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Abstract: Transporting parcels on urban passenger rail transit is gaining growing interest as
a response to the increasing demand and cost of urban parcel delivery. To analyze the welfare
effects of different fare regimes when allowing parcel services on an urban rail transit, this paper
models the optimal service problem where the transit operator chooses the number of trains and
the departure intervals. By introducing a reduced form train timetable problem, the passenger train
crowding model is extended to incorporate the effect of freight train scheduling. We show that the
freight users are better off in the time-varying optimal fare regime, while passengers are worse off,
and that the time-varying optimal fare regime calls for more trains than the optimal uniform fare
regime. However, the reduction in passenger trains due to the introduction of freight service can
eliminate the welfare gain from passenger time-varying fare. If the price elasticity of freight demand
is relatively high, implementing road toll can generate welfare loss when rail transit is privately
operated.
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1. Introduction

Parcel delivery demand boosted by online retail incurs greater congestion, emission and labor
cost [1,2]. As a response to the challenge, more initiatives are focusing on moving parcels on
passenger rail transit (see Diziain et al. [3] and Cochrane et al. [4] for the reviews of recent practices).
Kikuta et al. [5] report a survey resulting from a pilot project of freight on subway implemented in
Japan. Positive feedback from various stakeholders are received. Intergrated transit systems have
also been proposed to meet dynamic demand of both passenger and freight (e.g., Fatnassi et al. [6]).
In most practices and studies, passenger and freight services are planned to be provided in designated
time intervals, usually with passenger service in priority. The welfare effects of deciding such time
intervals have not explored in depth.

The objective of this paper is to analyze the welfare effects of rail transit pricing when the freight on
transit (FOT) service is provided. In particular, our analysis focuses on two questions, one concerning
equity between user groups and the other optimal capacity. First, how does the time-varying transit
fare affect the consumer surplus of passenger and freight users? Are they better off or worse off than
in a flat fare regime? Second, does the freight service affect the optimal service capacity? Is it the case
that, as when only passenger service is provided, more trains are needed when a time-varying fare is
implemented?

The problem of optimal scheduling for mixed types of trains is usually treated separately in two
stages. The first stage is to construct an optimal timetable for each type of train, typically with
the objective to minimize the user scheduling cost or maximize the operating revenue (e.g.,
de Palma and Lindsey [7]). The second stage is to schedule (or path) different types of trains to
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minimize the deviation from the designated optimal timetable, subject to track and headway constraints
(e.g., Carey and Lockwood [8], Carprara et al. [9], and Cacchiani and Toth [10]). As a variant of the
second stage scheduling problem, Behiri et al. [11] develop a model for optimal train scheduling
specifically in the context of FOT, assuming that the departure times of passenger trains are unaffected.
Recently, Robenek et al. [12] made an effort to integrate the two stages of the optimal timetable
problem, where the second stage of train scheduling also affects passengers’ departure time choice.
However, passengers’ behavior of trading-off between crowding and scheduling cost is not considered
in the above literature. The effects of freight service on passengers’ departure time choice are therefore
not taken into account.

In contrast, dynamic model that accounts for road travelers trip-timing decision has been studied
rigorously based on the bottleneck model introduced by Vickrey [13]. Analogous to a road bottleneck,
Kraus and Yoshida [14] consider a bottleneck at the departure station. They assume that passengers
have to wait for the next train if boarded passengers exceed train capacity, and that no late arrivals
are allowed. In such cases, the departure time choice of passenger is made by trading scheduling
cost due to early departures for queuing cost. Tian et al. [15] treat a more realistic scenario where
the crowding cost varies with the number of boarded passengers. They also allow both early and
late arrivals. The equilibrium cost of passengers then consists of crowding cost and scheduling
cost. Recently, de Palma et al. [16] develop a more general model of passenger transit crowding.
They discuss how the convexity of crowding cost function affects the welfare gain from introducing
time-dependent fare. In addition, they find that rail transit requires more capacity investment
in the social optimal fare regime, which contradicts with the conventional knowledge from road
congestion pricing.

Our analysis builds on the previous works mainly in two ways. First, the two-stage optimal
timetable problem is formulated in a reduce form, given the fact that the number of departure intervals
is limited in the practices of FOT. The reduced form optimal timetable problem is then applied to
extend the dynamic trip-timing models by de Palma et al. [16]. Second, we adopt the bottleneck
model of road congestion (e.g., Vickrey [13] and Arnott et al. [17]) to model the queuing behavior of
freight loading. By combining these two modeling features, we have a novel model that allows for
an analysis of the optimal service problem where both the number and the departure time intervals of
passenger trains are decided endogenously with that of freight trains. Our analysis parallels much
of that in de Palma et al. [16], but is distinct in the following ways. We derive the optimal number of
trains for both passenger and freight service type for four fare regimes: No-fare, optimal uniform-fare,
optimal time-varying fare and private profit maximization fare. We highlight the welfare distributional
effects between passenger and freight user, and remark the similarities and differences before and
after the introduction of FOT service. The effect of an unpriced road as an alternative to rail transit
is assessed, and the welfare loss due to private transit operation and unpriced road traffic is then
compared as two types of market distortions. The role of scheduling preferences in welfare gain and
the optimal service order is also discussed.

As the answer to the questions in the second paragraph, our results show that freight
users are better off in the best time-varying fare regime, while passenger users are worse off.
Therefore, a sophisticated fare rebate design is needed in order to achieve Pareto improvement. In the
time-varying optimal fare regime, the total optimal number of total trains is higher than in the uniform
fare regime. The number of passenger trains, however, can be lower, and the welfare gain from the
time-varying fare of passengers can also be negative.

The layout of the paper is as follows. Section 2 reviews the passenger transit crowding model,
and the conventional bottleneck model is adopted to capture the loading congestion of freight users
in the departure station. The optimal timetable problem with fixed demand is treated in Section 3,
and the problem is extended in Section 4 to consider elastic demand and the number of trains can be
varied by the operator in the long run. In Section 6, numerical analysis is presented, and Section 7
concludes. A summary table of notations and proofs may be found in the Appendix.
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2. A Model of Rail Transit Line with Track Sharing Services

In this section, we introduce a model of implementing freight service over a crowding rail transit
line. Transit user type is indexed by η = i, j, where i for passenger and j for freight. The model of
passenger crowding with only passenger service is firstly explained, followed by a model of freight
loading congestion at the same departure station.

2.1. Passenger Service

Consider a single rail transit line connects the origin and the destination stations without
intermediate stops. There are mi trains with the same capacity s operating over the line. As per
a timetable, train k is scheduled to leave at tk, k = 1, . . . , mi. The travel time T between the two stations
is constant. A fixed number, Ni, of identical commuters take the line from home to work, and no other
transportation modes are available. The situation is illustrated in Figure 1. The timetable information
is fully available to the commuters, and the crowding costs g(nk) on train k, in terms of the discomfort
of staying in a restricted space, are the same among boarded passengers nk, i.e., no merit from early
arrival in order to secure a more preferable place in the train. Then on each of train k, user incurs
a crowding disutility g(nk) > 0. The boarding time is assumed independent of the number of boarding
passengers, and is normalized to zero without loss of generality.

Home / Warehouse

Single track rail transit

Workplace / Delivery area

Passengers

Parcels

Departure station Arrival station

Figure 1. A single track rail transit with passenger and freight service.

The limited capacity of a single train, from which the crowding cost stems, also entails scheduling
cost for users. The dynamics of scheduling cost, introduced by Vickrey [18], is modeled with the
assumption that the utility of one’s activity depends on the time spent on each place: Home and work.
The total utility u gained by a user taking train k, usually has the following form:

u(tk) =
∫ tk

th

h(t)dt +
∫ tw

tk+T
w(t)dt− g(nk),

where h(t) and w(t) are the utility rate or Marginal Utility of Time (MUT) at time t when an individual
being at home or at workplace, respectively. The constant th denotes the start time of a day and tw

the end time of work. Both function h and w are often assumed to be positive on their domains,
and function h is non-increasing while w to be increasing, i.e., h > 0, h′ ≤ 0 and w > 0, w′ > 0.
The assumption is in line with the intuition that a trip to work is more beneficial to an individual than
staying at home. Over the time of day being considered, the utility rate at work strictly increases from
less to higher than the utility rate at home, before intersecting w at some time t∗. If there is a train
scheduled to depart at t∗ with unlimited capacity, and travel time T is zero, all users would choose
to take this train to arrive at the work place and achieve the maximum utility umax =

∫ t∗
th

h(t)dt +∫ tw
t∗ w(t)dt. Therefore t∗ is usually referred as the preferred arrival time (PAT). The scheduling cost of

user i taking train k is therefore defined by

δi(tk) = umax − u(tk) =
∫ t∗

tk

h(t)dt +
∫ tk+T

t∗
w(t)dt. (1)

When the train capacity is limited, and travel time is not zero, only users take the train departing
at the the optimal departure time t∗k achieve the minimum scheduling cost, when they equalize the
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utility rate at home h(t∗k ) and that at the workplace w(t∗k + T), as illustrated in Figure 2. In general,
they suffer combined travel cost ci(tk) = δi(tk) + g(nk), k = 1, . . . , mi, where nk is the number of users
boarded on the same train k. To simplify notations, δi(tk) is written δik, and ci(tk) is written cik.
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Time of day

T

h w

Figure 2. Graphical solution to utility maximization by departure time choice.

In literature of departure time choice, two types of scheduling preferences have been utilized
to represent the most common specifications for h and w, namely: Linear MUT and constant-step
MUT (also known as α− β− γ preferences). Linear MUT preferences were introduced by Vickrey [18].
They have the formulation as follows: h(t) = β0 + β1t and w(t) = γ0 + γ1t, with the assumption
that β1 ≤ 0 and γ1 > 0. The functions h and w intersect at the preferred arrival time t∗ = β0−γ0

γ1−β1
.

