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Abstract: Sustainable development has always been an important issue for all policy makers,
even more so now, as global warming has seriously threatened the whole world. To understand the
efficacy of regional sustainable policies, we proposed a dynamic, two-stage, slacks-based measure
(SBM) model with carry-over and intermediate variables, highlighting the importance of an electricity
portfolio, to measure overall energy performance for the purpose of regional sustainable development.
In this unified linear programming framework with intertemporal evaluation, we estimated the
effects of a clean electricity supply by the abatement of CO2 emissions and the gain of economic
growth. The results can be used as a reference for decision makers to shape regional sustainable
development policies. Using data of 30 provincial administration regions in China for the period of
2012–2017, we postulate that the lower energy performance of the Chinese regional economic system
for sustainable development may be attributed to a lower electricity portfolio performance. We then
postulate that investment in low-carbon energy infrastructure can combat CO2 emissions, and is also
a major driving force in the regional economic growth.

Keywords: energy performance; regional sustainable development; China; two-stage evaluation
framework; dynamic two-stage SBM model

1. Introduction

Over the last decade, global warming has become aggravated, and extreme weather conditions
have threatened the living environment of all species. The culprit is believed to be the greenhouse
gas (GHG) emissions, mainly from the burning of fossil fuels [1–3]. However, because energy is
always indispensable among the many resources required to support economic development, the
overdependence on fossil fuels had gone unchallenged for a long time, especially in developing
countries [4]. As China experienced unprecedented economic growth after the nation’s markets were
opened up to the world, it has also become the world’s largest GHG emitter [2]. In order to fight climate
change, the consensus is for the world to abate CO2 emissions, so that the Earth’s temperature rises by
no more than 1.5 ◦C. Sustainable development has thus become a priority on every government’s policy
plate. Electrification and decarbonizing the production of electricity have become major directives in
long-term sustainable development [5]. China is no exception.

The Chinese government has laid out a set of energy policies in its strategic planning on
national development, i.e., the 11th–13th Five-Year Plans (from 2006 to 2020), and also participates
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in the Nationally Determined Contribution (NDC) that spells out the CO2 abatement goal by 2030.
Nonetheless, the real challenge is to improve the efficiency and productivity of energy, without
sacrificing potential economic growth. China has long been involved in renewable energy investment
and has made structural changes in its electricity mix by raising the renewable energy share—which
had maintained decade-long rising trend over 2006–2015 [6]. However, to remain economically
competitive while fulfilling international climate responsibility, it is important for the government to
evaluate the consumption of primary energy and electricity mix, the current state of CO2 emissions,
and economic performance as a whole. Policy makers can thus optimize the allocation of limited
resources in order to achieve sustainable development goals (SDGs). In general, one could imagine
that making low-carbon electricity infrastructure investment would be a win-win strategy for both
the economy and the environment. Therefore, when it comes to regional sustainable development,
authorities should evaluate energy performance, not only from the traditional economic standpoint,
but also from an environmental one.

Zhou et al. [7] had reviewed the literature on data envelopment analysis (DEA) application for
regional energy and/or environmental performance evaluation. The number of studies applying a DEA
model in China’s provincial administration regions has since increased (e.g. [8–12]). However, some
crucial but often neglected ingredients in modelling energy and/or environmental performance in
Chinese provincial regions are intermediate and intertemporal structures, which incorporate (but are
not limited to) energy consumption, gross regional product, and CO2 emissions. There were a
handful of studies working on that aspect: when evaluating the generation performance of China’s
provincial power systems, Xie et al. [13] treated power capacity as an intertemporal factor in their model
specification; Guo et al. [14] incorporated energy stock in their study, and treated it as a carry-over
input/output from one period to another. As the previous literature had pointed out, the electricity
generated from power infrastructure is idle before it is used to support economic or household activities.
In that sense, we argue that a two-stage model, with electricity playing the intermediate role, would
reflect more correctly on the energy performance in the real world. Moreover, in line with the progress
of renewable energy in China, we also consider different types of energy, i.e., thermal power and
clean power, as the intermediate variables, and model their corresponding installed capacity as the
intertemporal elements, in order to evaluate the regional energy performance in China more effectively.

DEA is commonly used to estimate the performance score among homogenous decision-making
units (DMUs). In a traditional DEA model, as proposed by Tone and Tsusti [15], there is no intertemporal
dependency of the inputs and outputs for each DMU. There are some other approaches, such as
windows analysis and the Malmquist index with dynamic DEA structure, that have been used to
handle the specific characteristics of time effect under a DEA-based framework. However, these
previous models failed to consider the effect of carry-over activities between two consecutive periods.
In a real business environment, however, for long-term strategic planning, it is important to consider
intertemporal effects in order to comprehensively assess a DMU’s efficiency.

Dynamic DEA models with inter-connected activities have been proposed to evaluate the relative
performance behavior of DMUs in an intertemporal setting for long-term optimization. The subsequent
development was proposed by Guo et al. [14] for further applications. Tone and Tsutsui [16] also
expanded dynamic DEA in terms of slacks-based measure (SBM), and introduced the dynamic network
SBM model to evaluate performance. Furthermore, traditional DEA treats the operational structure
of each DMU as a black box, in which the information on internal inefficiency cannot be deciphered.
It overlooks valuable managerial information on how to improve efficiency in the value-creation
chain. Using a two-stage framework, we are able to open the DMU black box and decompose it into
different stages, under a divisional structure with network connections. This method is commonly
used to depict the operational structure in many industries [17–22]. In this paper, we adopt the basic
assumptions of Tone and Tsutsui [16]. Details of the model are presented in the following section.

