graph processing tool (gpt). With
this command line interface, SNAP image processing functions can be accessed and automatically
executed [45]. Each Sentinel-1 image was individually processed to generate a geometrically and
radiometrically corrected sigma0 output. The images were transformed using Rangle Doppler Terrain
Correction to UTM 10 × 10 m images that can be combined with the other data sets. After the
preprocessing phase, an additional step was performed to reduce the effect of the incidence angle on the
backscatter values, by normalizing every pixel in the preprocessed image using the local incidence angle.

Depending on the age of the Sentinel-2 data, the preprocessing workflow was slightly different
because older data were only available in level 1C format. Level 1C data have to be transformed into
level 2A using ESA’s Sen2Cor algorithm. Once the data were in level 2A format, selected spectral
bands (Table 1) were resampled and cloud masked using a custom ESA SNAP graph. Cloud and
cloud shadow masks were generated from the level 2A scene classification layer. Sentinel-2 tiles
slightly overlapped each other, which would cause overestimation of the IEW pixels if each tile
would be processed separately. Therefore, single tiles were mosaiced into the original swath at each
acquisition day. For the validation of the presented methodology, Sentinel-2 data in level 1C format
were downloaded in 2016, while in 2018 the data were in level 2A format.

2.3.3. Processing

Radar-Based Processing

The preprocessed Sentinel-1 images were filtered using a Refined Lee speckle filter to reduce noise.
Then, the backscatter values were converted to decibel (db) units for easier handling in the processing
workflow. The radar processing workflow was based on the assumption that the radar response of
water was considerably lower than the response of other pixels. The challenge is to find the maximum
backscatter value of water [33,46]. To determine this value, training data were collected for both the
VV and VH bands of an image. The training data consists of the statistics of the known water bodies as
described in 2.2.3. For each band, the minimum, average and standard deviation were determined.
Based on these values, the upper and lower thresholds are calculated using an empirically determined
method:

uthrb = x + k ∗ σ (1)

lthrb = xmin + (3 ∗ (x− xmin)/5) (2)

where

b is, respectively, band VV or band VH;
uthrb is the upper threshold in db;
lthrb is the lower threshold in db;
x is the mean of the training samples in db;
σ is the standard deviation of the training samples in db;
xmin is the minimum of the training samples in db;
k is a user defined constant that can be adapted to specify the sensitivity of the algorithms to water,
where a higher value results in more pixels to be identified as water. The value for k is empirically
determined based on the inland excess water events in 2016 and 2018 described in the research. In the
future, when more data are available for new IEW periods, the value for this constant can be fine-tuned.
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Sometimes, due to speckle or artifacts, pixels with very low backscatter values occur in the images.
These pixels are excluded as water using the lower threshold. All pixels that are between the upper
and lower thresholds in both bands are stored as water pixels:

water pixel = lthrb < xb < uthrb (3)

where xb is the value of an individual pixel.
In the rare case that the statistics of the training samples are beyond the normal range, the

predetermined standard values are used for the lower and upper thresholds. These are band-specific
(lthrVV = −40, uthrVV = −17, lthrVH = −50 and uthrVH = −23) because backscatter values for water
are normally lower in the VH band. The predetermined standard values are a requirement for full
automation of the algorithm. Their values are based on examining the values of water in the radar
images and literature [27,30]. Ascending and descending orbits are processed using the same methods
because each image is processed individually, meaning that every image has its own set of training
statistics that is used for the extraction on the water pixels.

It was observed that in areas with sandy soils, the backscatter values were lower, resulting in
overestimation of the number of water pixels. Therefore, an adaptation of the radar processing was
applied to each sandy pixel in the image, and the upper threshold was reduced by 25%. This value
was empirically calibrated. So far, its value could not be better determined from other research. The
value can be adapted when more data become available from other IEW periods or other areas. Pixels
defined as water in both bands are considered water pixels and are stored in the final map.

The final map is a binary map showing all water in the area, whether it is an inland excess water
inundation or a permanent water body like a lake or a river.