The α− β− γ preferences were firstly introduced by Vickrey [13], and later restated by Tseng and
Verhoef [19] by a constant function for h and a step function for w: h(t) = α, w(t) = α− β + (β + γ) ·
1t≥t∗(t), where 1x is the indicator function with 1x = 1 if x is true, and 1x = 0 otherwise. Later in this
subsection, we discuss the effect of scheduling preferences on welfare gain and the optimal service
start time.

With travel cost defined, we are ready to introduce the departure time choice behavior in user
equilibrium (UE). An extensive exposition of trip-timing decision in rail transit context is due to de
Palma et al. [16]. Here we present mainly the result for better understanding the remaining text.
Let the superscript e denote the no-fare user equilibrium. When no fare applied by the operator,
users distribute themselves across trains by trading-off between scheduling cost δik and crowding cost
g(nk), k = 1, · · · . When the equilibrium state established, the private travel cost of user on train k
equals to the equilibrium cost

ce
i = δk + g(nk). (2)

Since the crowding cost function depends on passengers’ preferences, the shape of g(n) can
differ between cities and user groups. To simplify the matters, the crowding cost throughout
the text is assumed to be a linear function of boarded passengers on trains k, i.e., g(nk) = λnk/s.
(See de Palma et al. [16] for the effects of crowding cost function specification.) Define δ̄i ≡ 1

mi
∑mi

k=1 δik

as the average scheduling cost between train k. Using the identity ∑mi
k=1 ne

k = Ni, ne
k and ce

i can be
derived by solving Equation (2):

ne
k =

Ni
mi

+
s
λ
(δ̄i − δik), (3)

ce
i = δ̄i +

λNi
mis

. (4)
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When the total number demand of passenger trip Ni is inelastic, transit operator is not able to
restrict transit usage by applying a uniform fares regime. The marginal social cost of a trip, MSCi,
is derived by differentiating the total equilibrium cost, ce

i Ni, with respect to Ni:

MSCe
i = δ̄i + 2

λNi
mis

. (5)

Then elastic demand (as assumed in Section 4) can be regulated to the efficient level by an fare
equal to the average marginal external cost:

τu
i = MSCe

i − ce
i =

λNi
mis

, (6)

where the superscript “u” denotes the optimal uniform fare regime. Then the total travel cost net of
the fare in optimal uniform fare regime is:

TCu
i = δ̄i Ni +

λ(Ni)
2

mis
. (7)

If the operator is allowed to charge train-dependent fare, users can then be distributed optimally
between trains to minimize total travel cost. Let superscript o denote the social optimal (SO) fare
regime, and the fare minimizes total travel cost is called SO-fare. Instead of a sum of equilibrium
cost, the total travel cost is now given as TCo

i = ∑mi
k=1 ciknk. Treating ∑mi

k=1 nk = Ni as the constraint
of minimizing TCo

i , the first order conditions gives that the marginal social cost of using each train k,
MSCik equals to the marginal social cost of a trip MSCo

i :

MSCik =
∂ciknk

∂nk
= δik + 2

λ

s
nk = MSCo

i , (8)

where

MSCo
i =

∂TCo
i

∂Ni
= δ̄i + 2

λNi
mis

. (9)

Jointly solving Equations (8) and (9) for nk gives:

no
k =

Ni
mi

+
s

2λ
(δ̄i − δik). (10)

Then the marginal external cost of usage, or the SO-fare is derived as

τo
ik = MSCk − ck =

λ

s
no

k. (11)

Given Equations (10) and (11), total revenue from the SO-fare is

Ro
i =

mi

∑
k=1

no
kτo

ik =
λ

mis
N2

i + RVo, (12)

where

RVo ≡ s
4λ

(
mi

∑
k=1

δ2
ik −mi δ̄i

2

)
. (13)

By comparing Equations (6) and (12), it is easy to see that RVo is the variable part of revenue
collecting from the time-varying SO-fare. Following de Palma et al. [16], we call it variable revenue.
Now the total travel cost net of the SO-fare can be written as
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TCo
i = δ̄i Ni +

λNi
2

mis
− RVo, (14)

where the first two terms are the total travel cost in UE, TCe
i = ce

i Ni; therefore, RVo gives the welfare
gain from imposing SO-fare Geo, defined as the difference of total travel cost between UE and SO fare
regimes, i.e., Geo = RVo = TCe

i − TCo
i . Note that RVo is only a function of mi when all the trains are

occupied. Since the train with the highest schedule delay cost has the lowest usage, the condition of
minimum Ni for all the trains are used in UE, and SO can be found by making Equations (3) and (10),
respectively, positive for max[δ1, δmi ].

Next we show how scheduling preferences affect the way that the optimal service time t∗1 and
RVo∗ change with the number of trains mi. For a given mi, a public operator chooses a start time of the
service that minimizes total travel cost. Assuming that the headway between trains is a constant h, it is
straightforward to find the start time by differentiating δ̄i with respect to the departure time of first
train t1. With t∗1 solved, the optimal value δ̄i and RVo are also decided. The results are summarized
along with the specifications of scheduling preferences in Table 1. The superscript i is omitted in the
table for conciseness. Here m is treated as a continuous variable. The sign of approximately equal is
used when some terms do not vary with m or are relatively small as m is large and thus are ignored in
the presented results.

Table 1. Summary table of scheduling preferences, optimal service start time, optimal average schedule
delay cost and optimal variable revenue.

Linear MUT Constant-Step MUT [16]

h(t) β0 + β1t α
w(t) γ0 + γ1t α− β + (β + α) · 1t≥t∗ (t)

t∗1 t∗ − γ1
γ1−β1

T − (m−1)h
2 t∗ −

(
γm

β+γ + 1
2

)
h

δ̄∗ ' (γ1−β1)h2

24 m2 ' βγ
β+γ

h
2 m

RVo∗ ' (γ1−β1)h2s
2880λ m5 ' s

48λ

(
βγ

β+γ

)
h2m(m2 − 1)

Note that RVo varies approximately with the fifth power of mi in linear MUT. To see the reason,
we consider an example where the passengers are being redistributed between only two trains, 1 and 2,
with respective schedule delay cost δi1 and δi2, where δi1 < δi2. The user distribution of SO pattern
can be achieved by moving passengers from the over-used train 1 to train 2. Then the change of
crowding cost due to the redistribution on train 1 is (no

1− ne
1)

2λ/s, and that on train 2 is (no
2− ne

2)
2λ/s.

Then change of total scheduling delay costs is (δi2 − δi1)(no
2 − ne

2). The welfare gain or the change
in total travel costs by redistributing passengers between two trains is then s

4λ (δi1 − δi2)
2. Note that

δ̄i for linear MUT is proportional to m2
i , then the average difference in schedule delay cost is also

proportional to m2
i . Therefore the welfare gain varies with m4

i . By contrast, δ̄i is proportional to mi in
constant-step MUT, then the welfare gain varies with m2

i . In addition, there are approximately mi/2
pairs trains between which passenger can be redistributed, the total welfare gain varies approximately
with m5 and m3, respectively.

2.2. Freight Service

This subsection describes our model of freight loading congestion at the origin station. We base
our analysis on the works of pure bottleneck congestion [13,17], by extending the road bottleneck
model to the case where congestion occurs at the departure station used by parcel carriers.

The freight users usually have a preferred arrival time, similar to passengers, from which arises
the schedule delay cost. Then the schedule delay cost of freight users can be interpreted in a natural
way where early arrivals require the carrier to collect a particular amount of parcels within a shorter
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time and thus have higher input factors (either labor or capital), while late arrivals simply reduce the
possible amount of parcels to be delivered in the subsequent working hours.

Consider Nj parcels shipped by a continuum of small carriers are assumed to be loaded at the
same departure station as passengers’, as shown in Figure 1. The operator utilizes the same type of
train as the passenger service, therefore the operating and maintenance cost per train is assumed to
be the same as passenger’s. The carriers’ warehouses are assumed to be based on the premises of
the station, and no travel time is needed before the parcels are loaded. The time required to load
parcels onboard is independent of departure time, and is normalized to zero without loss of generality.
The loading service capacity per headway then equals to the train capacity s, as the loading for
a subsequent train cannot be started until the current train leaves. As usual in the freight rail literature
(e.g., Kuo et al. [20]), we assume that the load factor is 1. For a fixed demand of Nj the total number of
occupied trains mj is then given as Nj/s. When the arrival of parcels within an headway is larger than
s, a queue is generated. Assume that no utility can be generated after the parcels leave the warehouse
and start to queue, before arriving at the destination. Queue length is noted Q(tk). The travel time for
a freight user is:

Tj(tk) = T +
Q(tk)

s
. (15)

We first characterize user equilibrium in zero fare. Each carrier decides when to leave the
warehouse and join the queue. In doing so, he trades off travel time and schedule delay cost.
Throughout the text, we treat travel time cost and scheduling delay cost of a single freight user
as the sum of a small batch of parcel that occupies equivalent train carriage capacity of a passenger.
The designated capacity per user is usually practically measured by the standing area of a passenger
which differs between cities. If trains are always available and freight user can depart at any time,
which is analogous to the road case, there is a unique departure pattern in no-fare equilibrium that the
user cost on every train is ce

j , and this defines the scheduling behavior of parcel carriers. Following the
notation in the passenger case, the scheduling cost on train k is denoted as δjk. The equilibrium
condition, where all the carriers are indifferent between all the trains, is then given by:

ce
j = δjk(tk, Tj(tk)), (16)

where freight users choose departure times tk for different travel time Tj(tk) until all the users have the

same travel cost ce
j . Denote tje

1 as the (endogenous) departure time of the first occupied train, and tj
m as

that of the last occupied train. With the equilibrium departure pattern defined, the parcels on the first
train are loaded at tje

1 , and leave the station at the same time, incurring zero queuing cost. The same

holds for the parcels on the last train. If the first train departs after the equilibrium peak start time tje
1 ,

there exist a mass departure of users waiting to be loaded when the first train leaves at tj
1, or if the last

train departs before tje
m, there exists a period of time during which no one joins the queue. Such period

lasts until the queue dissipates when the last train leaves at tj
m. This behavior is simply a special case

when applying coarse toll on a road bottleneck [17,21], where the period when no train is available can
be viewed as a period when the toll is so high that no one chooses to depart.