The purpose of this paper is to evaluate the energy performance of provincial administration
regions in China and to see how cleaner (i.e., with lower CO2 emissions) electricity had helped regional
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sustainable development. To do so, we employ a two-stage dynamic slacks-based measure model,
in which we introduced a carry-over variable in the electricity portfolio stage. By considering the
overall effort to supply clean electricity, to abate CO2 emissions, and to stimulate economic growth in a
unified framework, we hope to shed some light on regional sustainable development policy. In this
paper, we use a sample of 30 provinces in China to estimate their energy performance over the period
2012–2017 in terms of performance in electricity portfolio and energy productivity. In particular, we
evaluate the regional sustainable development based on the proposed energy performance model
with an intertemporal effect, where we put the emphasis on installed capacity used as the carried-over
activity linking two consecutive periods in the electricity portfolio stage. Our model not only makes
measuring the overall and stage performance and observing dynamic changes possible, but could
identify variables that contribute to improvement in each performance stage. In this regard, our model
contains more information to be translated into policy planning strategies.

The contributions of this paper are as follows. First, using installed clean power capacity as
the carry-over variable and clean electricity as the intermediate variable, we have improved the
discriminatory power of the DEA-based model, highlighting the importance of an electricity portfolio
in energy performance for sustainable development. Second, we showed that capital investment
in electricity infrastructure, especially in clean power capacity, is closely related to the effectiveness
of massive electrification and the decarbonizing of electricity production, as the benefits of these
investments will be carried forward into the future.

The reminder of this paper is organized as follows. In Section 2, we develop the evaluation model
and introduce our research methodology. Data collection and the model validity test are presented
in Section 3. An overview of the empirical results based on the model are discussed in Section 4.
A summary of the main findings and remarks are presented in the final section.

2. Model Framework and Methodology

2.1. Conceptual Framework

Guo et al. [14], used the dynamic DEA model to evaluate China’s energy performance. They
also considered energy stock, i.e., the difference between energy supply and its usage at national
level, to be a carry-over variable from one period to another. Undertaking massive electrification
and decarbonizing the production of electricity are important actions to promote an economic system
for sustainable development [5]. Obviously, investment in electricity infrastructure plays a crucial
role on planning for low-carbon future by increasing reliance on clean electricity and adopting clean
fuels on thermal electricity. Extending Guo et al. [14], we constructed a two-stage network structure,
composing of an electricity portfolio stage and an energy productivity stage, to evaluate the overall
energy performance and sustainable development of provincial administration regions in China.
Installed thermal and clean power capacity were treated as two carry-over variables in the electricity
portfolio stage, and electricity generation, and were employed as two intermediate variables to link
the electricity portfolio stage and the energy productivity stage. In addition, we also added the
importance of outside electricity from other regions through national grid as an exogenous input in the
energy productivity stage. The modified dynamic two-stage network DEA model with SBM approach
developed in this paper is illustrated in Figure 1.

In the electricity portfolio stage, we assumed DMUs (e.g., provincial administration regions)
invested in modern electricity infrastructure to decarbonize the production of electricity for a visible
future. Installed thermal and clean power capacity built in the past were carry-over inputs for electricity
generation in the present period, which would satisfy regional electricity demand. In the energy
productivity stage, the aims were regional economic growth and its environmental protection. Thermal
and clean electricity from the electricity portfolio stage would be considered as intermediate inputs.
The exogenous input, primary energy consumption, was used to produce gross region product and to
mitigate as much undesirable CO2 emissions as possible. Meanwhile, the regional economic system
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may also need to import extra electricity from other regions. These imports were treated as another
exogenous input to support the regional economic system.
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2.2. Variable Selection

As shown in Figure 1, the variables we selected to build the evaluation framework for regional
sustainable development were based on both the previous literatures [14,22–26] and the role of
low-carbon electricity in energy consumption. Note that the pursuit of low-carbon economy transition
should also involve energy consumption, and, in this regard, we took a value-added approach to our
model. In the electricity portfolio stage (stage 1), we considered three variables, namely, investment
in electricity infrastructure (Investment) (input), thermal power installed capacity (ThermalPIC)
(carry-over), and clean power installed capacity (CleanPIC) (carry-over). Here, “Investment” referred
to the expenditure used for electricity infrastructure in any given provincial region. Thermal power
installed capacity was the electricity infrastructure using fossil fuels to generate electricity. Clean
power installed capacity referred to infrastructure using hydro, nuclear, and renewable energies for
electricity generation. Two intermediate variables, thermal electricity (ThermalE) (intermediate) and
clean electricity (CleanE) (intermediate), were used to link the electricity portfolio stage (stage 1) and the
energy productivity stage (stage 2). Compared with previous studies, we used thermal power installed
capacity (ThermalPIC) and clean power installed capacity (CleanPIC) as indicators for performance
analysis in the electricity portfolio stage. Accordingly, in the energy productivity stage (stage 2),
there were four inputs and two outputs. The four inputs consisted of two dedicated inputs and two
intermediate inputs, ThermalE and CleanE, from the preceding stage. One of the two dedicated inputs
was the primary energy consumption (PEC) (input), referring to the consumption of coal, gas, fuel
oil, etc., excluding electricity used for regional economic system; and the other was the import of
outside region electricity (IOE) (input), the extra electricity from other region(s) through national grid.
The electricity imported from outside regions was measured by the difference between the production
and consumption of electicity at the given provincial administration region. The two final outptuts of
the energy productivity stage were gross regional product (GRP) and CO2 emissions (CO2). Gross
regional product was used to measure regional economic performance as the corresponding desirable
final output in the energy productivity stage, while CO2 emissions was the undesirable output.

