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Abstract: Electricity demand has been growing due to the increase in the world population
and higher energy usage per capita as compared to the past. As a result, various methods have
been proposed to increase the efficiency of power systems in terms of mitigating congestion and
minimizing power losses. Power grids operating limitations result in congestion that specifies the
final capacity of the system, which decreases the conventional power capabilities between coverage
areas. Flexible AC Transmission Systems (FACTS) can help to decrease flows in heavily loaded
lines and lead to lines loadability improvements and cost reduction. In this paper, total power
loss reduction and line congestion improvement are assessed by determining the optimal locations
and compensation rates of Thyristor-Controlled Series Compensator (TCSC) devices using the
Multi-Objective Genetic Algorithm (MOGA). The results of applying the proposed method on the
IEEE 30-bus test system confirmed the efficiency of the proposed procedure. In addition, to check the
performance, applicability, and effectiveness of the proposed method, different heuristic algorithms,
such as the multi-objective Particle Swarm Optimization (PSO) algorithm, Differential Evolution (DE)
algorithm, and Mixed-Integer Non-Linear Program (MINLP) technique, are used for comparison.
The obtained results show the accuracy and fast convergence of the proposed method over the other
heuristic techniques.

Keywords: Congestion Management; FACTS devices; Multi-Objective Genetic Algorithm (MOGA);
Power Loss Reduction; Thyristor-Controlled Series Compensator (TCSC)

1. Introduction

Electric power consumption growth and an open accessible energy market have caused power
systems to operate close to their nominal capacities. Also, the extension and development limits of
power grids from things, such as installation issues, operating costs, and environmental concerns, have
caused many power systems to operate in overload conditions. In addition, power flow in different
parts of the grid is restricted by stability and reliability constraints. Therefore, the growth of line power
flow exceeding the allowable limits may cause power systems to collapse by random faults [1,2].

These concepts are investigated and studied through the power flow and congestion management
topics [3,4]. Transmission lines congestion is a severe problem in power systems operation. The power
grid is called congested when some transmission lines operate outside of allowable limits, and as
a result, generators may become inactive [5]. Various methods and equipment such as Flexible
Alternative Current Transmission Systems (FACTS) devices are reported to manage the active power
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flow [6]. FACTS devices control the line power flow without any changes in the grid topology, leading
to improved performance, increased power transmission capacity, and reduced power grid congestion.
Due to the considerable costs of FACTS devices and the maximum usage of their capabilities, the
optimal location of such devices should be determined accurately [7–10].

One of the technical challenges in deregulated power systems is congestion management.
In [11], the operation of a Thyristor-Controlled Series Compensator (TCSC) for the optimization of
transmission lines and transmission line congestion is studied, by developing an algorithm to optimize
the performance index for contingency analysis and the location and control of TCSC. The optimal
placement of TCSC for improving power transmission efficiency and steady-state stability limits,
and maintaining the voltage stability of power systems, is reported in [12]. A method to deal with
congestion management by controlling the DC power flow using TCSC is also reported in [13]. In [14],
a TCSC is utilized to improve transient stability and congestion management in power systems. In [15],
an approach to optimize the location and size of TCSC and, accordingly, reduce the congestion in
power systems is investigated. In [16], an approach to find the optimal location and size of a TCSC for
congestion management and for enhancing the power transfer capability of power transmission lines,
by considering a variable reactance model of the TCSC at the steady-state condition, is investigated.
In [17], TCSC location is formulated as the Mixed-Integer Non-Linear Program (MINLP), and an
approach for the optimal location and size of TCSC is proposed. In [18], TCSC placement is considered
to improve the power transmission line loading parameter, reduce power losses, and improve the
voltage stability of power systems. Additionally, the obtained results are compared with allocating
the Static VAR Compensator (SVC) for congestion management. The optimal placement and size of
TCSC in power systems to reduce the risks in power grid operation is discussed in [19]. The optimal
allocation of TCSCs for congestion management is also studied in [20–23] for different applications.

Moreover, total power loss reduction is another important criterion, which should be taken into
consideration along with congestion management. In [24], the aim is to reduce power system losses,
including switching losses, through economic TCSC installation. Considering short-circuit level and
power loss reduction as the two objective functions of the Particle Swarm Optimization (PSO) algorithm,
the allocation of TCSC is studied in [25]. In [26], the objective is to provide adequate compensation to
reduce the power system losses and improve the voltage profile by finding the optimal location of
FACTS devices, including TCSC. As in [26], the optimal allocation of TCSC by checking the sensitivity
indices for power loss reduction and voltage profile improvement is investigated in [27].