Regardless of the queuing time of freight users on the first or the last trains, the bottleneck
is continuously utilized. The duration of the peak period has to be mjh, the number of parcels mj
multiplied the headway h. Following the the notation of passengers, the average scheduling cost
of freight users over trains is denoted as δ̄j =

1
mj

∑
mj
k=1 δjk. Then the equilibrium generalized cost ce,

total schedule delay cost, SDC, total queuing time cost QC, and total travel cost TCj, are given by

ce
j = max[δj1, δjm], SDCe

j = mjsδ̄j, QCe = mjs
(

max[δj
1, δ

j
mj ]− δ̄j

)
, TCe

j = mjsce
j . (17)

As in the road case, the queue can be eliminated by charging a time-variant fare and achieve the
social optimal (SO) departure pattern [17]. In SO, the first and last user’s departure time does not
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change. The private cost of a freight user consists only schedule delay cost, then total schedule delay
cost now equals to total travel cost. They are given by:

co
j = δjk, SDCo

j = TCo
j = mjsδ̄j, QCo = 0. (18)

In literature of urban delivery, parcel carrier’s schedule delay cost is often assumed to have
constant-step MUT preferences (see Taniguchi and Thomopson [22], for example). Empirical evidence,
however, show the possibility that parcel carrier’s MUT during a delivery tour varies with
time of day, especially when unattended delivery facilities are not available. Niels et al. [23]
observes 46 percent first-time failure deliveries when parcels being delivered to a private consumer,
while Schocker et al. [24] reports an improved deliver rate after a second delivery on the same day,
resulting in an average first-day delivery rate of 75 percent to 95 percent. Since the presence of a
receiver is usually not pre-defined, it is clear that the successful delivery rate can be increased when
parcels are delivered in a time that more receivers are available in the designated area. As observed
by Cherrett et al. [25], carriers’ arrival rate increases from 9 am to 11 am, while decreases after 1 pm,
in a specific receiver’s location. These observations indicate that carriers’ preferred arrival times,
at an aggregate level, are likely to be neither concentrated in a short period of time nor uniformly
distributed across time of day, though the reason may not be to improve delivery rate but depends on
the types of receivers, land use and road network structure, etc. In the following, section we discuss
the effect of scheduling preferences on the optimal timetable with passenger and freight services.

3. The Optimal Timetable for Track Sharing Services

In this section, we discuss the optimal timetable when both passenger and freight service are
provided, assuming inelastic demands and fixed number of trains. In practical railway operation
and literature of freight train scheduling (e.g., Behiri et al. [11]), either passenger or freight trains
are commonly departing in a concentrated time interval. Such service pattern does not necessarily
to be optimal in terms of social cost. A nontrivial sufficient condition when this type of service
pattern also hold in the optimal timetable is given in Proposition A1. Since the condition is not
collectively exhaustive, Proposition A1 does not establish the departure pattern for all types of
scheduling preference. Nevertheless, given the aforementioned practical tractability, the following
assumption that ensures a concentrated departure interval are necessary.

Assumption 1. In the optimal timetable, at the most one continuous freight (respective passenger) departure
interval exist between passenger (respective freight) departure intervals.

With Assumption 1, we define t0 as the end time of first passenger train departure interval,
namely the first service switching time from passenger to freight. Following the results in Table 1,

for given number of trains m, denote the optimal service start time as tη∗
1 (m) = t∗η −

γ
η
1

γ
η
1−β

η
1

T −
(m−1)h

2 , η = i, j. When the service start time holds its optimal value tη∗
1 (m), the scheduling delay

cost of the respective user group, is therefore only a function of t0. Define the set of departure
pattern P = {PFP, FPF}, where passenger (resp. freight) trains depart first in PFP (resp. FPF).
To economize on notation, for a given number of trains m, the optimal service start time ti∗

1 (m) is

written ti
1, and tj∗

1 (m) is written tj
1, unless the train number dependence is required for clarity. Table 2

summarizes our findings on how optimal departure patterns change with t0.



Sustainability 2020, 12, 2758 9 of 29

Table 2. Summary of departure intervals change with service switching time.

Passenger Interval(s) Freight Interval(s) Range of t0 Pattern

ti
1 < tj

1
[tj

1, t0] ∪ [t0 + mjh, tm′j
] [t0, t0 + (mi − 1)h] ∪ [tm′j

+ h, t1] [tj
1 + h, tj

1 + mih[ FPF

[t0 − (mi − 1)h, t0] [tj
1, t0 −mih] ∪ [t0 + h, tj

1′ ] [tj
1 + mih, tm′i

] PFP

ti
1 ≥ tj

1
[ti

1, t0] ∪ [t0 + mjh, ti
1′ ] [t0 + h, t0 + mjh] [ti

1 + h, ti
1 + m′ih] PFP

[t0 − (mi − 1)h, t0] ∪ [tm′i
+ h, ti

1′ ] [ti
1, t0 − (m′i − 1)h] ∪ [t0 + h, tm′i

] ]ti
1 + m′ih, tm′i

] FPF

We present the intuition in the case ti
1 ≥ tj

1. Figure 3 gives a graphical solution to the reduce form
optimal timetable problem by moving t0 along the time horizon. Consider mi trains are scheduled
to depart since the optimal service start time ti

1, and the last train leaves at ti
1′ = ti

1 + (mi − 1)h.
After a given service switching time t0 ∈ [ti

1, ti
1′ ], the transit operator “inserts” a number of mj fright

trains, and the rest of passenger trains follow. The optimal start time and end time of the entire service
is now ts

i = ti
1(mi + mj) and te

i = ti
1′(mi + mj), respectively. Note that ts

i and te
i are independent of

t0. The start and end time of freight train departure interval are denoted as ts
j and te

j , respectively,
in Figure 3. Now start to move t0 along the time horizon from ts

i + h, the earliest possible time with

only one passenger train departs before freight trains, as shown by the left panel of Figure 3. If ti
1 ≥ tj

1,

consider m′i as a fraction of mi. Such m′i exists that ti
1(mi +mj) = tj

1(m
′
i +mj). When mi is large enough,

then the latest possible time of freight train to leave before a passenger train is te
j of the middle panel of

Figure 3. To schedule any freight trains after te
j is more costly than before t0. Therefore the departure

pattern is switched to FPF when t0 > ti
1 + m′ih, with a fixed number of mi −m′i passenger trains leave

after te
j , as shown by the right panel of Figure 3. The logic in the case ti

1 < tj
1 is analogous: A portion of

freight trains m′j exists, which solves ti
1(mi + m′j) = tj

1(mi + mj).

G
en

er
al

iz
ed
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os

t

Time of day Time of day Time of day

Freight trainsPassenger trains

Figure 3. Graphical solution to optimal timetable by service switching time t0.

Next we show the conditions of deciding the uniqueness of optimal timetable and the departure
order therein. In the following two propositions in this subsection, we present the case that both
passenger and freight users have linear MUTs. Similar properties for constant-step MUT and mixing
cases can be derived in similar manner, which is not presented for conciseness.

Proposition 1. In the no-fare and optimal uniform fare regimes, the optimal timetable uniquely exists, if

(γi
1 − βi

1)
Ni
mi
− (γ

j
1 − β

j
1)s > 0, (19)

in which passenger trains are the second group to depart, freight trains the first and the third; otherwise the
uniqueness of the optimal timetable and the departure order are undefined.

Proof. See Appendix.
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Proposition 1 indicates that if passengers’ average usage across trains and the increasing rate of
MUT at the destination are sufficiently high, comparing with train capacity s and the increasing rate of
MUT for freight users γ1, it is optimal to schedule freight trains before and after the passenger trains.
This proposition is intuitive in the sense that keeping the trains with higher scheduling cost and higher
usage travel in an interval closer to t∗ generates higher social surplus.

Proposition 2. Assume the freight and passenger users have the same preferred arrival time, and their respective
MUTs at the bases are constant: ti

∗ = tj
∗, βi

1 = β
j
1 = 0. Then in social optimal fare regime, the optimal timetable

uniquely exists, if

γi
1

Ni
mi

+
h2(m2

i + 3mimj)(γ
i
1)

2

48λ
s− γ

j
1s < 0, (20)

in which freight trains are the second group to depart, the passenger trains the first and the third, or if

γi
1

Ni
mi
−

h2m2
i (γ

i
1)

2

24λ
s− γ

j
1s > 0, (21)

in which passenger trains are the second group to depart, freight trains the first and the third, otherwise the
uniqueness of the optimal timetable and departure order are undefined.

Proof. See Appendix.

Compared with the no-fare and optimal uniform fare regimes, the condition for freight trains
depart the second is tightened in the SO fare regime, due to the existence of variable revenue from
the time-varying fare in social optimal fare regime. The second terms in Equations (20) and (21)
are induced by the second order derivative of RVo with respect to t0. With this term presenting in
Equation (20), larger MUT at the workplace γ1 of the third term is required to maintain the inequality,
where freight users depart the second in the optimal timetable. Accordingly, higher average passenger
train usage is required to ensure passenger trains a departure interval closer to t∗.