2.3. The Dynamic Two-Stage Energy Perforamnce Model for Regional Sustainable Development

In this paper, we proposed a dynamic two-stage energy perforamce model, based on the DNSBM
approach, to rate the energy perforamnce of provincial regions in China in terms of their sustainable
development, as shown in Figure 1. We took the DNSBM approach in order to integrate the productions
of DMUs with multiple inputs, intermediate outputs/inputs, carry-over variables, and outputs into a
unified mathamtic programming framework [16,27]. The advantage was that we were able to observe
overall energy perfroamnce in separate stages: electricity portfolio stage and energy productivity stage.
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The energy performance score of an efficient DMU in any period would be equal to 1 in both stages.
This also suggested that there was no room for improvement, and vice versa.

The non-oriented dynamic two-stage SBM model under the assumption of variable returns to
scale (VRS) is illustrated in Figure 1. Notations of variables in this paper are definied as follows.
Consider that there were n ( j = 1, 2, 3, . . . , n) provincial adminstration regions in China, as separate
DMUs, and that each DMU was involved in two stages, the electricity portfolio stage (k) and the
energy productivity stage (h), during T terms (t = 1, 2, 3, . . . , T). There were Lhk serial connection link
between the electricity portfolio stage and the energy productivity stage in period t, as donated by
(k, h)t

l (l = 1, . . . , Lhk), and Lk carry-over activities between two consecutive periods in the electricity

portfolio stage (k), denoted as c(t,t+1)
jkl ( j = 1, . . . , n; l = 1, . . . , Lk; t = 1, . . . , T). In the electricity

portfolio stage, a regional economic system consumed mt
k inputs at time t, which was denoted xt

i jk

(i = 1, . . . , mt
k; j = 1, . . . , n; t = 1, . . . , T), and c(t,t+1)

jkl carry-over variables from the previous time
t − 1, while the number of intermediate outputs generated from the electricity portfolio stage, as
donated zt

i(h,k)l ( j = 1, . . . , n; l = 1, . . . , Lhk; t = 1, . . . , T). In addition, at the energy productivity

stage, the imtermediate outputs, zt
i(h,k)l, to be the intermediate inputs as well as ut

h inputs, as denoted

xt
i jh (i = 1, . . . , ut

h; j = 1, . . . , n; t = 1, . . . , T), were consumed to create rt
h desirable output, as

denoted yt
r jh (r = 1, . . . , rt

h; j = 1, . . . , n; t = 1, . . . , T) and bt
h undesirable output, as denoted yt

bjh

(b = 1, . . . , bt
h; j = 1, . . . , n; t = 1, . . . , T) at time t, respectively. The input and output constraints of

oberved DMUo(o = 1, . . . , n) are listed in Euation (1) below.

xt
iok =

n∑
j=1

xt
i jkλ

t
jk + st−

iok

xt
ioh =

n∑
j=1

xt
i jhλ

t
jh + st−

ioh

yt
boh =

n∑
j=1

yt
bjhλ

t
h + st−

boh

yt
roh =

n∑
j=1

yt
r jhλ

t
jh − st+

roh

n∑
j=1

λt
jk = 1;

n∑
j=1

λt
jh = 1

(1)

where xt
iok (Investment) and xt

ioh (PEC and IOE) were inputs used into the electricity portfolio stage
(k) and the energy productivity stage (h) of observed DMU0(0 = 1, . . . , n), respectively. yt

boh (CO2

emission) was the undesirable output generated by the energy productivity stage (h), which was also
fed as the input of that in the mathmatic programming. yt

roh (GRP) was the desirable output produced
by the energy productivity stage (h), st−

iok, st−
ioh, and st−

boh were slacks calculated as the difference between
the input of DMUo and its optimal level, and st+

roh was the slacks demonstrated as the improvement of
the given output of DMUo into its optimal level, respectively. λt

i jk and λt
i jh were the intensity vectors of

DMU j corresponding to the electricity portfolio stage and the energy productivity stage at the specific
time t.

There were four kinds of links: free, fix, bad, and good, with respect to the intermediate linking
constraints [28]. ThermalE and CleanE were outputs from the preceding stage (i.e., the electricity
portfolio), and were carried over to the subsequent stage (i.e., energy productivity) as inputs. ThermalE
and CleanE played crucial roles in regional sustainability evaluations, as Fay et al. [5] argued that
massive electrification and decarbonizing the production of electricity were two major actions promoting
sustainable development. ThermalE was given a free link, which may increase or decrease in the
optimal problem of Equation (4); CleanE had a good link, as it was the desirable output from the
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electricity portfolio stage due to zero CO2 emissions. Any shortages of ThermalE and CleanE of
observed DMU were counted as inefficient performance, as demonstrared in Eqution (2).

n∑
j=1

zt
(k,h)l f reeλ

t
jh =

n∑
j=1

zt
(k,h)l f reeλ

t
jk

n∑
j=1

zt
(k,h)loutλ

t
jh =

n∑
j=1

zt
(k,h)loutλ

t
jk

zt
o(k,h)l f ree =

n∑
j=1

zt
(k,h)l f reeλ

t
jk + st−

o(k,h)l f ree

zt
o(k,h)lout =

n∑
j=1

zt
(k,h)loutλ

t
jk − st+

o(k,h)lout

(2)

where st−
o(k,h)lout and st+

o(k,h)lout
were slacks to the two intermediate outputs we introduced.