Congestion management is a systematic approach to schedule and balance the generation and
load levels, considering transmission line constraints. Therefore, congestion management in power
systems should be continuously investigated due to the fact that changing the generation and load
levels can change the location of TCSC. As a result, congestion management requires a fast convergence
technique that can obtain optimal solutions. Hence, having a long convergence criterion (number of
iterations or computation time) is one of the main drawbacks of other research studies. In addition,
obtaining a locally optimal solution instead of a globally optimal one is another issue in this regard.
Neglecting non-linear relationships between the parameters of power systems is another issue in other
research studies.

To address the above-mentioned issues, this paper aims to optimally allocate TCSCs and their
susceptance values, considering power loss reduction, congestion management, and the determination
of the power lines compensation rates. The main contributions of this work are (1) to consider the
structure of TCSC and the AC characteristics of power systems, formulate a nonlinear problem, and
solve it using a heuristic algorithm, and (2) determine the optimal allocation and rating of TCSC through
an optimization procedure. The Jacobian sensitivity approach and AC load flow are used for line
congestion evaluations. The Multi-Objective Genetic Algorithm (MOGA) is used as an optimization
method to determine the optimal locations and susceptance values of TCSCs. To the best of the authors’
knowledge, the consideration of power loss reduction, congestion management, and the determination
of the power line compensation rates have never been used to optimally allocate TCSCs and their
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susceptance values. The proposed method is deployed on the IEEE 30-bus test system, and the results
are investigated to illustrate the applicability and effectiveness of the proposed method. In addition,
the obtained results are compared with those from different algorithms, such as the multi-objective
PSO algorithm, Differential Evolution (DE) algorithm, and MINLP technique. The obtained results
show the superiorities of the proposed method, in terms of fast convergence and high accuracy, over
the other heuristic methods.

The rest of this paper is organized as follows. Section 2 presents the structure and model of TCSCs.
The calculations of the power congestion indices of transmission lines are presented in Section 3.
Section 4 describes the proposed Multi-Objective Genetic Algorithm (MOGA) and variable coding
procedures. The simulation results and discussions are presented in Section 5. Finally, the conclusions
are summarized in Section 6.

2. Structure and Model of the TCSC

Series capacitors have been used for many years to improve the stability and loadability of the
power transmission grids. The basic principle of their operations is to compensate for the power
lines’ inductive voltage drop by applying a capacitive voltage and reduce the impact of power
transmission line reactance, which can enhance line loadability. One of these series compensators is
the TCSC. In the TCSC configuration, a shunt Thyristor Controlled Reactor (TCR) (the set of L and
back-to-back connected thyristors, T1 and T2) is used in parallel with some parts of a capacitor bank
(C). This combination allows the TCSC to provide a reactive component with continuous changes
during the thyristors’ conduction period. Figure 1 shows a single-phase model of a TCSC connected
between bus i and bus j.
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Figure 1. A model of a Thyristor-Controlled Series Compensator (TCSC).

Figure 2 shows the π equivalent parameters of a transmission line when X >> R. Vi∠δi and V j∠δ j
are the complex voltage forms of buses i and j, respectively. In Figure 2, Yi j =

1
Zi j

= Gi j + jBi j is
the admittance of the transmission line between buses i and j. Gi j and Bi j are the conductance and
susceptance of the transmission line between buses i and j, respectively. In addition, Bsh represents the
shunt susceptance of the transmission line.
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The active and reactive power flow equations between bus i and bus j (Pi j and Qi j) can be
determined as follows [28–33]:

Pi j = V2
i Gi j −ViV j

(
Gi j cos δi j + Bi j sin δi j

)
(1)

Qi j = −Vi
2
(
Bi j + Bsh

)
−ViV j

(
Gi j sin δi j − Bi j cos δi j

)
(2)

where δi j = δi − δ j is the phase angle difference between the voltage at bus i and bus j.
The transmission line model after the installation of the TCSC between bus i and bus j is shown in

Figure 3. In Figure 3, zi j = ri j + jxi j is the impedance of the transmission line between buses i and j.
ri j and xi j are the resistance and reactance of the transmission line between buses i and j, respectively.
At the steady-state, the TCSC can be considered as a static reactance of − jxc.
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Equations (3) to (6) show the active and reactive power flow equations in the presence of a TCSC
between bus i and bus j (Pc

i j and Qc
i j) and vice versa (Pc

ji and Qc
ji).