4. Long Run Optimal Track Sharing Services with Elastic Demands

So far it has been assumed that both passenger and freight usage are exogenous. To admit practical
possibilities, we now assume that the passenger and freight demands, respectively, follow linear inverse
demand functions:

pη(Nη) = Aη − Bη Nη , η = i, j. (22)

With elastic demands, we now consider the optimal service in the long run when the public transit
operator maximizes social surplus by choosing the numbers of trains mi, mj, in addition to the optimal
train timetable discussed in the last section. The capacity costs per train of passenger and freight users
are assumed to be the same and are denoted by υ0. Other usage-dependent operating cost is ignored.
The assumption is practically valid, because the freight service on transit often utilize the same type of
train as the passengers’ [4]. In contrast to the passenger service, the operator can directly choose the
level of freight usage by the number of trains. There is no such regime that the number of trains is
overused, like passenger service in the no-fare regime. Let superscript r denote the pricing regime,
r = e, u, o, υ0 the operating cost per train, υ1 the fixed cost of transit service. Social surplus net of
capacity costs is

SSr =
∫ Ni

0
pi(n)dn−

(
δ̄i Ni +

λNi
2

mis
− RVr(t0, mi, mj)

)
+

∫ mjs

0
pj(n)dn−

(
δ̄jmjs + QCr(t0, mi, mj)

)
− (mi + mj)υ0 − υ1 ,

(23)
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where RVe = RVu = 0, and RVo is a function of t0, mi and mj, but RVr does not depend on passenger
usage. QCo = 0, while QCn > 0 and QCu > 0 is a function of mi, mj and t0. As discussed in Section 3,
δ̄i is a function of t0, mi and mj in the departure pattern PFP, and independent of mj in the FPF pattern.
Similarly, δ̄j does not depend on mi in PFP pattern, but varies with both t0, mi and mj in the FPF
pattern. To economize on notation, let RVr

mi
, RVr

mj
, RVr

t0
, QCr

mi
, QCr

mj
and QCr

t0
denote the derivatives

of RVr and QCr with respect to mi, mj and t0, respectively, and pη
Nη

the derivative of pη with respect
to Nη .

Proposition 3. First-order conditions for a maximum of social surplus are

For mi:

(
λNi

m2
i s
− ∂δ̄i

∂mi

)
Ni · Dr = υ0 − RVr

mi
+

∂δ̄j

∂mi
mjs + QCr

mi
, (24)

For mj: spj(mj) =
∂mj δ̄j

∂mj
s + QCr

mj
+ υ0 +

∂δ̄i

∂mj
Ni · Dr − RVr

mj
, (25)

For t0: − ∂δ̄i
∂t0

Ni · Dr =
∂δ̄j

∂t0
mjs + QCr

t0
− RVr

t0
, (26)

where Do =
pi

Ni
pi

Ni
− λ

mis
< 1 and De = Do = 1.

Proof. See Appendix.

Proposition 3 is a counterpart to Proposition 6 in de Palma et al. [16]. Consistent with their
findings, the marginal benefit of adding a passenger train, the LHS of Equation (24), is diluted by
Dn < 1 in the no-fare regime. To see this, note the LHS of Equation (24) that the terms in the
parenthesis are the marginal benefit from additional train if the usage remains fixed. Such benefit for
each of Ni users is the decrease in crowding cost λNi/mi

2s minus the increase in the marginal average
schedule delay cost ∂δ̄i/∂mi. The RHS of Equation (24) is the marginal cost of adding a passenger train.
The marginal cost can be affected by two factors, the optimal departure pattern and the pricing regimes.
First, if the optimal departure pattern is PFP, the marginal cost of an additional mi, conditional on t0

and mj, remains unchanged as in the case without FOT. To see this, note that the sum of the last two
terms in Equation (24) equals to zero in all pricing regimes. Second, if the optimal departure pattern
is FPF, then the marginal cost of freight users due to an additional passenger train is given by the
last two terms in the RHS of Equation (24), where mjs · ∂δ̄j/∂mi + QCr

mi
> 0, r = e, u, o. Conditional

on t0 and mj, the optimal mr∗
i for all the three pricing regimes is then less than when only passenger

service is provided. However the rankings of optimal mi between pricing regimes, me∗
i , mu∗

i and mo∗
i ,

are ambiguous in general. In particular, the conclusion from the passenger only case, where mu∗
i < mo∗

i
does not necessarily hold in the case with FOT. To see this, note that mjs · ∂δ̄j/∂mi−QCu

mi
can outweigh

RVo
mi

, depending on the number of both types of trains and the schedule delay costs of both types of
users. This effect is also observed in the numerical example of Section 6 by comparing the case with
and without FOT.

Equation (25) gives the social optimal number of freight trains. By directly setting the number of
trains, freight service is priced efficiently at marginal social cost in both regimes e and u, where queuing
cost equals to QCe. Conditional on Ni and mi, the generalized prices of freight users are the same in
regimes e and u. Since the freight users do not directly impose cost on passenger users, but the operator
does, the marginal cost of adding a freight trains consists of two parts. As the RHS of Equation (25),
the first two terms are the sum of marginal schedule delay cost and queuing cost of freight users
when adding a freight train. The third term gives the marginal capacity cost. The last two terms
of Equation (25) show the trade-offs made by the operator between providing two types of service,
where ∂δ̄i/∂mj · NiDr ≥ 0 is the marginal passengers’ schedule delay cost of an additional freight
train (the equality holds in FPF pattern), and RVr

mj
is the marginal effect of an additional freight train



Sustainability 2020, 12, 2758 12 of 29

on the variable revenue from the time-dependent passenger fare. The effect of departure patterns
on the marginal cost of adding a freight train is similar to the case in Equation (24). In FPF pattern,
the last two term of Equation (25) equal to zero, regardless of fare regime. The marginal cost of
an additional freight train remains unchanged as when only freight service is provided. Since QC is
removed in the SO, generalized price of freight users is effectively decreased, which indicates more
mj is needed. In the PFP pattern, given ∂δ̄i/∂mj · NiDr > 0, r = e, u, and RVr

mj
= 0, r = e, u the

marginal cost of an additional freight train is then increased in regime e and u. Conditional on t0 and
mi, the optimal m∗j decreases in no-fare and optimal uniform fare regime, compared with the case
when only freight service is provided. In the social optimal, however, the sign of RVo

mj
is undefined in

general, which leaves the RHS either increasing or decreasing when adding a freight train.
The LHS of Equation (26) gives the marginal average schedule delay cost of delaying service

switching time for each of Ni passenger users. In the no-fare regime, it is diluted by the same factor
Dn < 1, as in Equation (24). The RHS is the marginal total freight user travel cost minus the marginal
change of variable revenue of delaying service switching time. If the departure pattern is FPF,
both terms on the RHS are equal to zero in regime e and u; the optimal switching time t0 then holds at
the optimal service start time when only passenger service is provided, i.e., t0 = ti

1(mi) + (mi − 1)h.
While in the PFP pattern, or in regime o, such property does not necessarily hold.

5. Market Distortions

5.1. Private Operation of Rail Transit

We now turn to the case where railway is operated by a single private operator. First, consider the
operator provides only passenger service. The operator’s profit is π = pi(Ni)Ni − TCi −miυ0. Let the
superscript m denote the regime of monopoly private operation. Then the first-order condition for
profit maximization is

∂π

∂Ni
= pi

Ni
Ni + pi(Ni)−

∂TCm
i

∂Ni
= 0.

The generalized price of a passenger is now

pi(Ni) =
∂TCm

i
∂Ni

− pi
Ni

Ni. (27)

The first term is marginal social cost, which is the same as MSCo
i in Equation (9) for the SO regime.

Since the private cost of users is a pure loss of profit, the private operator internalizes the external
cost by charging passengers a time-variant fare, as a public operator does, and also a time invariant
monopoly markup τ̂i = −pi

Ni
Ni. The markup τ̂i is time-invariant, the passengers then distribute

themselves between trains in the same way as in the SO regime.
Given the load factor of freight train is fixed, we continue to consider the private operator provides

track sharing passenger and fright services in the long run. The operator can choose the numbers of
trains mi and mj, and the timetable. The profit maximization problem now turns to be

π = pi(Ni)Ni −
(

δ̄i Ni +
λNi

2

mis
− RVo(t0, mi, mj)

)
+ pj(mj)mjs−mjsδ̄j − (mi + mj)υ0. (28)

Compared with Equation (23), the queuing cost QC is now eliminated in Equation (28), since the
private operator internalizes the queuing cost by charging the carriers time-variant toll to maximizes
profit. Taking the derivative with respective to mj, and comparing with the first-order conditions of
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Equation (23) with respect to mj, one can find that the monopoly markup for freight users has the same
formulation as passengers’, which gives as

τ̂j = −pj
Nj

Nj. (29)

5.2. Mode Choice

So far it has been assumed that any alternatives to rail transit are priced at marginal social cost, so
that none pricing policies discussed is distorted by the congestion in other modes. Now we examine
how the congestion in an unpriced alternative mode affects optimal transit fares. To facilitate the
matters, we assume that the road congestion follows the flow congestion technology and treat transit
and road as perfect substitutes for all the users, both passenger and freight. Since the marginal utility
of time is homogeneous within each user group, we allow the corner solution of equilibrium to exist,
when the group with higher MUT use only one of the modes. Let the superscript R, A denote the
rail and road, respectively, NA the total volume on road, NA

i the number of passenger road trips, NA
j

the number of freight road trip, and NA = NA
i + NA

j . User costs for mode v, v = R, A, are noted as
general function Cv(Nv). Let T0 be the free flow travel time, and K the road capacity. The road travel
time and the corresponding travel cost on road are given as

TA = T0 +
NA

K
, CA

η = δη(TA), η = i, j.

Note that δη is now only a function of travel time TA, since no schedule delay cost is considered
by the assumption of flow congestion. In linear MUT specification, road user departs at their respective

optimal departure time t∗D(T
A) =

γ
η
1

γ
η
1−β

η
1

TA, η = i, j, while in constant step specification users incur

only travel time cost aηTA, η = i, j, with no schedule delay cost. The usages NR
i , NA

i , NR
j , and NA

j can

be solved by treating the identities Nη = NR
η + NA

η , η = i, j, and the equilibrium conditions of each
pricing regime as the constraints to Equation (23). In no-fare regime, the conditions are

pη(Nη) = CA
η (NA) = CR

η (NR
η ), η = i, j.

In the uniform fare regime, the equilibrium conditions are

pη(Nη) = CA
η (NA) = CR

η (NR
η ) + τu

η , η = i, j.