Regarding to the carry-over constraints, there were also four options: free, fix, bad, and good.
ThermalPIC and CleanPIC were assigned free and good carry-over activities in the electricity portfolio
stage between two consecutive periods, as shown in Equation (3).

n∑
j=1

c(t,t+1)
jk,goodλ

t
jk =

n∑
j=1

c(t,t+1)
jk,goodλ

t+1
jk

n∑
j=1

c(t,t+1)
jk, f ree λ

t
jk =

n∑
j=1

c(t,t+1)
jk, f ree λ

t+1
jk

c(t,t+1)
oh,good =

n∑
j=1

c(t,t+1)
jh,goodλ

t
jh − s(t,t+1)

oh,good

c(t,t+1)
oh,good =

n∑
j=1

c(t,t+1)
jh, f ree λ

t
jh + s(t,t+1)

oh, f ree

(3)

where s(t,t+1)
oh,good and s(t,t+1)

oh, f ree were slacks to the two carry-over variables (See Tone and Tsustui [15] for
more details on the definition of links).

The overall energy performance of observed DMUo(o = 1, . . . , n), θ∗o, was evaluated by Equation
(4):

θ∗0 = min

∑T
t=1 Wt

[
wk

[
1−

st−
iok

xt
iok

]
+ wh

[
1− 1

ut
h+bt

h

(∑ut
h

i=1
st−
ioh

xt
ioh

+
st−
boh

yt
boh

)]]
∑T

t=1 Wt

wk

1 + 1
linkoutt

k+ngoodt
k

 linkoutt
k∑

(k,h)l=1

st
o(kh)lout

zt
o(kh)lout

+
ngoodt

k∑
kl=1

s(t,t+1)
okl good

c(t,t+1)
okl good


+ wh

1 + 1
rt
h

 rt
th∑

t=1

st+
roh

yt
roh





(4)

subjected to Equations (1)–(3) for the selected variables.
The numerator included elements related to relative slacks of inputs in the electricity portfolio

stage and the energy productivity stage, respectively, whereas the denominator contained relative
slacks of good intermediate link and good carry-over from the electricity portfolio stage, and that of
desirable output from the energy productivity stage. They were weighted by the stage weights wk and
wh, as well as the period weight Wt, and the ovrall energy performance θ∗o of observed DMUo could be
estimated in Equation (4). θ∗o = 1 if and only if all slacks of that were zero, and the DMU would be
treated as an efficient one.

The weights to stage and time were exogenous and satisfied the constraint of Equation (5). wk and
wh were the weights assigned to stages k and h, respectively, and the sum of the weights was in unity.
Wt was the weight assigned to time t, and the sum of that was also in unity.

wk + wh = 1
T∑

t=1
Wt = 1

(5)
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In addition, the performance of observed DMUo in each period was τt∗
o , period-R&D stage was ρt∗

ok,
and period-commercialization stage was ρt∗

oh. They were calculated by Equations (6)–(8), respectively.

τ∗0 =

wk
[
1−

st−
iok

xt
iok

]
+ wh

[
1− 1

ut
h+bt

h

(∑ut
h

i=1
st−
ioh

xt
ioh

+
st−
h

yt
boh

)]
wk

1 + 1
linkoutt

k+ngoodt
k

 linkoutt
k∑

(k,h)l=1

st
o(kh)lout

zt
o(kh)lout

+
ngoodt

k∑
kl=1

s(t,t+1)
okl good

c(t,t+1)
okl good


+ wh

1 + 1
rt
h

 rt
th∑

t=1

st+
roh

yt
roh




(6)

ρ∗0k =

wk
[
1−

st−
iok

xt
iok

]
wk

1 + 1
linkoutt

k+ngoodt
k

 linkoutt
k∑

(k,h)l=1

st
o(kh)lout

zt
o(kh)lout

+
ngoodt

k∑
kl=1

s(t,t+1)
okl good

c(t,t+1)
okl good




(7)

ρ∗0h =

wh
[
1− 1

ut
h+bt

h

(∑ut
h

i=1
st−
ioh

xt
ioh

+
st−
h

yt
boh

)]
wh

1 + 1
rt
h

 rt
th∑

t=1

st+
roh

yt
roh




(8)

3. Data Collection, Descriptive Statistics, and Model Validity

3.1. Data Collection and Descriptive Statistics

We used data from thirty provincial administration regions in China, covering the six years from
2012 to 2017. The data of all selected variables were obtained from China Energy Statistics Yearbook
and China Electric Power Yearbook (2013–2018), except for CO2 emissions. The data on regional CO2

emissions was calculated by the amount of regional consumption of coal, oil, natural, and electricity,
times their corresponding coefficients of calorific value, carbon emission factor, and carbon oxidation
factor, according to the Intergovernmental Panel on Climate Change (IPCC) Guideline for National
Greenhouse Gas Inventories [29], as shown in Equation (9):

E∑
i=1

CO2i jt = Ei jt ×NCVi ×CEFi ×COFi × (44/12) (9)

where CO2i jt denoted the CO2 emissions from energy type i(i = 1, . . . , E), such as coal, crude oil,
natural gas, and electricity in region j at year t; Ei jt denoted the total consumption of each type of
energy in region j at year t; NCVi was the net calorific value of each type of energy; CEFi denotes
the carbon emission factor of each type of energy; and COFi denotes the carbon oxidation factor of
each type of energy. The constant value of 44 and 12 are the molecular weights of CO2 and carbon,
respectively. The descriptive statistics of variables are summarized in Table 2. It should be noted
that all monetary variables used in this paper were in 2012 RMB, which have been deflated with the
consumer price index (CPI index 2012 = 100). Table 1 summarizes the descriptive statistics of all
selected variables to the proposed model.
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Table 1. Descriptive statistics.