Pc
i j = V2

i G′i j −ViV j
(
G′i j cos δi j + B′i j sin δi j

)
(3)

Qc
i j = −V2

i

(
B′i j + Bsh

)
−ViV j

(
G′i j sin δi j − B′i j cos δi j

)
(4)

Pc
ji = V2

j G′i j −ViV j
(
G′i j cos δi j − B′i j sin δi j

)
(5)

Qc
ji = −V2

j

(
B′i j + Bsh

)
+ ViV j

(
G′i j sin δi j + B′i j cos δi j

)
(6)
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Active and reactive power losses (Pl and Ql) can be determined as follows:

Pl = Pi j + P ji = G′i j

(
V2

i + V2
j

)
−

(
2ViV jG′i j cos δi j

)
(7)

Ql = Qi j + Q ji = −
(
V2

i + V2
j

)(
Bi j
′ + Bsh

)
+

(
2ViV jB′i j cos δi j

)
(8)

where

B′i j =
−

(
xi j − xc

)
r2

i j +
(
xi j − xc

)2 (9)

G′i j =
ri j

r2
i j +

(
xi j − xc

)2 (10)

Any changes in the line flow due to the series capacitance can be represented as a line without
series capacitance, with power injected at the receiving and sending ends of the line, as shown in
Figure 4. Sic and S jc in Figure 4 are the injection power at bus i and bus j, respectively. Details of the
active and reactive injection power equations in the presence of a TCSC are expressed in [1–10,27].
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3. Power Congestion Index of Transmission Lines

The Transmission Congestion Distribution Factor (TCDF), as proposed in Equation (11), is based
on the sensitivity of AC power flow of the lines to changes in the injected power at different buses,
as follows [1]:

TCDF(i, k) =
∆Pi j

∆Pi
(11)

where TCDF(i, k) represents the variations of active power flow (∆Pi j) in transmission line k between
buses i and j due to the changes in the injected power at bus i (∆Pi). In fact, the TCDF index points to
changes in the transmission line power, when the injected power in a bus is changed. There are several
methods to determine the TCDF, one of which is presented in this paper.

The power flow equation from bus i to bus j can be expressed as follows [31–33]:

Pi j = ViV jYi j cos
(
θi j + δ j − δi

)
−V2

i Yi j cosθi j (12)

where Vi and V j and δi and δ j are the voltage magnitudes and voltage angles at bus i and bus j,
respectively. Yi j and θi j are the magnitude and phase angle of the admittance of the i- jth element of
Y-bus matrix. Using the Taylor series, and ignoring the second- and higher-order terms due to their
less impacts, Equations (13) and (14) can be derived as follows:

∆Pi j =
∂Pi j

∂δi
∆δi +

∂Pi j

∂δ j
∆δ j +

∂Pi j

∂Vi
∆Vi +

∂Pi j

∂V j
∆V j (13)

∆Pi j = ai j∆δi + bi j∆δ j + ci j∆Vi + di j∆V j (14)
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The unknown coefficients in Equation (14) are calculated by deriving Equations (15)–(18).

ai j = ViV jYi j sin
(
θi j + δ j − δi

)
(15)

bi j = −ViV jYi j sin
(
θi j + δ j − δi

)
(16)

ci j = V jYi j cos
(
θi j + δ j − δi

)
− 2ViYi j cosθi j (17)

di j = ViYi j cos
(
θi j + δ j − δi

)
(18)

Therefore, the Jacobian matrix can be formed as follows:(
∆P
∆Q

)
= ( j)

(
∆δ
∆V

)
=

(
j11 j12

j21 j22

)(
∆δ
∆V

)
(19)

Voltage magnitude changes on the line power flow are ignored due to their negligible
impacts. Hence,

∆P = ( j11)∆δ (20)

∆Q = ( j22)∆V (21)

∆δ = ( j11)
−1∆P = (M)∆P (22)

Equation (22) can be generally stated as follows:

∆δ =
n∑

l=0

mil∆Pl, i = 1, 2, . . . , n, i , s (23)

where n denotes the number of buses, s is slack bus, and mil represents members of matrix M.
In accordance with the above-mentioned subject, ci j and di j are ignored, and Equation (14) can be
rewritten as follows:

∆Pi j = ai j∆δi + bi j∆δ j (24)

Considering Equations (23) and (24), Equations (25) and (26) can be derived as follows:

∆Pi j = ai j

n∑
l=1

mil∆Pl + bi j

n∑
l=1

m jl∆Pl (25)

∆Pi j = TCDF(1, k)∆P1 + TCDF(2, k)∆P2 + . . .+ TCDF(n, k)∆Pn (26)

where TCDF(n, k) indicates the congestion index of bus n and line k (connection line between bus i and
bus j), and it is given as follows:

TCDF(n, k) = ai jmin + bi jm jn (27)

4. Proposed Multi-Objective Genetic Algorithm (MOGA)

Genetic Algorithm (GA) is a search technique derived from the natural evolutionary mechanism,
in which each individual specification of a person is defined by the nature of their chromosomes.
There are various applications of the GA, of which multi-objective optimization is one. In fact, the
optimization calculations of the GA are performed on variables that form chromosomes using the
continuous generation of the population until a predetermined iteration number. On the other hand, the
optimization is started with a random generation of the initial population. In the next step, crossover
action is performed on chromosomes that are randomly selected. There are several methods for
crossover operation, of which the analytical and break methods are two [28–30]. After that, mutation
operation is randomly performed on chromosomes. The selection operation is the other most important
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step in the GA. In this step, by sorting the chromosomes based on their optimum calculated values
in the objective function, a defined number of chromosomes, which optimizes the objective function
more than the others, will be selected. There are various methods for the chromosome selection, and
going to the next step, the Roulette Wheel Algorithm is one of them.

The overall objective function in this problem is composed of the power loss reduction index,
congestion improvement indicator (TCDF), and TCSC compensation rate. The control (optimization)
variables contain the susceptance values of TCSCs (b1, . . . , bi) and locations of TCSCs (B1, . . . , Bi) in
power grids, which are discrete numbers between 1 and the maximum line numbers. Figure 5 shows
the coding of the problem variables.
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The length of a chromosome is determined according to the number of TCSCs. If one or two
TCSCs are utilized, the length of a chromosome is two or four, respectively. Various operational
constraints, including the bus voltage, the line maximum power, and also the active and reactive power
of generation units are considered in the optimization process [34]. Therefore, the objective function is
subjected to the following constraints:

• Bus voltage constraint:
Vmin

i ≤ Vi ≤ Vmax
i (28)

• Transmission line capacity limitations:

SLi ≤ Smax
Li

(29)

• Generator active power limitations:

Pmin
Gi
≤ PGi ≤ Pmax

Gi
(30)

• Generator reactive power limitations:

Qmin
Gi
≤ QGi ≤ Qmax

Gi
(31)

To handle the inequality constraints, the penalty function is defined as follows:

P(Xi) =


(
Xi −Xmax

i

)2
, Xi > Xmax

i(
Xmin

i −Xi
)2

, Xi < Xmin
i

0, Xmin
i < Xi < Xmax

i

(32)

where P(Xi) is the penalty function of variable Xi. Xmin
i and Xmax

i are the lower and upper limits of
variable Xi.

The two objective functions ( f1 and f2) are presented as follows:

f1 =

NL∑
i=1

Plossi (33)
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f2 =
1

NL

NL∑
i=1

SLi

Smax
Li

× 100 (34)

where Plossi is the active power loss in line i, NL is the total number of transmission lines, SLi is the
aperient power of line i, and Smax

Li
denotes the maximum allowable aperient power of line i. It should be

noted that in this paper, the average percentage of loadability of the lines is considered as an objective
function for congestion minimization.

In addition, the third objective function ( f3) is defined as follows:

f3 = XL = Xi j + XTCSC (35)

where XL is the reactance of the transmission line, Xi j is the reactance of the transmission line before
compensation, and XTCSC is the added reactance to the transmission line after installation of the TCSC.
Also, XTCSC = rTCSC ×Xi j, where rTCSC is the compensation coefficient and has a value between −0.7
and 0.2.