By finding first-order conditions for the constrained maximization problem of social surplus, it is
straightforward to show that the second-best optimal uniform fare is

τu
η = CR

η
′(NR

η )NR
η + τ, η = i, j, (30)

where

τ = −
(

NA
i CA

i
′(NA) + NA

j CA
j
′(NA)

) pi
Ni

pi
Ni
−
(

CA
i
′(NA) +

pi
Ni

pj
Nj

CA
j
′(NA)

) . (31)

The prime (′) symbols in Equations (30) and (31) denote first-order derivatives.
The time-independent part τ is a fraction of the optimal uniform toll for the road. It shows the extent
to which the second-best transit fare is adjusted to compensate for unpriced road traffic congestion.
In the SO regime, the same time-independent component can also be derived for the fare of each train.
Note that here the passenger and freight users share the same fare adjustment component, which is
subject to the congestion technology of road traffic.
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6. Numerical Analysis

The numerical analysis in this section is to show the working of the model and illustrate sensitivity
analysis properties. It is not the purpose of this paper to accurately describe a real-life network and
cost structure; we draw the empirical estimates from Hjorth et al. [26] for the parameters of passenger
MUTs and from de Palma et al. [16] for crowding costs to ensure the cost structure does not deviate too
much from real cases. Since the parameters of MUTs and crowding costs are synthetic from different
sources, all the units of monetary parameters are set to a numeraire with unit price 1. For the base
case, we assume that all users have linear MUT preferences. Table 3 summarizes the values of base
case parameters. By setting t∗i = 9.0, the parameters for passenger MUTs by Hjorth et al. [26] yield the
following values: βi

0 = 8.87, βi
1 = 0, γi

0 = −46.03 and γi
1 = 6.1, as shown in Table 3. The crowding

cost parameter λ is set to 4.4 per user according to de Palma et al. [16]. This combination of scheduling
and crowding cost parameters ensures that the crowding cost retain approximately 50 percent of
total travel cost, which is inline with empirical studies (e.g., Xie and Fukuda [27]). For freight users,
scheduling cost parameters are adjusted to retain in a reasonable percentage of passenger ones. β

j
0 is

set to 20 percent of βi
0, which ensures that when freight is transported in a middle-sized freight van

with capacity sv of 8 passenger equivalent, the value of travel time (VTT) is about 1.6 times as high as
a passenger car, which is within the range of the average ratios between light goods vehicle and car
commuter from worldwide estimates [28]. γ

j
0 is adjusted to−53.13 to yield the same PAT as passengers.

Other parameters of freight users’ MUTs and the preferred arrival time t∗j are assumed to be the same
as those of passengers’. Parameters of rail transit are: h = 0.05 [hour] , s = 1000 [passenger equivalent],
T = 0.7 [hour], υ0 = 2880 and υ1 = 214066, as shown in the middle panel of Table 3. To show the extent
of operating and capacity cost covered by transit fare, fare recovery rate ρ is defined as R

υ0(mi+mj)+υ1
,

where R is the total fare revenue. The operating cost parameter υ0 and υ1 are chosen to yield a 100
percent fare recovery rate in the optimal uniform fare regime when the transit serves only passengers,
which ensures the user total travel cost stays in a reasonable portion of operation cost. This setting is
adopted for easier comprehension and does not affect the result of interests. As a benchmark of pricing
regimes, the relative efficiency of regime r is defined as ωr = (SSr − SSe)/(SSo − SSe).

Table 3. Parameters for the base case.

User Perferences Rail Road
Passenger [16,26] Freight

t∗ 9.0 9.0 h [hour] 0.05 T0 [hour] 0.6
β0 8.87 1.77 s [passenger equiv.] 1000 K [vehicle/hour] 5000
β1 0 0 T [hour] 0.7 sv [passenger equiv.] 8
γ0 −46.03 −53.13 υ0 2880
γ1 6.1 6.1 υ1 214,066
λ 4.4 -

The parameters for road traffic are: T0 = 0.6 [hour] and K = 5000 [vehicle/hour]. As mentioned
in the setting for rail transit, we assume that a batch of parcels that occupies an area equivalent to
eight passengers are transported by each freight van on the road. The scheduling costs per user for both
passenger and freight are assume to be the same as in rail transit. In the base case, the road is efficiently
priced. Parameters Aη and Bη are adjusted to the values so as to keep the price elasticities equal to
−0.33 in optimal uniform regime of both passenger and fright users, which is a mid-range of empirical
estimates [29] for passenger transit users. Results of the base case are reported in Table 4, and the
result with the same setting as the base case but without FOT is shown in Appendix F. Throughout the
numerical analysis, the numbers of trains is assumed to be continuous variables. Sensitivity test result
by restricting number of trains to integer values shows only minor change on the social surplus and
the interest solutions. To be concise, the result is not presented here, but available from the authors
upon request.
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Table 4. Comparison of no-fare, optimal uniform fare, social optimal (SO) and private profit
maximization fare regimes: Base-case parameter values, freight on transit (FOT) allowed.

No-Fare (e) Optimal Uniform (u) Social Optimum (o) Profit Maximization (m)

mi 44.42 42.41 37.97 26.68
mj 15.01 16.0 30.11 20.25
N1

i 69,158 62,950 61,879 32,934
N2

i 0 0 0 0
N2

j 144,590 143,873 133,365 140,680
t0 9.39 9.34 9.22 8.94
pi 14.31 20.41 21.47 49.91
pj 13.89 13.82 12.88 13.55
Ri/user 0.0 6.53 7.19 37.82
Rj/user 6.14 6.3 6.13 9.66
Ri/train 0.0 9693.65 11,724.36 46,699.52
Rj/train 6144.48 6300.77 6134.44 9656.45
TCCi 486,494 421,193 445,166 179,157
SDCi 503,402 452,734 437,995 218,883
TCi 989,896 873,927 883,160 398,040
SDCj 96,337 97,993 203,094 78,768
QC 20,012 22,354 0 0
TCj 116,349 120,347 203,094 78,768
R 92,250 511,903 629,868 1,441,313
ρ 0.242 1.356 1.556 4.172
CSi/user 33.98 30.93 30.4 16.18
CSj/user 20.92 20.95 21.42 21.09
CS 5,688,173 5,296,337 5,383,390 3,926,984
SS 6,327,812 6,348,470 6,395,504 59,00916
Pattern FPF FPF FPF FPF
Total gain 0 20,658 67,692 −426,896
Gi 0 13,798 −5433 −521,696
Gj 0 6860 73,125 94,800
Gi/user 0.0 0.219 −0.088 −15.841
Gj/user 0.0 0.043 0.447 0.589
Rel.eff 0.0 0.305 1.0 −6.306

6.1. Pricing Regimes

6.1.1. No Fare

With no fare, the equilibrium private cost for passenger users is 14.31 with zero revenue. By design,
the generalized price for freight user is 13.89, in which 6.14 is charged as fare that covers average
marginal external cost. In total 69,158 passengers occupy 44.42 trains. The average usage per train is
thus 156 percent of train capacity. With the assumption of γi

1 = γ
j
1, an average usage higher than the

designated capacity results in the FPF departure pattern, as predicted by Proposition 1. Crowding cost
accounts for about 49 percent of passenger total travel cost, and schedule delay cost the rest. For freight
users, 83 percent of total travel cost is schedule delay cost, and 17 percent queuing cost.

6.1.2. Optimal Uniform Fare

With the optimal uniform fare, the private cost for passengers is increased to 20.41, and the
passenger usage drops to 62,950. Accordingly, two trains are removed from the timetable,
compared with no fare regime. Smaller number of passenger trains in the example, does not translate
to a later service switching time but an earlier one due to the increase of freight trains, as a result
of the slightly lowered pj = 13.82. The moving direction of t0 depends on the pi

Ni
and mi, given

λ and s fixed. To see the reason, recall the LHS of Equation (26), Ne
i > Nu

i and De < Du. This
inconsistency of inequality sign between regime e and u leaves the change of ∂δ̄i/∂t0 ambiguous.
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A natural finding is that the fare cover rate ρ is increased to above 1, in contrast to the case with no
freight service. The reason is twofold. First, the marginal external cost, which turns to the revenue of
operator, is charged to freight users in additional to the operation cost per user υ0/s and the private
travel cost δjk. Second, the existence of freight service increases the marginal cost of an additional
passenger train, then the optimal mi decreases, compared with the case without FOT. This is in line
with the conclusion of Proposition 3. Note that Ru

i = λNi/mis. A smaller mi does not necessarily
generate higher revenue, but possibly a lower one depending on the demand sensitivity. By design,
the relatively inelastic demand (−0.33) facilitates the increase of ρ when mi decreases.

6.1.3. Social Optimum

The social optimum utilizes more freight but less passenger trains, which causes the number
of passenger trains in the SO the least in regime e, u and o. The ranking of mu∗

i and mo∗
i is reversed,

compared with the case in which no FOT is allowed where mu∗
i < mo∗

i . In the example, the time-variant
fare removes the queuing cost of freight users, the demand of FOT is boosted to 30.11 trains, and the
cost recovery ratio further improved to 1.556. The RHS of Equation (24) then increases in the SO
regime, as mentioned in Section 4, the optimal mi in SO therefore decreases. Figure 4a highlights the
number of trains and users among different fare regimes. Two consequences are to be noted due to
the decreased mi. First, an earlier t0 = 9.22, which also contributes to a lower pj = 12.88, in addition
to the removal of QCu. Note that the changing direction of t0 is again conditional on the schedule
delay costs, pi

Ni
and mi, similar to the case of the optimal uniform regime. Second, a negative gain per

passenger user (−0.088). The consumer surplus of passenger users in the SO ranks the lowest among
regimes e, u and o, as shown in Figure 4b. The operator chooses to trade welfare gain from passenger
users for that of freight users, as the time-varying fare for freight users generates 0.447 welfare gain
per user by eliminating the queuing cost. Recall that in Equation (24), to add or to reduce the number
of passenger trains when switching the fare regime from optimal uniform to SO is decided by the sign
of mjs · ∂δ̄j/∂mi −QCu

mi
− RVo

mi
. Given the optimal departure pattern is FPF, the sum of the first two

terms mjs · ∂δ̄j/∂mi −QCu
mi

is proportional to (mi + mj)
2 in linear MUT specification, and RVo

mi
varies

with mi
4. The number of freight trains mj is relatively large so that the sign of the three terms turns

positive, as in the current example. One may expect that if the freight users have constant-step MUT,
where the first two terms vary with proportionally with mi + mj, it is less likely mjs · ∂δ̄j/∂mi exceeds
the sum of QCu

mi
and RVo

mi
, and the number of passenger trans increases in the SO regime. We verify

this expectation in Section 6.4.
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As just noted, the trade-off between providing passenger and freight train in the SO regime,
to a large extent, is determined by the relative size of demand of the two user groups. By the design of
the base case, the initial ratio between the number of passenger and freight trains in the no-fare regime
is about 3:1. Ultimately, if the freight demand is small enough, such trade-offs become unnecessary,
and the resulting optimal number of passenger train would eventually approach to the case with only
passenger service, where the SO regime calls for more passenger trains than the optimal uniform
regime. However, our result suggests that the optimal number of passenger trains can be reduced in
the SO regime, given reasonable level of freight demand. The passengers are likely to be worse-off in
the SO regime than in both no-fare and optimal uniform fare regime, which contradict to conclusion of
the case with only passenger service. Considering the freight users have the highest consumer surplus
(21.42) in the SO regime, it is clear that an equal rebate of the fare to all passenger and freight users
may not necessarily be a Pareto improvement.