Optical Data Based Classification

Open water surfaces are extracted from preprocessed Sentinel-2 optical data using two different
approaches. The first one applies an automatic multispectral classification based on Iterative
Self-Organizing Data Analysis Technique (ISODATA) clustering [47]. The mean values of the reference
permanent water bodies (see Section 2.2.3) are calculated for each Sentinel-2 band. These statistics are
then compared to the statistics of the ISODATA output classes. The comparison is based on the nD
similarity measurement of the spectral angle difference:

cos−1


∑nb

i=1 tiri(∑nb
i=1 t2

i

)1/2(∑nb
i=1 r2

i

)1/2

 (4)

where

nb is the number of selected Sentinel-2 bands;
t is the list of mean values of the selected Sentinel-2 bands in the examined ISODATA class;
r is the list of mean values of the selected Sentinel-2 bands in the training pixel group.

Natural breaks were identified among similarity values, which are ordered by increasing value.
The most similar ISODATA classes were normally located before the first break, and they were labeled
as “water” classes. The method requires a sufficient number of training pixels, which is sometimes
difficult to acquire due to cloud cover in the optical data. Therefore, a checking and verification
step was implemented in the algorithm. In case of insufficient quantity of reference data (less than
30,000 training pixels), the Sentinel-2 classification was not performed. Furthermore, if the statistics
were beyond the normal range, empirically defined values for the mean of each band were used for
the classification. The classified raster was reclassified to a binary map, differentiating water and
non-water pixels.
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Optical Data Based Index Calculation and Thresholding

The Modified Normalized Difference Water Index (MNDWI) was developed by Xu [48] and is an
enhanced version of the algorithm originally proposed by McFeeters [49]. It is calculated from the
green and Shortwave-Infrared (SWIR) bands, and it is one of the most popular methods to extract
water from multispectral satellite imagery. The index produces positive values for the water and
negative values for built-up, soil and vegetation land cover:

MNDWI =
ρgreen − ρSWIR

ρgreen + ρSWIR
(5)

where

ρgreen and ρSWIR are the BoA reflectance of the green and SWIR bands.

The SWIR band (Sentinel-2, Band 11) originally had a spatial resolution of 20 m whilst the green
band (Sentinel-2, Band 3) had a resolution of 10 m. To take full advantage of the 10 m information
provided by the Sentinel-2 images, a 10 m spatial resolution MNDWI was produced through resampling
the 20 m resolution band during the preprocessing phase.

Water bodies were mapped by a simple slicing algorithm using a suitable threshold value.
In general, the MNDWI value of a pixel larger than zero was considered as water. In practice, even
though atmospherically corrected, multispectral images acquired at different regions and different
times always have slightly different characteristics, thus the threshold needs to be empirically adjusted
for each region and acquisition date using a multiplication factor:

MNDWIthreshold = MNDWImean − k ∗MNDWIstd (6)

where

MNDWImean is the mean index value of the training samples;
MNDWIstd is the standard deviation of the training samples;
k is a multiplication factor with a default value of 1.

If, due to cloud cover, the number of pixels with reference data is less than 30,000, or if the statistics
are beyond the normal range, a standard value was used for the Sentinel-2 MNDWI segmentation
threshold. Based on experiences of Du et al. [50], the ideal MNDWI threshold value is between
0.2–0.35. The result of the MNDWI segmentation process is a binary map, differentiating water from
non-water pixels.

Integration

The binary maps produced by the three processing workflows covered different spatial areas and
were from different dates during the week that was being processed. Data from different dates were
aggregated into one weekly inland excess water map because data from single date do not provide a
reliable result [10]. To integrate the data and to determine the reliability of the final weekly inland
excess water map, all individual partial result maps were extended to the total study area. Pixels
where no information was available on whether there was water were designated −100. Pixels can
have a −100 value if they are clouds, shadows, outside the original image or for any other reason
undetermined. The result is a large set of maps with three values: 0 (no water), 1 (water), and −100
(undetermined) covering the total study area. In the next step, a map was created storing the number
of times that it was determined if in a pixel there was water or no water. In another map, for each
pixel, it was determined how many times water was found. By dividing the second map by the first
map, a frequency map was created specifying the relative number of times water was found in a pixel
compared to the number of times data were available. If the relative frequency of water was above the
manually specified threshold (e.g., 0.3 or 30%), the pixel was determined to be water. This map was
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then filtered to delete separate water pixels surrounded by no water pixels and to fill up individual no
water pixels surrounded by water pixels. In this way, more continuous inundations were generated.
In the final step, all known permanent water bodies were masked out based on the masked file (see
Section 2.2.3), and a binary raster inland excess water map was created. The raster map was vectorized,
and using zonal statistics the amount of inland excess water per hectare was calculated for different
administrative units.