As a result, the overall objective function can be written as follows:

minF =
M∑

i=1

wi fi (36)

where M shows the number of objectives. Also, wi is the weight factor associated with the ith objective
function. It should be noted that

∑K
i=1 wi = 1. Lastly, fi is the ith objective function (normalized).

5. Simulation Results and Discussions

5.1. Simulation Results

The proposed method is implemented and evaluated on the IEEE 30-bus test system [35], as shown
in Figure 6, for determining the optimal locations of one and two TCSCs. It should be noted that the
case-study has 41 transmission lines. MATPOWER is used for power flow analysis [36]. The simulations
were accomplished in the MATLAB software using a laptop with the Intel Core i7-8550U processor at
1.80 GHz clock speed and 12 GB of RAM.
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5.1.1. Installation of One TCSC

In the first scenario, the optimal location of one TCSC and the compensation rate of the
corresponding line for power loss reduction are calculated using the MOGA. After 600 iterations,
line 36 (the connection line between bus 27 and bus 28) with 59.4% compensation rate of the line
reactance is selected as the best location for TCSC installation. Figure 7 demonstrates the voltage
improvement at all buses and the voltage drop reduction after the installation of one TCSC.
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5.1.2. Installation of Two TCSCs

In the second scenario, the optimization of the objective function is carried out for two TCSCs.
After 1000 iterations, lines 36 (the connection line between bus 27 and bus 28) and 16 (the connection
line between bus 12 and bus 13), with 59.58% and 56.74% compensation rates of the lines reactance, are
chosen as the two optimum TCSC locations. As shown in Figure 8, the total power losses in this case
with two TCSCs are expectedly less than the power loss in the last case with one TCSC. It should be
noted that the line compensation rate is limited to 60% of the line reactance.
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5.1.3. Optimizing the Congestion Index with One TCSC

In the next scenario, the optimal location and compensation rate of the line, with the aim of
optimizing the congestion index using the MOGA, are obtained. For the minimum congestion index
(objective function), it is defined that the congestion index should be greater than 2. Therefore, after
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600 iterations, line 36 (the connection line between bus 27 and bus 28) is obtained as the optimal
location of the TCSC, with 60% compensation rate of the line reactance. Figure 9 shows the congestion
index before and after the installation of one TCSC after 600 iterations. In fact, as the congestion index
is smaller and closer to zero, the possibility of the overload condition of the lines due to probable
variations is less. Therefore, the power flow through the lines can be smoother.
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5.1.4. Optimizing the Congestion Index with Two TCSCs

The impact of installing two TCSCs on the system congestion reduction is investigated.
After 1000 iterations, it is observed that the best result is obtained by placing TCSCs in lines 36
(the connection line between bus 27 and bus 28) and 12 (the connection line between bus 6 and bus
10) with 59.8% and 55.8% compensation rates of the lines reactance, respectively. Figure 10 shows the
obtained congestion index before and after the installation of two TCSCs. It is also observed that the
congestion index is reduced in this case.
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5.1.5. Comparison of the Impact of TCSC Installation on the Congestion Index

In order to compare the impact of TCSC installation on the congestion index, some of the obtained
values for different states of the case-study are given in Table 1. This table shows that the congestion
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index is reduced slightly after the installation of two TCSCs rather than one. However, some of
the congestion indices are increased, the installation of two TCSCs can cause a reduction in the
congestion index.

Table 1. Congestion index comparison in three different scenarios.

Without TCSC With Installing One TCSC With Installing Two TCSCs

5.6782 5.5209 5.4876
3.4496 3.4496 2.9298
−6.1228 −3.5560 −3.5882
4.5056 1.9668 1.9282
−2.0359 −2.0359 −1.9552
−2.0222 −2.0222 −1.8619
3.0062 3.0062 1.4983
−2.1218 −2.1218 −2.2608
3.2135 3.2135 2.6835
−3.6272 −1.6807 −1.8361
3.0220 1.4799 1.4364
3.4788 1.7925 1.7634
−2.7393 −5.0217 −5.0954
−6.2709 −3.6420 −3.0750
4.1085 2.1043 1.9749
4.6944 2.3643 2.3378

5.2. Performance Evaluation Using Different Heuristic Techniques
To check the performance, applicability, and effectiveness of the proposed method, different

heuristic algorithms, such as the multi-objective PSO algorithm, Differential Evolution (DE) algorithm,
and MINLP technique are used for comparison, subject to the same conditions (the same population
size, same number of iterations, same number of runs, etc.) and on the same machine. The initial
population size for each technique is considered as 1000. It should be noted that finite-time and fast
convergence is an important capability of any algorithm in practical tests [37–39]. Figures 11–14 show
a summary of the comparisons among the proposed method and the multi-objective PSO, DE, and
MINLP methods.

