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Abstract: To address climate change, the carbon emission trading scheme has become one of the
main measures to achieve emission reduction goals. One of the core problems in constructing the
carbon emissions trading market is determining carbon emissions trading prices. The scientific
nature of carbon emissions pricing determines the effectiveness of market regulation. Research on the
influencing factors and heterogeneous tail distribution of carbon prices can increase the accuracy of
carbon pricing, which is particularly important for the development of the carbon emissions trading
market. The current studies have some limitations and lack heterogeneous tail description. We employ
the arbitrage pricing theory-standardized standard asymmetric exponential power distribution model
to analyze China’s regional carbon emissions trading price and use a genetic algorithm to solve linear
programming. The results confirm the theoretical results and efficiency of the proposed algorithm.
First, the new model can capture the skewness, fat-tailed distribution, and asymmetric effects of
China’s regional carbon emissions trading price. Second, the macroeconomy, similar products, energy
price, and exchange rate influence the carbon price fluctuation; investors’ behavior plays an important
role in the heterogeneous tail distribution of carbon price. The findings provide references for the
government to take appropriate measures to promote carbon emission reduction and improve the
effectiveness of China’s carbon market. Therefore, our findings can help enhance emission reduction
and achieve sustainable development of a low-carbon environment.

Keywords: China’s regional carbon price; influencing factors; heterogeneous tail distribution;
standardized standard asymmetric exponential power distribution

1. Introduction

Climate change is induced in part by carbon dioxide emissions. Mitigation of carbon dioxide
(CO2) emissions has become an urgent environmental goal. The Paris Agreement was adopted in 2015.
The Paris Agreement is the first international climate agreement that extends mitigation obligations
to all countries. The low-carbon economy became a top agenda for many countries after the Paris
meeting. Accordingly, about 100 parties, accounting for 58% of global greenhouse gas (GHG) emission,
have already implemented some policy measures to decrease CO2 emissions. The emission trading
scheme has become the most effective emission reduction method. More and more countries and
regions have turned to the cap-and-trade scheme to control carbon emissions.
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China is the largest GHG emissions producer and energy consumer in the world. Hence, reducing
China’s GHG emissions is important for the world. To reduce carbon emissions, China has gradually
established regional carbon markets. By the end of 2014, Shenzhen, Beijing, Shanghai, and other
regional emissions trading markets had been implemented. At the Paris climate conference, China
announced its nationally determined contributions. To achieve the mitigation target, China launched
the national carbon emissions trading system. Since the power generation industry contributes 40% of
the carbon emissions, China launched the national carbon emissions trading system only in the power
generation industry in 2017.

The development of China’s carbon market can improve low-carbon economic progress. One of
the core problems with developing a carbon emissions trading market is carbon emissions trading
pricing. Carbon pricing has become a promising research area. Carbon pricing is important for
both policymakers and market participants. Increasing the accuracy of carbon pricing can attract
more investors to the trading market, which would, in turn, motivate policymakers to improve the
market mechanism. COVID-19 has brought huge fluctuations to the financial market, having an
important impact on China’s carbon price, especially in its heterogeneous tail distribution, increasing
the challenge of accurately pricing carbon. Therefore, we propose a new method to increase prediction
precision for China’s carbon pricing. The findings can accelerate the establishment of a unified national
carbon market, contributing to the effective control and gradual reduction of China’s carbon emissions
and promote green, low-carbon, and sustainable development.

The remaining paper is organized as follows: Section 2 briefly reviews the literature on carbon
pricing. Section 3 constructs a suitable model for China’s carbon emissions pricing, which not only
identifies the driver of carbon prices, but also analyzes its heterogeneous tail distribution. Section 4
contains the analysis of an empirical application and a related discussion. Section 5 summarizes
the study.

2. Literature Review

In early carbon pricing studies, scholars discussed carbon pricing using theory analyses. Studies
focused on general equilibrium or the equilibrium point of carbon trading derived by game theory [1].
However, theory analysis primarily depends on the assumption of a complete market hypothesis,
which is not as meaningful for investors in the secondary market. The establishment of a carbon
emission trading market provided trading price data. Scholars can study carbon pricing through
empirical analyses. Many scholars paid attention to three aspects: carbon pricing based on historical
carbon price data, influencing factors, and heterogeneous distribution.