2.3.4. Validation

Validation data for the 2016 inland excess water period were derived from a pan-sharpened
multispectral SPOT-7 image. Water surfaces were extracted using an automated clustering method
(ISODATA with 60 classes), combined with manual selection of water classes. From the classified
raster, gaps and separated water pixels smaller or equal to the mapping resolution (10 × 10 m) were
removed using the Sieve method. Permanent water bodies, linear infrastructures, built-up areas and
shadows were also removed. In the last step, the validation data were resampled and aligned to the
processing grid of Sentinel-2 data (Figure 5).
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show a small subsection of the validation areas.

The 2018 validation was based on an orthophoto mosaic covering an area of 20 km2 in the
northwest part of the study area. It was visually interpreted, and inland excess water patches were
manually digitized. Polygons were filtered by deleting objects smaller than 100 m2 and resampled and
aligned to the processing grid (Figure 5). The rasterized validation datasets and the result inland excess
water maps were compared using a cross-tabulation method. The producer’s and user’s accuracy and
omission and commission error were calculated for the water and no water classes.

3. Results and Discussion

3.1. Maps and Statistics

Weekly inland excess water maps were created for the complete study area for the two inland
excess water periods in 2016 and 2018 (Figure 6). Parameters were tweaked to adjust the sensitivity
of the algorithm to water but to stay within realistic boundaries. Visual inspection of the results,
overlaying the IEW maps on different color composites of the Sentinel-2 images, shows that the
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algorithm properly delineated IEW inundations. The largest inundations were detected in regions
with clayey soils with unfavorable water management characteristics and on the former floodplains,
delineating the former fluvial geomorphology like oxbows and river meanders. The border of the Maros
alluvial fan was clearly shown on the 2018 result, in fact even on its higher areas IEW was detected.Sustainability 2020, 12, x FOR PEER REVIEW 12 of 21 
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During the moderate IEW period of 2016, the presented algorithm detected a little over 600 ha of
IEW mainly in the northwest and east parts of the total study area. More than half of the detected
IEW polygons were small, in this research not larger than 3 pixels (=<300 m2). Often in pixel-based
classifications, these pixels are automatically attached to the statistically nearest bigger class. In the
presented algorithm, this procedure did not happen because the contrast between water surfaces and
dry surfaces is usually quite big, and these small patches are often located close to each other or part of
a larger patch, together defining a larger flood area in the IEW map. In 2016, 72% of the IEW patches
consisted of large, minimum 1 ha inundations, the largest patch was even larger than 25 ha. The results
show that over half of the IEW inundations occurred in agricultural areas, to a large extent arable land,
which has a large effect on the agricultural production. A further one-third of the IEW patches were
located on natural grassland.

In 2018, almost four times as much inland excess water was detected (3082 ha) as in 2016, and also
the spatial distribution of the patches was more spread out than in the earlier research period. In fact,
the floods increased everywhere except on the higher regions of the central and south-eastern parts
of the study area. The complexity of the issue of inland excess water formation and the importance
of high-resolution monitoring was also demonstrated by the fact that in 2016, there were small IEW
patches that were not inundated in 2018 (e.g., the arable land northwest of Orosháza).

For 2018, it was tested how the algorithm responded to different settings of the integration
parameter (Figure 7). Thresholds for 0.05 to 1 were specified with an increment of 0.05. The final
setting that was used for the calculations of inland excess water in 2016 and 2018 was 0.30. It was
determined that lower settings resulted in a large amount of cloud and shadow misclassification, and
higher settings reduced the amount of detected water too much.
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Figure 7. Relationship between the setting of the integration threshold and the total area of inland
excess water in hectares in 2018.