Variables Mean Std. Dev. Max Min

Inputs-Electricity portfolio
Inv (100 million RMB) 567.83 376.92 2214.23 73.10
Intermediate outputs

ThermalE (100 million kWh) 1420.17 1131.58 4671.00 120.00
CleanE (100 million kWh) 479.61 606.89 3215.00 4.90

Carry-over
ThermalPIC (MW) 3217.33 2312.75 10,335.00 230.00

CleanPIC (MW) 1629.91 1572.94 8059.00 23.70
Inputs- Energy productivity

PEC (MTOE) 143.97 99.04 482.90 15.85
IOE (100 million kWh) 1394.81 607.65 3144.00 1.00

Final outputs-Energy productivity
CO2 (Million ton) 526.79 346.09 1757.02 75.62

RGP (100 million RMB) 22,282.84 16,804.72 81,571.96 1893.54

Note: Inv refers to the expenditure on the energy industry for electricity infrastructure; ThermalE is the electricity
generated from the thermal power installed capacities; CleanE is the electricity produced by the clean power installed
capacities; ThermalPIC denotes the thermal power installed capacities operation at a specific period; CleanPIC
denotes the clean power installed capacities operation at specific period; PEC denotes the total consumption of
primary energies without electricity; IOE is the import of outside region electricity, as measured the difference
between the production and consumption of electricity at given provincial administration region; CO2 is assumed
to be the product of energy consumption, which calculated by the emission factors related to energy consumption;
GRP denotes the real value of gross regional product.

3.2. Model Vadility

According to Tone et al. [27], there were four criteria to test DEA-based model validity: homogeneity,
minimum number of DMUs, isotonicity, and relevance variables selection. We adopted these four
criteria to verify the feasibility of the proposed dynamic two-stage SBM model. First in our model,
we selected 30 provincial administration regions in China to be DMUs. Because these regions are all
second-tier administrative bodies under the central government, and all have equally political statutes,
it was safe to assume our model satisfied the homogeneity criterion. However, we considered that
there are geographical differences in China, which brought us to comparisons among different areas,
in Section 4.4.

Second, as Li et al. [30] had explained, for a DEA-based evaluation model to have acceptable
discriminatory ability, the number of DMUs should be at least three times as many as the number of
total input and output variables. Similarly, Golany and Roll [25] proposed that the minimum required
ratio related to the number of DMUs and model variables was two. As we used data from 30 DMUs
across 6 research years (from 2012 to 2017), we had a total of 180 province-year DMUs, which was more
than three times that of the nine variables we employed, providing acceptable validity for analysis
propose (Tibet was not included in this paper due to the lack of data).

Third, we conducted the Spearman’s correlation analysis for the selected variables in the electricity
portfolio and the energy productivity stages, and presented the results in Tables 2 and 3. The coefficients
were mostly significantly positive, indicating that the variables were suitable for the proposed dynamic
two-stage network SBM model. It is worth noting that the coefficient between two inputs in the energy
productivity stage, zero-carbon power and the import of electricity, was −0.260, indicating the higher
the electricity generation of zero-carbon capacity, as a supplement to thermal power capacity, the further
it could reduce the need for imported electricity from outside regions. In summary, the variables have
also satisfied the assumption of isotonicity proposed by Golany and Roll [31].

Lastly, we used regression to show that our variables selection was relevant. We were able to show
that that the outputs in the electricity portfolio and energy productivity stages, could significantly
explained by the input variables in each stage. The results are shown in Table 4. This also confirmed
our model satisfied the validity criterion.
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Table 2. Correlation coefficients for the selected variables in the electricity portfolio stage.

Inv CleanPIC ThermalPIC CleanE ThermalE

Inv 1.000
CleanPIC 0.606 *** 1.000

ThermalPIC 0.641 *** 0.235 *** 1.000
CleanE 0.497 *** 0.947 *** 0.153 ** 1.000

ThermalE 0.576 *** 0.124 * 0.968 *** 0.042 1.000

Note: Inv refers to the expenditure on the energy industry for electricity infrastructure; CleanPIC denotes the clean
power installed capacities operation at specific period; ThermalPIC denotes the thermal power installed capacities
operation at a specific period; CleanE is the electricity produced by the clean power installed capacities; ThermalE is
the electricity generated from the thermal power installed capacities. *, **, *** represent significant at 0.10, 0.05, and
0.01 levels, respectively.

Table 3. Correlation coefficients for the selected variables in the energy productivity stage.

CleanE ThermalE PEC IOE CO2 GRP

CleanE 1.000
ThermalE 0.042 1.000

PEC 0.108 0.895 *** 1.000
IOE −0.260 *** 0.144 * 0.071 1.000
CO2 0.191 ** 0.888 *** 0.981 *** 0.127 * 1.000
GRP 0.148 ** 0.543 *** 0.576 *** 0.518 *** 0.867 *** 1.000

Note: CleanE is the electricity produced by the clean power installed capacities; ThermalE is the electricity generated
from the thermal power installed capacities; PEC denotes the total consumption of primary energies without
electricity; IOE is the import of outside region electricity, as measured the difference between the production and
consumption of electricity at given provincial administration region. CO2 is assumed to be the product of energy
consumption, which calculated by the emission factors related to energy consumption; GRP denotes the real value
of gross regional product. *, **, *** represent significant at 0.10, 0.05 and 0.01 levels, respectively.

Table 4. Regression results on the relevance of variables.