2.1. Carbon Pricing based on Historical Carbon Price Data

Early studies largely focused on carbon pricing based on the price’s fluctuating nature. Scholars
used a single model to examine carbon pricing, such as generalized autoregressive conditional
heteroscedasticity (GARCH), exponential generalized autoregressive conditional heteroskedasticity
(E-GARCH), and Grey–Markov [2] models. A single prediction model cannot accurately characterize
the nonlinear and multifrequency features of carbon price. Thus, scholars began using multifrequency
models to price carbon emissions trading rights based on the theory of price decomposition, such as
empirical mode decomposition [3]. The empirical results show that the multifrequency combination
model has higher pricing precision.
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2.2. Factors Influencing Carbon Price

With the development of China’s carbon emission trading market, the data on carbon prices have
rapidly increased both in quantity and complexity. Extensive time-series data allow us to explore
the dynamic relationship between the carbon market and other markets. Hence, scholars analyzed
the factors driving carbon prices to improve the accuracy of carbon pricing. Various studies showed
that carbon markets are closely associated with other markets. Carbon price fluctuation is mainly
driven by the supply and demand of carbon emission rights. On the supply side, policy adjustment
and the price fluctuations of similar products are the main influencing factors. Demand is mainly
related to energy prices and the macroeconomy. As a whole, these studies mainly focused on five
aspects: macroeconomy, similar products, energy price, exchange rate, and policy adjustment and
information disclosure.

(1) Macroeconomy: The smooth and robust expansion of the macroeconomy has an obvious
impact on the carbon emissions trading market. Carbon prices fluctuate considerably with the
macroeconomy [4]. The increasing macroeconomy, especially the development of industrial
economy, helps to increase the price of carbon emissions trading rights [5]. Conversely, carbon
price falls substantially when the macroeconomy slows [6]. Stock prices, as an important indicator
of macroeconomic situations, show a positive correlation with carbon prices [7].

(2) Similar products: Carbon prices in different regions have the same properties and show a strong
correlation; thus, they can interfere with one another [8]. As a participant in clean development
mechanism (CDM) projects, China’s regional carbon emissions trading price is also affected by
international carbon price mechanisms, such as the certification emission reduction (CER) and
the European Union Allowance (EUA).

(3) Energy price: Fossil fuel combustion is key human activity affecting GHG emissions [9].
An increase in fossil energy prices increases carbon trading prices [10]. Coal consumption
is the largest source of carbon dioxide emissions, which determines the demand for carbon
emission quotas and is regarded as the most important determinant of carbon pricing. Oil price
plays a leading role in the trend of energy price changes; so, the impact of oil price on the carbon
pricing is also important.

(4) Exchange rate: As a participant in CDM projects, China faces an exchange rate volatility risk [11].
The most common settlement currency in international carbon trading is the Euro; thus, any
changes in the exchange rate directly affect the carbon price.

(5) Policy adjustment and information disclosure: Politics affects climate change policy, further
influencing carbon trading prices. Policies can affect carbon prices, mainly due to, besides
the commodity property, carbon markets having obvious political properties [12]. The carbon
emissions trading market directly reflects mutual coordination between the government and the
market regulations [13]. Government regulation plays a primary role because the carbon market
system is not perfect in its early stages; therefore, policy adjustment and information disclosure
are fundamental causes of carbon price fluctuations. Policy changes by the government weakly
positively impact carbon prices. For example, the announcement of the national quota allocation
plan has had a significant positive effect on the carbon price income, indicating a long-lasting
pre-event effect [14].

2.3. Heterogeneous Distribution of Carbon Price

Carbon pricing mechanisms concern carbon market price drivers and the characteristics of carbon
prices. The distribution of finance asset is always non-normal [15]. Empirical research uncovered
some features of asset price returns, such as skewness and the kurtosis phenomenon [15]. It also has
complex characteristics in carbon price. There are four characteristics of carbon price returns in the
probability density distribution of carbon price returns distribution. First, the probability distribution
is asymmetric, biased, and skewed [16]. Second, its heavy-tailed tendency, that is, the possibility of
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extreme events, is often greater than that under a normal distribution [17]. Third, the peak of the
kurtosis is often greater than three. Fourth, an asymmetric effect exists [18] wherein an asymmetry
between the left and right tail of the carbon price yields. When quantifying these features, previous
studies only used t-distribution or generalized error distribution to characterize the fat tail, which
cannot describe the asymmetric effect.

By reviewing of the relevant literature that focused on carbon pricing, we found that: (1) studies
largely did not consider the heterogeneous tail distribution; studies mainly focused on international
carbon price, and only a few considered China’s carbon price with no economic explanation and
(2) studies about China’s carbon pricing have not provided an economic explanation of influencing
factors and largely did not consider the heterogeneous tail distribution. This motivated us to model
the heterogeneous tail distribution and influence factors using the arbitrage pricing theory and
standardized standard asymmetric exponential power distribution (APT-SSAEPD) model.

The basic carbon pricing mechanism is affected by complex factors compared with other financial
commodities. To address this, Benz suggested using factor pricing models to price carbon emissions
trading rights [19]. In modern financial asset pricing, arbitrage pricing theory (APT) is the main
reference model. APT is useful for analyzing influencing factors in a financial time series. Although
many challenges remain in applying traditional pricing methods to carbon emissions trading rights,
the APT naturally extends to multivariate financial time series.