6.1.4. Private Profit Maximization

As discussed in Section 5.1, the private operator charges users a monopoly markup decided by the
multiplication of the demand sensitivity and the demand level of the respective user group. The results
show that the generalized price of passengers and freight users in profit maximization regime is
increased to 49.91 and 13.55, respectively, along with a 46% drop in passenger usage and 33% in
freight. In contrast to the similar fare levels for the two user groups in the optimal uniform fare regime,
the average fare of passenger (37.82) is now about 4 times as high as the freight fare (9.66). The distorted
generalized price causes the average consumer surplus of passengers to drop significantly to 16.18,
well below that of all the fare regimes by a public operator. By contrast, the average consumer surplus
of freight users almost remains unchanged compared with the SO regime. The reason is that lower
supply in the number of passenger trains lessens the scheduling cost of freight users, which balances
freight users’ loss in consumer surplus. As a result of the lower scheduling cost, the welfare gain from
freight users in profit maximization is even higher than in the SO regime, despite of the welfare loss of
passengers greatly increases. In the following subsection, we continue to investigate how the welfare
loss due to private rail operation can be affected by road pricing.

6.2. Unpriced Road Traffic Congestion

To compare the relative welfare loss by the unpriced road traffic congestion and by the private
rail operation, the relative efficiency is recalculated by treating the second-best optimal transit fare
as the base scenario, but not the no-fare regime in the last section. Note o′ and m′ as the optimal
and profit maximization transit fare regimes when the road is not tolled. The relative efficiency of
regime r is given as Wr = (SSr − SSo′)/(SSo − SSo′). Negative relative efficiency indicates a lower
surplus than in the base regime o′. The negative relative efficiencies in Table 5 show that private rail
operation generate more welfare loss than the absence of road toll. The sizes of the relative efficiency
relate, to a lager extent, with the share of the two modes. As per the design of the base case, the rail
transit shares 41 percent of the total passenger and freight demand in the SO regime. Such share is
not extreme but enough to show the possibility that the private operation in rail can incur greater
deadweight loss than the unpriced road congestion.

In the right column of Table 5, the figure indicates that the welfare loss due to private rail operation
also depends on whether the road is efficiently priced. One may expect that the pricing on road corrects
part of the distortion from private rail operation, our result, however, suggests that the welfare loss,
when the road toll is in place, is larger. One of the reason is that the mode choice equilibrium in our
example is a corner solution, where passenger users only use the rail. The deadweight loss from road
traffic congestion comprises a smaller share of the total loss of welfare, compared with an interior
equilibrium where passengers use both of the modes. Another reason is that the welfare loss also
depends on how much the FOT demand decreases when the generalized price increased in the best
pricing regime. As the results in Section 6.1.4, the freight service generates higher welfare gain in the
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private profit maximization than in the SO fare regime, due to the lower supply of passenger trains,
which implies that lower freight transit demand can lead to lower social surplus. We continue to
analyze this effect in the next subsection.

Table 5. The relative efficiency in different types of market distortion (absolute level of social surplus
given in the parentheses).

Public Rail Private Rail

No road toll 0 (6,217,436) −1.18 (6,007,346)
With road toll 1 (6,395,504) −1.78 (5,900,916)

6.3. Demand Elasticity

The base case in the Section 6.1.3 shows that the operator chooses to supply less number of
passenger trains in the SO regime, which is a result of lowered generalized price of freight users.
Given the freight demand elasticity depends on various factors, including upper stream transportation
mode, parcel type, receivers’ preferences and so on [30], this naturally raises a question of how the
demand elasticity of freight users can affect such trade-offs between supplying passenger and freight
trains. Given the demand for passenger transit tends to be inelastic [29], we focus the sensitivity
analysis on freight demand elasticity. To maintain the usage at the optimal uniform regime in the base
case, the parameter Aη and Bη , η = i, j are adjusted with demand elasticity.

The changes of number of trains with freight demand elasticity are presented in Figure 5.
As expected, the number of freight trains utilized in the SO regime decreases with the elasticity.
This is because the freight users become insensitive to the decrease in generalized price by the removal
of queuing cost. With the demand hold fixed in the optimal uniform regime, the gap of the number of
freight trains between the SO and the optimal uniform regime gradually decreases. It is less costly to
supply a passenger train when the number of freight trains decreases. The number of passenger trains
thus slightly increases in the SO regime. In private operation, we find that the number of trains are
more sensitive to the price elasticity. Since we maintain the demand at the optimal uniform regime,
the increase in markups, which leads to the decrease of number of freight trains, is a straightforward
result of increasing in the demand sensitivity parameter Bj. It is noteworthy that in the no fare regime
the freight users are priced in the same way as in the optimal uniform, and the difference of the number
of freight trains between the two fare regimes owes to the efficient pricing of passenger train usage in
the optimal uniform regime. As the price elasticity of passengers remains unchanged in the experiment,
the difference is not affected when the price elasticity of freight users varies. All in all, we find the
total number of trains is higher in the SO regime than in the optimal uniform regime, regardless of
the price elasticity of freight demand. The finding is in line with the case for only passenger service,
where the optimal time-varying transit fare calls for more trains than the optimal uniform fare. All the
changes in consumer surplus increase as the elasticity decreases except for the freight users in the
profit maximization fare regime.

Figure 6 shows how the welfare gains vary with freight demand elasticity. The gain from freight
users falls and that from passenger users increase when freight demand becomes inelastic. Since less
elastic demand means less deadweight loss from queuing in the optimal uniform fare regime, it is less
beneficial to implement the social optimal fare. Recall that the gain from passenger SO fare is only
a function of mi, and that mi increases in Figure 5, one could explain the increase of welfare gain from
passengers. Given the total gain in regime o slightly decreases and the welfare gain in regime u is
otherwise unaffected, the relative efficiency of regime u increases.
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Figure 5. Influence of the price elasticity of freight demand on the optimal number of trains.
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Figure 6. Influence of the price elasticity of freight demand on welfare gain.

The changes of average consumer surplus compared with the regime e are shown in Figure 7a,b,
respectively, for passenger and freight users. All the changes in consumer surplus increase as freight
demand becomes less elastic, except for the freight users in profit maximization fare regime. The reason
is that the increased consumer surplus of less elastic demand is converted to producer surplus through
the monopoly markup τ̂. Freight users are even worse-off than regime e, as the elasticity drops below
−0.2. Such dwindled and even negative change in average consumer surplus of freight users due to
the profit maximization fare is indeed accompanied by a mitigated loss in average consumer surplus
of passenger users; the absolute change, however, remains negative, compared with the no-fare regime.
In the SO regime, the increase of freight users’ consumer surplus change is enlarged as a result of
higher willingness to pay. The drop in consumer surplus of passenger users is also slightly increased,
though remains negative, because the less elastic freight demand calls for smaller increase of freight
trains and then lower marginal cost of adding a passenger train in the SO regime when the queuing
cost is removed. It is now clear that our finding from the base case, where passenger transit user
is prone to be worse-off in the social optimal fare regime than in the no fare regime, remains valid
when the price elasticity of freight demand varies, and when the initial share of freight demand is
relatively significant.

Next we expect that the second best FOT fare decreases when freight demand becomes inelastic,
as derived by Equation (31). The average revenue per user in the best and the second best optimal
time-variant fares are presented in Figure 8, where widened difference can be found between the
best and the second best fares, which corresponds to τi and τ j, as the elasticity decreases. A less
straightforward result is that the increase in the average revenue per passenger user with the
second-best fare, as shown by the line on the top, compared with the lower one for the best SO
fare. The reason can be seen by checking the share of freight and passenger trains. If the elasticity hold
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the same as the base case (−0.33), for example, the ratio between freight and passenger trains is as
high as 1.61, compared with about 0.79 in the SO regime of base case. The boosted supply in freight
trains entails very high marginal cost of supplying a passenger train, which turns to outweigh the fare
reduction due to the second-best fare adjustment τ.
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Figure 7. Average consumer surplus change.
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Figure 8. Best and second-best transit fares.

Finally, we examine how the welfare loss due to private rail operation is affected by freight
demand elasticity. In the last subsection, the result shows that the effective road pricing leads to
an lower social surplus than without road pricing in the base case setting of price elasticity. Here we
observe the ranking is reversed when the price elasticity of freight demand is relatively high, as shown
in Figure 9. As the freight demand becomes elastic, the welfare loss from untolled road increases,
and the market power that a private operator can exploit become less, the deadweight loss from road
congestion then turns to be a more significant source of loss compared with the private rail operation.
Therefore, for relatively elastic demand, the private rail operation with an untolled road tends to
generates more welfare loss than that with a tolled road.
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Figure 9. Welfare loss from private rail operation with and without road toll.