Electricity Portfolio Stage Energy Productivity Stage

Inputs/Outputs log(ThermalE) log(CleanE) log(GRP)

Constant 0.633 1.263 *** 6.754 ***
(0.916) (2.735) (10.505)

log(Inv) 0.096 *** 0.038
(3.329) (0.830)

log(ThermalPIC) 0.738 ***
(8.551)

log(CleanPIC) 0.583 ***
(9.961)

log(ThermalE) 0.150 **
(2.541)

log(CleanE) 0.050 *
(1.950)

log(PEC) 0.650 ***
(5.048)

log(IOE) 0.001
(0.067)

log(CO2) 1.212 ***
(5.949)

Adj. R2 0.987 0.989 0.995
F-statistic 390.211 *** 451.616 *** 976.811 ***

Note: *** denoted the 1% significance level, ** represented the 5% significance level, and * indicated the 10%
significance level. Inv refers to the expenditure on the energy industry for electricity infrastructure; ThermalPIC
denotes the thermal power installed capacities operation at specific period; CleanPIC denotes the clean power
installed capacities operation at specific period; ThermalE is the electricity generated from the thermal power
installed capacities; CleanE is the electricity produced by the clean power installed capacities; PEC denotes the total
consumption of primary energies without electricity; IOE is the import of outside region electricity, as measured the
difference between the production and consumption of electricity at given provincial administration region; CO2
is assumed to be the product of energy consumption, which calculated by the emission factors related to energy
consumption; GRP denotes the real value of gross regional product. *, **, *** represent significant at 0.10, 0.05,
and 0.01 levels, respectively.
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4. Empirical Results

4.1. Parameters Setting on the Proposed Dynamic Two-Stage SBM Model

In our dynamic two-stage SBM evaluation model, it should be noted that the choice of preferred
weights for time periods and stages were important parameters in Equation (1). The last period T could
be treated as having the largest contribution to the dynamic evaluation framework [16,32]. Therefore,
we considered the possibility that the weight of time periods in the proposed model should increase
yearly. We then used the sum-of-the-year’s digits method to set the preferred weight of each period.
As we had 6 years’ research period (2012–2017), with 2012 being 1, 2013 being 2, and so on, we got
a total sum of 21 as the denominator. So, the preferred weight in 2012 was 1 divided by 21, which
equaled to 0.048. Following this calculation, the preferred weights assigned to the year during 2013
to 2017 were as followed: 2013 = 0.095, 2014 = 0.143, 2015 = 0.19, 2016 = 0.238, and 2017 = 0.286.
It would also be reasonable to assume the overall performance of two-stage SBM framework with
serial connection as the weighted sum of the performance behavior of the individual stages [7]. Thus,
in this paper, we assumed that both the electricity portfolio stage and the energy productivity stage
had the same contribution to the overall energy performance for regional sustainable development,
and assigned each stage with the same weight of 0.5. Similarly, the preferred weights of periods and
stages mentioned above were also employed under the dynamic SBM model, two-stage SBM model,
and SBM model to obtain the overall energy performance for Chinese provincial administration regions.

The overall energy performance of provincial regions in China could be estimated by the Equations
(1) and (2). To understand the applicability of our model, we also compared our evaluation results to
those using other SBM models, including two-stage SBM models without carry-over activities, and
regular single-stage SBM models; further details are discussed in the following section.

4.2. Comparsion among Dynamic Two-Stage SBM, Dynamic SBM, Two-Stage SBM and SBM Performormance
Scores

To see the effectiveness of our model in evaluating performance, we have chosen three other
SBM-related models to be compared with. The evaluation results of all four models were presented in
Table 5. From Table 5, we observed that, if we ignored the two-stage structure (as the proposed model
in this paper, namely Model 1) and used only a single-stage structure with dynamic component (Model
2), the average overall energy performance of these 30 DMUs almost doubled (0.3487 vs. 0.6118). This
suggested that neglecting the internal structure within community, as the importance of electricity
portfolio stage to regional sustainable development, might lead to overestimating the overall energy
performance in China.

In Model 3, we removed the carry-over linkage, i.e., thermal and clean power installed capacity.
the average overall energy performance of this static two-stage SBM model was also higher than that
of Model 1. Ignoring the power installed capacity built from the past that could be carried over to the
next periods, which could create a discrepancy in estimation of investment in electricity infrastructure,
and this might consequently lead to overestimate the overall energy performance as well.

Model 4 was where a simple SBM model, with neither a two-stage structure nor a carry-over linage
between two consecutives. The average overall energy performance of Model 1 was still lower than
that of Model 4. Obviously, the black-box model might overestimate the overall energy performance
and lack meaningful information to identify inefficient DMU.

Note that the number of efficient DMUs in the proposed dynamic two-stage model was two,
which was significantly less than other three models, ranging from 6 to 10. We used the non-parametric
Krukal-Waillis rank sum test to see whether the average overall energy performance obtained from
four models (e.g., the proposed model was an experimental group and other three models were
a control group) originated from the same distribution, i.e., if there were significant difference of
performance scores among four models or on a pairwise comparison. Table 6 summarized the p-value
of Krukal-Waillis rank sum test under the four model comparison or on a pairwise comparison. Most of
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the p-values were on the fare significant between 1% to 5% level under four model comparison scenario
and three pairwise comparison scenarios. Based on the statistical test, we argued that the proposed
dynamic two-stage SBM model had more discriminative power than the other three SBM-related
models had to empirical applications.

Table 5. Overall performance score rank under the proposed dynamic two-stage SBM model.

Dynamic Two-Stage
SBM

(Model 1)

Dynamic
SBM

(Model 2)

Two-Stage
SBM

(Model 3)

SBM
(Model 4)

No. DMU Performance
Score Rank Performance

Score Rank Performance
Score Rank Performance

Score Rank

1 Beijing 0.0591 28 1.0000 1 1.0000 1 1.0000 1
2 Tianjin 0.0223 29 0.0886 30 1.0000 1 0.9999 7
3 Hebei 0.0988 21 0.1353 26 0.5816 29 0.3354 21
4 Shanxi 0.0823 24 0.0938 29 0.9928 12 0.1307 27