It should be mentioned that the number of available input images in 2018 was much larger than
that in 2016; therefore, the chance to detect water was also larger. This issue only occurred in the earlier
years of Sentinel data acquisition when fewer satellites were in orbit. In both years, the large and often
deeper inundations that were part of non-permanent wetlands (in the south center and east) were
detected almost perfectly. There was also a difference in land use at the inundation between the two
years under study. In 2018, the majority of inland excess water inundations affected natural grasslands,
and in agricultural land the proportion of meadow pastures (21%) was higher than that of arable land
(15%), while in 2016 the inundation mostly occurred on arable lands (34%). More than 83% of the
detected inundations were due to patches larger than 1 ha, but in 2016 there were many patches that
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consisted of one large polygon: several 40–60 ha patches were detected, while the largest had an area
of 331 ha.

Figure 8 shows a set of submaps of the detection results of 2018. At the top, it can be seen that
the three detection workflows identified similar patterns of water, but there were some differences.
The MNDWI-based water maps showed the most water, while the ISODATA-based map was the least
sensitive to water in this area. The frequency map showed for each pixel in how many source images
inland excess water was detected. It can be clearly seen that deep waterbodies were detected most of
the time, while more shallow water at the border of the deep IEW patches was detected less often.
These areas form the fuzzy boundary between water, saturated soil and dry land. The integration
stored water pixels that were detected more often than the relative frequency threshold. Often cloud
and cloud shadows disturb the IEW detection, as can be seen on the natural color composite. The
algorithm takes this into account by masking the clouds and shadows in the optical data and ignoring
these pixels in the relative frequency calculation. The cloud/shadow masking prevents the algorithm to
derive IEW from the optical data, but since radar images are not influenced by atmospheric disturbance,
these areas are evaluated for water by the active satellite data based workflow.
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Figure 8. Sub-results (A–C), frequency of water detection (D) and the integrated final inland excess
water map (E) on a selected area during the 13th week of 2018.

Figure 9 shows the differences in IEW area between the three detection methods and the total
area of detected inland excess water in the integration result for the same sub-area as used in Figure 8.
In the sub-area, the results for the optical data based workflows contained smaller IEW areas due to
the clearly identifiable clouds and shadows in the area. At those locations, pixels were not evaluated
by the ISODATA and MNDWI algorithms because they were masked out in the preprocessing phase
before the algorithms were run, based on the cloud mask incorporated with the Sentinel-2 level 2
data set. The radar-based result contained IEW pixels in cloud/shadow areas because the atmospheric
disturbances did not influence the active remote sensing data.
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Figure 10 shows the distribution of inland excess water per algorithm for the whole study area.
Here, the misclassifying of shadow as water by the optical data based ISODATA is clearly shown.
In areas with cloud shadows that were not masked out by ESA’s Sen2Cor cloud/shadow detection
algorithm, the ISODATA classifier mixed up shadow and water. The MNDWI algorithm is also based
on optical data, but it is not sensitive to this misclassification. The integration result was not influenced
by the errors due to shadows because these only occurred in one sub-result and, therefore, do not meet
the integration threshold to be incorporated in the final result.
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Maps of aggregated values for the absolute and relative number of hectares of inundations
were generated per administrative IEW defense areas (Figure 11). They support operative water
management planning by the local Water Directorates, and they can help to estimate the required
pumping capacity and expected duration of the floods. The aggregated inundation maps for all IEW
defense areas can be combined to a country-wide IEW preparedness map that is used for the national
water management program. The local amount of inundation can also help to identify areas for storage
of IEW, like reservoirs or permanent wetlands for use of water in later dry periods, this way supporting
sustainable water management.

3.2. Validation

The results of the IEW detection algorithm in 2016 were validated with a SPOT 7 image.
A subsection of the area can be seen in Figure 12. Visual inspection shows that the darker colors in
the SPOT natural color composite were similar in the Sentinel-2 color composite. Inland excess water
was mainly detected in the deepest parts of the inundations (true positive, green in the central map).
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Many pixels along the border of the inundations were not designated as water by the algorithm (false
negative). Rarely pixels were wrongly designated as water (false positive).
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assessment, C—validation of SPOT 7 data).