Figure 11 shows the voltage improvement at all buses after the installation of one TCSC using
different techniques. However, after 600 iterations, line 36 (the connection line between bus 27 and bus
28) is determined as the optimal location of the TCSC using different algorithms, the PSO algorithm
shows overall higher compensation rates at all of the busses.
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Figure 11. Comparison of the voltage at different buses after the installation of one TCSC using
different techniques.
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The impact of installing two TCSCs on total power losses using different techniques is shown in
Figure 12. As shown in this figure, the MOGA determines the lowest total power losses in all three
cases (without TCSC, after installing one TCSC, and after installing two TCSCs).Sustainability 2020, 12, x FOR PEER REVIEW 13 of 17 

 

Figure 12. Comparison of the total power losses for different cases using different techniques. 

Figure 13 shows the congestion index after the installation of one TCSC using different 
techniques. As Figure 13 illustrates, the MOGA is highly capable of determining the optimum 
congestion index after the installation of one TCSC. 

 

Figure 13. The congestion index after the installation of one TCSC using different techniques. 

Figure 14 demonstrates the congestion index after the installation of two TCSCs using different 
techniques. As shown in this figure, (1) compared to in Figure 14, the congestion index is slightly 
reduced, and (2) the MOGA is a superior technique to determine the optimum congestion index after 
the installation of one TCSC. 

2.2

2.25

2.3

2.35

2.4

2.45

2.5

Case 1
Without TCSC

Case 2
After Installing One TCSC

Case 3
After Installing Two TCSCs

To
ta

l P
ow

er
 L

os
se

s (
M

W
)

Proposed Method PSO DE MINLP

-8

-6

-4

-2

0

2

4

6

8

0 100 200 300 400 500 600

C
on

ge
st

io
n 

In
de

x

Number of Iterations

Proposed Method PSO DE MINLP

Figure 12. Comparison of the total power losses for different cases using different techniques.

Figure 13 shows the congestion index after the installation of one TCSC using different techniques.
As Figure 13 illustrates, the MOGA is highly capable of determining the optimum congestion index
after the installation of one TCSC.
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Figure 13. The congestion index after the installation of one TCSC using different techniques.

Figure 14 demonstrates the congestion index after the installation of two TCSCs using different
techniques. As shown in this figure, (1) compared to in Figure 14, the congestion index is slightly
reduced, and (2) the MOGA is a superior technique to determine the optimum congestion index after
the installation of one TCSC.
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Figure 14. The congestion index after the installation of two TCSCs using different techniques.

6. Conclusions

Congestion management is one of the main challenges of power system optimization. Flexible
AC Transmission System (FACTS) devices, such as TCSCs, can be used to manage line congestion with
controlling the power flow of the grids. On the other hand, due to the high investment costs of FACTS
device installation, determining their optimal locations is very important. In this paper, for the first time,
power loss reduction, congestion management, and determination of the power line compensation
rates are considered, to optimally allocate TCSCs and their susceptance values. The Jacobian sensitivity
approach and AC load flow are used for line congestion evaluations. Then, the Multi-Objective Genetic
Algorithm (MOGA) was applied to determine the optimal locations and susceptance values of TCSCs.
The obtained results show that the optimal allocation and compensation rate of one TCSC can improve
power loss and congestion indices. Additionally, the optimal allocation and compensation rates of
two TCSCs show that increasing the number of TCSCs results in a slight power loss reduction and
an improvement of the congestion index. Meanwhile, the obtained results are compared with those
from different algorithms, such as the multi-objective Particle Swarm Optimization (PSO) algorithm,
Differential Evolution (DE) algorithm, and Mixed-Integer Non-Linear Program (MINLP) technique, to
evaluate the superiority of the proposed method—in terms of fast convergence and high accuracy—over
the other heuristic methods. It is noted that the proposed method is a fast and accurate method that
can be used for power system operation and planning studies.
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