5 Inner
Mongolia 0.3020 13 0.1896 22 1.0000 1 0.1228 28

6 Liaoning 0.2962 15 0.4579 18 0.5880 28 0.3805 18
7 Jilin 0.1943 17 1.0000 1 0.8540 16 0.4689 16
8 Heilongjiang 0.1820 18 0.2572 21 0.7703 22 0.3553 20
9 Shanghai 0.0817 25 1.0000 1 1.0000 1 1.0000 1
10 Jiangsu 0.2047 16 0.9996 11 1.0000 1 1.0000 1
11 Zhejiang 0.4200 11 0.5949 17 0.8140 19 0.6623 11
12 Anhui 0.0708 27 0.0991 28 0.9988 11 0.3000 23
13 Fujian 0.5013 7 0.6449 15 0.7534 24 0.4459 17
14 Jiangxi 0.3005 14 0.4193 19 0.7577 23 0.3761 19
15 Shandong 0.0824 23 0.9983 13 0.9509 13 1.0000 1
16 Henan 0.0894 22 0.1808 24 0.7769 21 0.6383 12
17 Hubei 0.8145 3 1.0000 1 0.9333 14 0.5567 14
18 Hunan 0.4668 8 0.9994 12 0.8312 18 0.8403 10
19 Guangdong 0.5503 5 1.0000 1 1.0000 1 1.0000 1
20 Guangxi 0.4606 9 0.6051 16 0.6671 27 0.3310 22
21 Hainan 1.0000 1 1.0000 1 1.0000 1 0.9998 8
22 Chongqing 0.4315 10 0.7029 14 0.7898 20 0.5514 15
23 Sichuan 1.0000 1 1.0000 1 1.0000 1 1.0000 1
24 Guizhou 0.5666 4 1.0000 1 0.9222 15 0.2142 25
25 Yunnan 0.9956 2 1.0000 1 1.0000 1 0.6274 13
26 Shaanxi 0.0812 26 0.1202 27 0.7157 25 0.2666 24
27 Gansu 0.3075 12 0.4086 20 0.6871 26 0.1561 26
28 Qinghai 0.5293 6 1.0000 1 1.0000 1 0.9995 9
29 Ningxia 0.1255 20 0.1721 25 0.8345 17 0.0723 30
30 Xinjiang 0.1424 19 0.1875 23 0.4020 30 0.0961 29

Mean 0.3487 0.6118 0.8540 0.5643
Std. 0.2949 0.3808 0.1379 0.3333

Number of efficient DMU 2 10 10 6

Table 6. Krukal-Waillis rank sum test of the overall energy performance differences within/between the
four models.

Performance Indicator Group Significant Sign Significant Level

Overall energy
performance

Independent sample Y 1%
Model1–Model2 Y 1%
Model1–Model3 Y 1%
Model1–Model4 Y 5%
Model2–Model3 N -
Model2–Model4 N -
Model3–Model4 Y 5%

Note: The independent sample group denoted the Krukal-Waillis rank sum test was used to identify the performance
difference within four independent samples as the overall results of the four models, as listed in Table 5; Y and N
represented significant and insignificant sign, respectively; Model 1 was the proposed dynamic two-stage SBM
model; Model 2 was the dynamic SBM model; Model 3 was the two-stage SBM model; Model 4 was the SBM model.
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4.3. Energy Performance of Chinese Provincal Adminstration Regions

The results of the energy performance evaluation for provincial regions in China, including
performance scores, overall energy performance ranking in both the electricity portfolio stage, and
energy productivity stage were presented in Table 7. It can be seen, in Table 7, that only two DMUs
(i.e., Hainan and Sichuan) were estimated as efficient with the overall energy performance score equal
to 1 during 2012–2017; they were also efficient in both stages. Beijing and Tianjin had an overall energy
performance score of 0.0591 and 0.0223, respectively, which were ranked the bottom two within the
30 DMUs we evaluated. As for stage evaluation results, we found that only Hainan and Sichuan were
deemed efficient in the electricity portfolio stage, while there were another four DMUs (e.g., Beijing,
Inner Mongolia, Jiangsu, and Guangdong), in addition to Hainan and Sichuan, were seen as efficient
ones in the energy productivity stage. Beijing and Tianjin had the worst performance in the electricity
portfolio stage, while Beijing was deemed efficient in the energy productivity stage. One possible
explanation was that these two DMUs imported most of their electricity from other regions, rather
than from their own installed power plants.

Table 7. Performance evaluation of the proposed dynamic two-stage SBM model.

No. DMU Electricity
Portfolio Rank Energy

Productivity Rank Overall Energy
Performance Rank

1 Beijing 0.0273 29 1.0000 1 0.0591 29
2 Tianjin 0.0123 30 0.7516 12 0.0223 30
3 Hebei 0.0696 22 0.3160 26 0.0988 22
4 Shanxi 0.0638 23 0.2389 28 0.0823 25

5 Inner
Mongolia 0.1385 16 1.0000 1 0.3020 14

6 Liaoning 0.3195 13 0.3298 25 0.2962 16
7 Jilin 0.1255 19 0.6516 18 0.1943 18
8 Heilongjiang 0.1300 18 0.4682 22 0.1820 19
9 Shanghai 0.0518 26 0.6941 15 0.0817 26
10 Jiangsu 0.0937 21 1.0000 1 0.2047 17
11 Zhejiang 0.2936 14 0.7772 11 0.4200 12
12 Anhui 0.0447 27 0.5848 19 0.0708 28
13 Fujian 0.3699 9 0.7829 9 0.5013 8
14 Jiangxi 0.1851 15 0.6584 17 0.3005 15
15 Shandong 0.0345 28 0.7231 14 0.0824 24
16 Henan 0.0526 25 0.5665 20 0.0894 23
17 Hubei 0.8549 5 0.7776 10 0.8145 4
18 Hunan 0.3529 10 0.7483 13 0.4668 9
19 Guangdong 0.3475 11 1.0000 1 0.5503 6
20 Guangxi 0.3971 6 0.5604 21 0.4606 10
21 Hainan 1.0000 1 1.0000 1 1.0000 1
22 Chongqing 0.3209 12 0.6835 16 0.4315 11
23 Sichuan 1.0000 1 1.0000 1 1.0000 1
24 Guizhou 0.9152 4 0.4282 24 0.5666 5
25 Yunnan 0.9968 3 0.9948 7 0.9956 3
26 Shaanxi 0.0540 24 0.4443 23 0.0812 27
27 Gansu 0.3807 8 0.2817 27 0.3075 13
28 Qinghai 0.3907 7 0.9363 8 0.5293 7
29 Ningxia 0.1254 20 0.1414 30 0.1255 21
30 Xinjiang 0.1303 17 0.1823 29 0.1424 20