The quantification of the validation was based on a pixel-by-pixel comparison between the SPOT
image and the algorithm result and shows that the overall accuracy was high, but Cohen’s kappa was
low due to a very high omission error (Table 2). This is due to the fact that if one IEW patch was missed
in the classification, a large number of pixels were misclassified and added to the omission error. Also,
the classification is unbalanced due to the high number of “no water” compared to “water” pixels.

Table 2. Accuracy assessment on the validation site in 2016. The color of the cells refers to the colors in
Figure 12.

Reference

# Pixels No Water Water Total Producer’s
Acc.

Omission
Error

User’s
Acc.

Commission
Error

Detected

no water 4,454,908 7807 4,462,715 99.92 0.08 99.83 0.17
water 3494 4513 8007 36.63 63.37 56.36 43.64

no data
(cloud) 118 0 118 Overall Acc. 99.74 Kappa 0.44

Total 4,458,520 12,320 4,470,840

The IEW inundations delineated for the 2018 period were validated using the high-resolution
orthophoto. From the orthophoto mosaic, 849 inland excess water patches covering 147.5 ha were
digitized; however, the presented algorithm only delineated 52 polygons (8.9 ha). As can be seen in
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Figure 13, large inundations that were digitized on the aerial photograph can hardly be seen on the
Sentinel-2 image and were also omitted by the algorithm. Like in 2016, the deep/dark water patches
were delineated almost perfectly.Sustainability 2020, 12, x FOR PEER REVIEW 17 of 21 
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Figure 13. Results of the cross-validation on a selected area in 2018 (A—input Sentinel-2 data, B—result
assessment, C—validation aerial data).

The calculated accuracy and error values for the water class are shown in Table 3. They prove that
the applied method indicated the occurrences of inundations to the user properly in almost every case
(user accuracy was over 90%); however, the ratio of false negative cases was very high (omission error
was over 90%).

Table 3. Accuracy assessment on the validation site in 2018. The color of the cells refers to the colors in
Figure 12.

Reference

# Pixels No Water Water Total Producer’s
Acc.

Omission
Error

User’s
Acc.

Commission
Error

Detected
no water 185,712 13,919 199,631 99.97 0.03 93.03 6.97

water 59 830 889 5.63 94.37 93.36 6.64
Total 185,771 14,749 200,520 Overall Acc. 93.03 Kappa 0.10

The difference between IEW identified by the algorithm and the reference data sets can also be
caused by the difference in acquisition dates. The aim of the algorithm was to create weekly IEW maps,
as earlier research showed that combining multiple daily results gives more accurate IEW maps [10].
The reference SPOT data and aerial photographs were from a single moment in time, and because IEW
is a fast-changing phenomenon, differences in acquisition date of several days can lead to changes in
the IEW patches. This is particularly characteristic for the boundaries of the patches where the water
infiltrated or evaporated in case of reduced IEW, or when the size of a patch increased due to extra
water. This makes the validation of the weekly maps with single date reference data more difficult.

To better understand the difference between the IEW patches detected by the algorithm and the
polygons delineated on the SPOT satellite image (Table 4) and aerial photographs (Table 5), the number
of inundations and their areas were compared. From the results, it can be seen that the majority of
the polygons (over 70%) were in the smallest size range; however, their cumulative area was not
larger than 10% of the total inundation. Because of the difference between the image resolutions, the
algorithm omitted a large portion of these patches (65.6% and 94.5% in 2016 and 2018 respectively).
In the larger-size ranges, the statistics of the reference and the detected IEW patches were more similar.
However, the overall distribution of the polygons between the categories was comparable.

The underestimation of the number of IEW patches/pixels by the algorithm can be reduced by
changing the parameters for the threshold of the water detection by the radar data, the number of
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ISODATA classes that show water and the threshold of the MNDWI slicing. Also, the threshold for
the relative frequency required to assign a pixel as water can be set in the algorithm. It was decided
to keep the parameters such that realistic values remained for the thresholds and ISODATA water
classes, and therefore excepting the underestimation. Extreme fine tuning of the parameters may be
possible for small areas but is not feasible since the algorithm is meant to work for large areas. Also,
the algorithm is fully automated and runs without any user intervention. Fine tuning the parameters
per area and time would prevent the automation and general applicability.