6.4. Scheduling Preferences

To illustrating the effect of scheduling preferences regarding welfare gain and optimal service,
we consider four types of heterogeneity, linear MUT, constant-step MUT and two mixed cases.
For passengers, the parameters of constant-step MUTs for passengers are: α = 8.87, β = 7.45, γ = 11.33.
The MUT parameters for freight users are again set to 20 percent of passengers’. The Parameters of
linear MUTs for both types of user are set as the same as the base case. Since the total scheduling cost
of each type of user varies with their respective specifications of scheduling preferences, parameter Aη

and Bη are again calibrated by maintaining the demand in the optimal uniform fare regime, so that all
the four cases have the same price elasticities −0.33 in the regime u. The welfare gains and the optimal
number of trains in regime o and u are presented in Table 6.

In Section 6.1.3, we anticipate that if the freight user have constant-step MUT, the number of
passenger trains in the SO regime may not be less than the optimal uniform regime. Our experiment
here indeed shows expected result. In the combinations of scheduling “Step-Step” and “Linear-Step”,
where freight users have constant-step MUT, the optimal number of passenger trains in the SO regime
increases, i.e., mo

j > mu
j . This is because that the average schedule delay cost of freight users varies

more slowly with the number of trains than with linear MUT, the operator does not have to trade
the number of passenger trains for that of freight trains any more. Consequently, the average gain
per passenger, which is negative in the base case due to the trade-off between the two types of trains,
now turns to positive in the two combinations where freight users have constant-step MUT. It is also
noteworthy that as result of removing deadweight loss from both passenger and freight users, the total
number of trains in the SO regime is larger than the optimal uniform regime in all the combinations
of preferences. Another finding is that if either user group has constant-step MUT, the total welfare
gain is higher than the case where both groups have linear MUTs. This is in line with the intuition that
the users with constant-step MUT tend to have a more concentrated departure pattern in the no-fare
regime, it is then more gainful to redistribute the passengers and the freight users to less congested
departure times by reducing the crowding cost of passengers and the queuing cost of freight users,
respectively.

Table 6. The welfare gains and the optimal numbers of trains in various types of scheduling preferences.

Goe Goe
i /User Goe

j /User mo
i mo

j mu
i mu

j

Linear-Linear 67,692 −0.089 0.448 37.96 30.15 42.41 16.00
Step-Step 362,054 4.797 0.827 15.72 54.35 12.06 50.63

Linear-Step 111,213 1.981 −0.068 54.40 96.15 43.38 63.87
Step-Linear 193,532 3.694 0.054 16.52 39.03 23.56 22.18
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7. Conclusions

We have analyzed the passenger and freight transit users’ scheduling behavior and their
interaction with operator’s fare regimes. Users’ departure time choices are depicted by a transit
crowding model for passenger and a deterministic bottleneck model for freight users, respectively.

Under plausible assumptions, we find that the time-varying social optimal fare can make
passenger users worse off, but freight users better off, which suggests the fare rebate should not
be equal in order to achieve Pareto improvement. The social optimal time-varying fare also calls for
more trains than other inefficient fare regimes. The finding is in line with the conclusion when only
passenger service is provided, but is contradictory to the conventional understanding gained from
road traffic where capacity investments and efficient pricing are substitutes for mitigating congestion.
In particular, we find that the number of passenger trains can be reduced in the social optimal fare
regime to allow more freight trains, if freight demand is large enough or if freight users have linear
MUT preferences.

We show that the congestion toll on an alternative road plays an important role in deciding transit
fare. A public transit operator has to adjust the fare level to a lower level in order to compensate
the uninternalized congestion on the road. While for a private operator, the loss from monopoly
markup is related with whether road pricing is in place. If the freight demand is relatively inelastic,
the implementation of road toll can lead to further loss of welfare in private rail operation. Such effect
should be considered in transit fare policy assessment.

Our findings are subject to several caveats, which require future work to validate if they are
directly applicable in practice. First, in this paper we assume that the number of departure intervals
in the optimal timetable is limited. For each service type, only single continuous service window is
allowed between another type of service. However, the optimal timetable of track sharing services
depends on how many number of freight service windows are allowed in a timetable of passenger
trains. The degree of heterogeneity in scheduling preferences of users would actually affect the optimal
number of departure intervals. It can be anticipated that low degree of heterogeneity tends to have
less separated departure times, then the number of departure intervals in the optimal timetable would
increase. In such cases, it is possible that with our single service window assumption the operating cost
and the welfare gain of fare regimes are overestimated. We generally did not consider the case when the
assumption of single service window is lifted, but we do conduct an experiment in which the optimal
timetable problem is modeled as an mixed integer non-linear programming (MINLP), as discussed by
Carey et al. [8] and Behiri et al. [11]. While the result shows that the single service window is still the
optimal departure pattern when the parameters of scheduling preferences slightly violate the condition
of proposition A1, it is in no sense collectively exhaustive. Without the assumption of single service
window, a problem specific MINLP solving algorithm is complex, as indicated by Caprara et al. [9]
and Cacchiani and Toth [10]. To include the trip-timing choice of users in the model would make
the computation of the optimal timetable and the number of trains more difficult. It would be more
appropriate to be investigated in a separate study.

Second, our numerical analysis is solely based on synthetic data. On one hand, we assume
passenger crowding cost to be linear. Despite the fact that several estimates from European
countries [31,32] support this assumption, the crowding cost function ultimately become very steep
when the density of passenger approaches the physical limit. Empirical study from Japanese survey
data [27] shows that the crowding cost function is approximately quadratic. As the shape of crowding
cost function affects welfare gain of passenger fare [16], it is natural to extend the discussion of
welfare distributional effect between passenger and freight users to other shapes of crowding cost
function. On the other hand, the magnitude of these estimates can affect the optimal number of
passenger and freight trains for the respective type of service, although the general requirement of
more trains in the social optimal fare regime does not like to change. More robust conclusions rely on
the precise estimation of user preferences. Future works that obtain such estimates require specific
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care in the survey design where the FOT service is provided, and would validate the robustness of our
current conclusion.

Third, we assume that the operating cost is a linear function of number of trains and that the
capacity per train is fixed. As indicated by Kraus and Yoshida [14], variable train capacity leads to
variable operating cost per train. The capacity cost per train can also be a linear function, compared
with a constant in our assumption. Given the fact that increasing the capacity of existing trains can
be more convenient for users than an additional train, extensions that allow variable train capacity
adds another dimension to the long run optimal service problem. It would provide further insight
on the optimal fleet capacity in different fare regimes, and permit consideration of self-financing
transit capacity with track sharing freight service provided, as the analysis by de Palma et al. [16] for
passenger service.

Fourth, scheduling and crowding preferences are assumed to be homogeneous within user
group. If we allow passengers and freight users to differ their scheduling and crowding preferences,
the current solution of mode choice equilibrium would change, and may result in equity implications
different from our current findings. In addition, with heterogeneous users, it is more likely that the
time window for the daily maintenance of the rail transit operator is affected. This adds the scheduling
preference of the operator, which is different from the users’, to the optimal timetable problem. It also
brings more challenges to future work that develops comprehensive MINLP solving algorithms.

Finally, we have considered deterministic travel time, and the service reliability of both modes is
ignored. Since rail transit and road generally provide different levels of service reliability, the mode
choice behavior of the user can be affected if their valuation of travel time is reliability heterogeneous,
and the effect of reliability become significant in large networks. To incorporate the effect of service
reliability in the model is not a simple extension of the current analysis, and would require particular
attention in the trade-offs between tractability and realism.
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The following abbreviations are used in this manuscript:
FOT Freight on Transit
MUT Marginal Utility of Time
PAT Preferred Arrival Time
SO Social Optimal
UE User Equilibrium
VTT Value of Travel Time
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Appendix A. Notations

Table A1. Summary list of main notations.

Notations Description

A Maximum willingness to pay
B Demand sensitivity parameter
c Private travel cost
CS Consumer surplus
e Superscript for no-fare regime
g Crowding cost
G Welfare gain
i Subscript(or superscript) for passenger user
j Subscript(or superscript) for freight user
k Index of train
K Road capacity (passenger equivalent)
mi Number of passenger trains
mj Number of freight trains
m Superscript for private profit maximization fare regime
MSC Marginal Social Cost
n Number of users on a train
Ni Total passenger demand
Nj Total freight demand (passenger equivalent)
o Superscript for social optimal fare regime
p Generalized price
QC Queuing cost
r Index of fare regimes
RV Variable fare revenue from time-variant toll
s Train capacity (passenger equivalent)
SDC Schedule delay cost
SS Social surplus
t0 Service switching time from passenger to freight
t1 Start time of transit service
tk Departure time of train k
t∗ Preferred arrival time
T Transit travel time (hour)
T0 Free flow travel time on road (hour)
TC Total travel cost net of fare
u Superscript for the optimal uniform fare regime
λ Parameter of crowding cost
δk Scheduling cost of train k
δ̄ Average scheduling cost of all trains
τk Fare of train k
τ̂ Monoploy markup
τ̄ Time invariant part of the second-best transit fare
η Index of user type

Appendix B. Sufficient Condition for a Concentrated Departure Interval in the Optimal Timetable

Consider the scheduling cost of a passenger user δi and of a freight user δj depend only on t ∈ T,
where T denotes the time horizon of interest. Assume that the numbers of trains are fixed at mi and
mj, respectively, and that the demands of both user groups are inelastic. Let Z = {1, 2, 3, . . . , m}
be the set of trains, where m = mi + mj. According to Table 2, we further define the ranges of

t0 when the optimal departure pattern is PFP as F1 = {t0 | tj
1 + mih ≤ t0 ≤ tm′i

, ti
1 < tj

1} and

F2 = {t0 | ti
1 + h ≤ t0 ≤ ti

1 + m′ih, ti
1 ≥ tj

1}, and the ranges of t0 when the optimal departure pattern

is FPF as P1 = {t0 | tj
1 + h ≤ t0 < tj

1 + mih, ti
1 < tj

1} and P2 = {t0 | ti
1 + m′ih < t0 ≤ tm′i

, ti
1 ≥ tj

1}.
Denote ts as the time when the first train leaves after the service type is switched:
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ts =

{
tj∗
1 (mi + mj), t0 ∈ F1 ∪ F2

ti∗
1 (mi + mj), t0 ∈ P1 ∪ P2

The following proposition gives a non-trivial sufficient condition for a concentrated departure
interval hold in the optimal timetable for the SO fare regime.