Mean 0.3093 0.6574 0.3487

Notably, we found that the most regions in China had relatively better performance in the energy
productivity stage than in the electricity portfolio stage, as shown in Table 7. This could be due to the
fact that economic growth was an important criterion for promotion of the administrative officials,
which then prompted governors to focus on productivity more. In summary, the Chinese government
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should make more effort to decarbonize the energy/electricity supply mix to improve deficiency of
electricity portfolio stage, while maintaining economic growth momentum at the same time. Moreover,
there existed great disparities of performance scores between the electricity portfolio stage and energy
productivity stage among certain DMUs. Beijing was an example of them. To improve the performance
in portfolio stage, we suggested that the government could increase the clean electricity capacity
(through capital investment), as clean power produces “desirable” output, which would in turn
translated into both better economic and sustainable performance.

4.4. Efficiency Analysis on Regional Discrepancy

Based on the geographical location and economic regional blocks from the seventh Five Year plan
in 1987, the 30 regions in the research sample could be grouped into three areas: the east, the central,
and the west, as listed in Table 8. We examined whether the performance score differences of three
large economic regional blocks in China. Overall energy performance and stage-wise performance of
each regional block are presented in Table 9. The East Area ranked first in the energy productivity stage,
which could be due to significant effort it had put on to promote economic growth. The West Area
ranked first in the electricity portfolio stage, which could be attributed to the effort on the improvement
of electricity mix with lower CO2 emissions. In summary, because the economic performance was still
a crucial criterion for the political ascension, it was natural for the regional administration to focus
on economic performance more. However, since the performance of energy productivity also played
an important role in regional economic development, China’s central government should pay more
attention to the performance of the electricity portfolio stage regardless, as it would translate into better
regional sustainable development.

Table 8. All selected provinces classified into three economic regional blocks in China.

Regional Block Provinces

East Beijing, Tianjin, Hebei, Liaoning, Shanghai, Jiangsu, Zhejiang, Fujian, Shandong,
Guangdong, Hainan

Central Shanxi, Jilin, Heilongjiang, Anhui, Jiangxi, Henan, Hubei, Hunan

West Inner Mongolia, Guangxi, Chongqing, Sichuan, Guizhou, Yunnan, Shaanxi, Gansu,
Qinghai, Ningxia, Xinjiang

Table 9. Performance scores of three economic regional blocks.

Regional
Block

Electricity Portfolio Energy Productivity Overall Energy Performance

Mean Efficiency Inefficiency Mean Efficiency InefficiencyMean Efficiency Inefficiency

Eastern 0.2382 1 (9%) 10 (91%) 0.7613 4 (36%) 7 (64%) 0.3015 1 (9%) 10 (91%)

Central 0.2262 0 (0%) 8 (100%) 0.5868 0 (0%) 8
(100%) 0.2751 0 (0%) 8 (100%)

Western 0.4409 1 (9%) 10 (91%) 0.6048 2 (18%) 9 (82%) 0.4493 1 (9%) 10 (91%)

5. Conclusions

In this paper, we proposed a dynamic two-stage SBM model for evaluating regional sustainable
development, in terms of energy performance in China. Installed capacity and electricity generation,
were the carry-over and intermediate variables, which we further decomposed into thermal and clean
power. Incorporating these variables brings new insights to the energy performance evaluation by
DEA-based modeling, as they reflect the dynamic and internal structure crucial to regional economic
and sustainable development from an inter-connected perspective. We built the two-stage evaluation
model consisting of electricity portfolio and energy productivity stage, in order to capture more
valuable information in the model. The proposed model was designed to highlight the contribution of
the electricity portfolio stage to overall energy performance, where installed clean power capacity and
clean electricity were seen as desirable carry-over and intermediate outputs in the electricity portfolio
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stage, and then the latter will continuously to be beneficial input into the energy productivity stage.
The main conclusions are as follows.

First, our results demonstrated that by incorporating installed capacity and electricity generation
as carry-over and intermediate variables of the electricity portfolio stage in a dynamic two-stage SBM
model, we can improve the discriminatory power of energy performance evaluation. Second, from our
model, it can be inferred that, while investing in low-carbon electricity infrastructure could alleviate
the pressure of CO2 emissions, it would later be translated into better regional sustainable economic
performance over long-term planning periods. Third, the group analysis in Section 4.4 suggests that
the efforts to purse the growth of the economic system could play an important role for the eastern
region in achieving impressive economic performance, and we therefore could conclude that regional
imbalance did exist in China, leading to income imbalance among people in different regional economic
blocks in terms of industrial development.

In summary, with this model, governors and policy makers could better understand the
contribution of decarbonizing the electricity portfolio and comprehensively improving electricity
investment with economic incentives. All provinces should be encouraged to make more efforts
to improve performance in the electricity portfolio stage. As we know, decarbonizing electricity
consumption is an effective strategy to mitigate the demand of primary energy with lower
CO2 emissions.
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