Table 4. Comparison of the reference and the detected water polygons on the validation site in 2016.

Reference Detected

Category #
Polygons

Area
(m3)

#
(%)

Area
(%)

Polygons Area
#

(%)
Area
(%)# % of

Ref. (m2)
% of
Ref.

<1000 m2 399 148,668 71.4 12.1 177 44.4 47,136 31.7 72.0 5.9
1000 m2–1 ha 143 405,829 25.6 32.9 59 41.3 228,774 56.4 24.0 28.6

1 ha–2 ha 7 93,453 1.3 7.6 5 71.4 75,057 80.3 2.0 9.4
2 ha–5 ha 5 156,609 0.9 12.7 2 40.0 59,145 37.8 0.8 7.4

5 ha< 5 427,619 0.9 34.7 3 60.0 391,194 91.5 1.2 48.8
Total 559 1,232,177 100 100 246 44.0 801,306 65.0 100 100

Table 5. Comparison of the reference and the detected water polygons on the validation site in 2018.

Reference Detected

Category #
Polygons

Area
(m2)

#
(%)

Area
(%)

Polygons Area
#

(%)
Area
(%)# % of

Ref. (m2)
% of
Ref.

<1000 m2 703 168,423 82.8 11.4 39 5.5 8414 5 75.0 9.4
1000 m2–1 ha 126 403,596 14.8 27.3 11 8.7 33,975 8 21.2 38.1

1 ha–2 ha 12 170,725 1.4 11.6 1 8.3 17,113 10 1.9 19.2
2 ha–5 ha 4 109,980 0.5 7.5 1 25.0 29,722 27 1.9 33.3

5 ha< 4 623,258 0.5 42.2 0 0.0 0 0 0.0 0.0
Total 849 1,475,982 100 100 52 6.1 89,224 6 100 100

The results of the research show that a combination of different optical and radar satellite data
based algorithms provides improved results, compared to single method based solutions. Methodology
optimized for a certain area and for single-event mapping will give better results but cannot be used
for monitoring of large areas like the presented methodology. Limitations are the minimum size
of IEW patches; the algorithm does not adequately identify inundations with an area smaller than
1000 m2. In situations with lots of clouds, reference training data for the optical data based algorithms
are limited, resulting in IEW maps that are mainly based on radar data. Due to the inherent noisy
nature of radar data, smaller water patches are difficult to detect. Also, wind may cause turbulence in
the water and result in higher radar signals, which can prevent the radar-based algorithm to detect
water. Finally, radar data from ice and snow results in omission errors, underestimating the amount of
IEW. To overcome the described problems, IEW maps are derived from optical and radar data that are
gathered over the period of one week. This increases the chance of having a mixture of optical and
radar data as input for the algorithms.

4. Conclusions

The presented algorithm is capable of detecting inland excess water on very large areas based
on a combination of active and passive satellite images. The base data are freely available and can
be downloaded with a high temporal resolution. The workflow is fully automated, so no human
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intervention is needed to generate the weekly IEW maps. Two IEW periods and an area sensitive to
the phenomenon have been selected to demonstrate and validate the methodology, but the algorithm
can be applied to any area affected by IEW floods. Clearly, the quantitative validation shows that,
compared to the validation data of the high-resolution satellite data and aerial photographs, the weekly
IEW detection algorithm underestimates the amount of IEW in the study area. The algorithm is not
able to fully detect smaller patches, and soil saturated with water and IEW patches with vegetation are
often not detected.

Water retention on arable land flooded by IEW is beneficial to agriculture, while ecosystem
restoration in flooded nature areas can be planned for nature conservation. Therefore, it is important
to develop robust algorithms to map and monitor the phenomenon. The presented algorithm supports
efficient water management activities to mitigate the negative effects of IEW and to increase the
sustainable use of the surplus water in periods of deficit. A version of the algorithm is being
implemented in the framework of the National Hungarian Earth Observation Information System
(FIR), which is currently under development. The results of this implementation will be used in
the operational work of the Hungarian General Directorate of Water Management and can support
sustainable water management.
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