Proposition A1. Assume that t∗i = t∗j . In the optimal timetable of SO fare regime, at the most one freight
(respective passenger) departure interval exists between passenger (respective freight) departure intervals, if

∀mi, mj > 0, ∀t 6= ts :
dδi(t)

dt

(
Ni
mi

+ s
δ̄i − δi(t∗i )

2λ

)
− s

dδj(t)
dt

≷ 0.

Proof. Assume first that only one freight departure interval exist between passenger departure
intervals in the optimal timetable. The total travel cost of the two user groups is

TCo = δ̄i Ni +
λNi

2

mis
− RVo + mjsδ̄j.

There is a passenger train leaves at the optimal service switching time tk̂, call it train k̂.
Now consider that the departure time of train k̂ is delayed to tk̂ + h. In order to minimize the total
scheduling cost without violating the constraint that only one train is scheduled during each headway
h, train k̂ + 1 is advanced to tk̂, which is the first freight in the timetable. If the headway h is small,
the change of TC gives as the derivative of TC with respect to tk̂:

∂TCo

∂tk̂
= Ni

∂δ̄i
∂tk̂
− ∂RVr

∂tk̂
+ mjs

∂δ̄j

∂tk̂

=
dδi(tk̂)

dtk̂

(
Ni
mi

+ s
δ̄i − δi(tk̂)

2λ

)
− s

d δj(tk̂)

dtk̂
. (A1)

The second equality holds because only train k̂ and k̂ + 1 are affected due to the change. Note that
the sign of the last term is reversed, as the departure time is advanced from tk̂ + h to tk̂. Note that
dδi(tk̂)

dtk̂

(
Ni
mi

+ s δ̄i−δi(tk̂)
2λ

)
≥ dδi(tk̂)

dtk̂

(
Ni
mi

+ s δ̄i−δi(t∗i )
2λ

)
, then if ∀tk̂ ∈ T, dδi(tk̂)

dtk̂

(
Ni
mi

+ s δ̄i−δi(t∗i )
2λ

)
− s

dδj(tk̂)

dtk̂
> 0,

∂TCo

∂tk̂
> 0 must hold. Note that any combinations of the departure patterns with more than one

freight departure intervals has to delay not only train k̂, but also the trains before k̂. Then compared
with the pattern with single freight departure interval ∂TCo

∂tk̂
is the minimum change among all the

departure patterns with more than one freight departure intervals between ti
1(mi +mj) and ti

1′(mi +mj).
Therefore, ∀tk̂ ∈ T, ∂TCo

∂tk̂
> 0 ensures that the patterns with multiple freight departure intervals have

strictly higher total travel cost than the optimal timetable with single freight departure interval.
Similar result can be found in The case with only one passenger departure interval exist between
freight departure intervals.

Appendix C. Proof of Proposition 1

In the no-fare and optimal uniform regimes, the total travel cost of the two user groups is given as:

TCr(t0) = δ̄i(t0)Ni +
λNi

2

mis
+ mjsδ̄j(t0) + QCr(t0), r = e, u

To avoid notation clutter, the superscript r for fare regimes is suppressed. If t0 ∈ P1 ∪ P2,
passenger trains are the second group to depart in the timetable. The second derivative of TC is
TC′′(t0) = (γi

1 − βi
1)Ni > 0. Then TC(t0) is convex on P1 ∪ P2, and TC has unique local minimum on
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P1 ∪ P2 . If t0 ∈ F1 ∪ F2, freight trains are the second group to depart. The second derivative of TC
is TC′′(t0) = −(γi

1 − βi
1)

mj
mi

Ni + (γ
j
1 − β

j
1)mjs. If TC′′(t0) < 0, TC(t0) is concave on F1 ∪ F2, and TC

has unique local maximum on F1 ∪ F2. Given TC(t0) is continuous on t0 ∈ T, any t0 ∈ F1 ∪ F2 results
larger TC(t0) than t0 ∈ P1 ∪ P2. Then the local minimum of TC(t0) on P1 ∪ P2 is also the unique global
minimum on t0 ∈ T.

Appendix D. Proof of Proposition 2

In the SO regime, the total travel cost of the two user groups is given as:

TCo(t0) = δ̄i(t0)Ni +
λNi

2

mis
− RVo(t0) + mjsδ̄j(t0).

To avoid notation clutter, the superscript for fare regime is suppressed. If t0 ∈ F1 ∪ F2,
freight trains are the second group to depart. Given t∗i = t∗j , and βi

1 = β
j
1 = 0, the second derivative

of TC is TC′′(t0) = −γi
1

Ni
mi

mj − d2RVo

dt0
2 + γ

j
1mjs. Note that d2RVo

dt0
2 is concave and has the maximum

h2(m2
i +3mimj)γ

i
1

2

48λ > 0. Then if

γi
1

Ni
mi

+
h2(m2

i + 3mimj)(γ
i
1)

2

48λ
s− γ

j
1s < 0, (A2)

TC(t0) is convex, and has a local minimum on F1 ∪ F2. If t0 ∈ P1 ∪ P2, passenger trains are

the second group to depart. The second derivative of TC is TC′′(t0) = −γi
1Ni +

h2m3
i (γ

i
1)

2

24λ s− γ
j
1mis.

Then if

γi
1

Ni
mi
−

h2m2
i (γ

i
1)

2

24λ
s− γ

j
1s > 0, (A3)

TC(t0) is convex, and has a local minimum on P1 ∪ P2. Since the LHS of Equation (A3) must be
negative if Equation (A2) holds and vice versa, the uniqueness the optimal timetable is assured if either
the equality in Equation (A2) or (A3) holds.

Appendix E. Proof of Proposition 3

First-order conditions for a maximum of SSr are

∂SSr

∂mi
= pi(Ni)

∂Ni
∂mi
−
(

∂δ̄i
∂mi
− λNi

2

mi
2s

+

(
δ̄i +

2λNi
mis

)
∂N
∂mi

+ υ0

)
+ RVr

mi
−

∂δ̄j

∂mi
mjs + QCr

mi
= 0, (A4)

∂SSr

∂mj
= pi(Ni)

∂Ni
∂mj
−
(

∂δ̄i
∂mj

Ni + δ̄i
∂Ni
∂mj

+
2λNi
mis

∂Ni
∂mj
− RVr

mj

)
+ spj(mj)−

∂mj δ̄j

∂mj
s−QCr

mj
− υ0 = 0, (A5)

∂SSr

∂t0
= pi(Ni)

∂Ni
∂t0
−
(

∂δ̄i
∂t0

Ni + δ̄i
∂Ni
∂t0

+
2λNi
mis

∂Ni
∂t0
− RVr

t0

)
+

∂δ̄j

∂t0
mjs + QCr

t0
= 0. (A6)

The private cost of passenger usage is given by

pi(Ni) = δ̄i +
λNi
mis

+ τi. (A7)

The fare, τi depends on the pricing regime. To facilitate the generality of the formation, we assume
for the moment that τi can depend on N and mi. Equation (A7) can be written

pi(Ni)−
(

δ̄i +
2λNi
mis

= τi −
λNi
mis

)
. (A8)
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Substituting (A8) into (A4), (A5) and (A6) yields:(
λNi

m2
i s
− ∂δ̄i

∂mi

)
Ni +

(
τi −

λNi
mis

)
∂Ni
∂mi
− υ0 + RVr

mi
−

∂δ̄j

∂mi
mjs + QCr

mi
= 0, (A9)

spj(mj)−
∂mj δ̄j

∂mj
s−QCr

mj
− υ0 −

∂δ̄i

∂mj
Ni +

(
τi −

λNi
mis

)
∂Ni
∂mj

+ RVr
mj

= 0, (A10)

− ∂δ̄i
∂t0

Ni +

(
τi −

λNi
mis

)
∂Ni
∂t0
−

∂δ̄j

∂t0
mjs−QCr

t0
+ RVr

t0
= 0. (A11)

The passenger demand derivatives are obtained by totally differentiating Equation (A7):

∂Ni
∂mi

=

δ̄i
∂mi
− λNi

mi
2s +

dτi
dmi

pi
Ni
− λ

mis
− dτi

dNi

, (A12)

∂Ni
∂mj

=

∂δ̄i
∂mj

pi
Ni
− λ

mis
− dτi

dNi

, (A13)

∂Ni
∂t0

=

∂δ̄i
∂t0

pi
Ni
− λ

mis
− dτi

dNi

. (A14)

Substituting Equations (A12)–(A14) into Equations (A4)–(A6), it is possible to show after some
algebra that the first-order conditions has the formation given as Equations (24)–(26).

Appendix F. Base Case without FOT

Table A2. Comparison of no-fare, optimal uniform fare, SO and private profit maximization fare
regimes: Base-case parameter values, no FOT allowed.

No-Fare (e) Optimal Uniform (u) Social Optimum (o) Profit Maximization (m)

mi 52.67 51.13 53.46 34.68
mj 0.0 0.0 0.0 0.0
N1

i 69,687 64,430 64,717 33,811
N2

i 0 0 0 0
N2

j 155,817 155,821 155,815 156,164
t0 8.5 8.5 8.5 8.5
pi 13.79 18.96 18.68 49.05
pj 14.89 14.89 14.89 14.8
Ri/user 0.0 5.54 5.45 37.81
Ri/train 0.0 6986.61 6597.05 36,868.28
TCCi 435,447 382,888 352,706 145,976
SDCi 525,772 481,427 503,340 233,930
TCi 961,219 864,314 856,046 379,906
R 0 357,232 352,706 1,278,497
ρ 0.0 1.0 0.97 4.109
CSi/user 34.24 31.66 31.8 16.61
CSj/user 20.42 20.42 20.42 20.46
CS 5,567,778 5,221,522 5,239,463 3,757,527
SS 6,283,187 6,298,315 6,305,445 5,787,609
Total gain 0 15,128 22,258 −495,578
Gi/user 0.0 0.235 0.344 −14.657
Rel.eff 0.0 0.68 1.0 −22.265
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