As the previous research showed, carbon price has a heterogeneous tail distribution. We cannot
use normal distribution to describe the distribution characteristics of carbon pricing. The probability of
a fat tail is higher than the normal hypothesis in carbon price. If we do not consider the heterogeneous
tail distribution, the accuracy of carbon pricing would be impacted, which would lead investors in the
carbon market to a wrong decision. Therefore, we used standardized standard asymmetric exponential
power distribution (SSAEPD) to describe the heterogeneous tail distribution of carbon price.

To capture heterogeneous tails, Zhu and Zinde-Walsh extended the skewed exponential power
distribution to a fully asymmetric exponential power distribution, where heavy-tailedness may be
asymmetric with different tail exponents on different sides of the distribution [20]. Hence, we used
SSAEPD to describe carbon price characteristics, especially the heterogeneous tail distribution. To find
the global optimum solution, we chose a genetic algorithm to solve the linear programming problem
rather than the interior point method [21].

We constructed an arbitrage pricing theory-standardized standard asymmetric exponential power
distribution-genetic algorithm (APT-SSAEPD-GA) model to increase the accuracy in carbon pricing.
Accordingly, we contributed to the literature in three ways. First, we focused on carbon pricing of
China’s carbon emissions trading market. China’s carbon emissions trading market is immature.
Therefore, carbon pricing in China should be studied in depth. Second, to incorporate the skew, fat
tail, and asymmetric effects, we assigned the SSAEPD to the residual of carbon price in the carbon
pricing model (APT-SSAEPD-GA). SSAEPD can capture the heterogeneous tail distribution of China’s
carbon price. Third, with the APT-SSAEPD-GA step, we identified the factors influencing carbon
price and found that macroeconomic operation and microeconomic behavior influence carbon price
fluctuation. Then, we discussed reasonable economic explanations for these issues. Figure 1 illustrates
the framework of this study.

Finally, we aimed to answer the following two research questions:

(1) Is the new APT-SSAEPD-GA model more accurate for China’s carbon pricing?
(2) What causes China’s carbon price to have fat and heterogeneous tails?
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 Figure 1. Framework of China’s carbon pricing.

3. Methodology

We constructed the APT-SSAEPD-GA model for pricing China’s regional carbon emissions trading
rights. APT is an appropriate choice because it is the main reference model in modern financial asset
pricing. In addition, SSAEPD was chosen to describe the heterogeneous tail distribution of carbon
prices, such as the fat tail and asymmetric effect. Finally, the genetic algorithm was used to solve the
linear programming problem.

3.1. Construction of Arbitrage Pricing Theory-Standardized Standard Asymmetric Exponential Power
Distribution Model

China’s regional carbon emission trading market is a market economic system. The Chinese
government has never used policy intervention in the regional carbon emission trading market. China’s
carbon emissions trading market is a cap-and-trade market. The government’s job is to set the initial
carbon emissions quota and then provide a trading platform for enterprises with gaps in quota and
reduction costs. Although some government involvement is required in the carbon emissions trading
market, the sellers and buyers can trade as they prefer without government interference. Therefore,
we thought that an APT analysis was suitable for this study.

Based on the literature review, the expected return on China’s carbon pricing can be modelled as
a linear function of macroeconomic operations, microeconomic behavior, and policy changes, where
sensitivity to changes in each factor is represented by a factor-specific coefficient. APT is based on the
assumption that any asset’s price can be expressed as a linear combination of some common factors.
The model-derived rate of China’s carbon price return is used to price its carbon emissions trading
rights; the carbon price should equal to the expected end-of-period discounted price at the rate implied
by the model. If the price diverges, arbitrage should be used to realign it.

Guided by APT, we constructed a multifactor model to examine the return on China’s carbon
price. The most widely used model is:

rt = β1 + β2X + εt εt ∼ N
(
u, σ2

)
(1)

where rt represents the carbon emissions trading price-earnings ratio of time t, which is Ln
(

Pt
Pt−1

)
;

X represents the factors influencing the carbon emission trading market returns of time t; εt is a residual
that follows normal distribution; β1 and β2 are coefficient parameters in the regression model; and T is
the sample size (t = 1, 2, . . . , T).



Sustainability 2020, 12, 2754 6 of 16

The real data in China’s carbon emission trading market often fail to meet normal distribution
hypotheses. The distribution of the carbon price return usually presents skewness and fat tails. Hence,
we calculated the asymmetry and fat tail of the carbon price return with the asymmetric exponential
power distribution (AEPD) in [20] and the APT. The APT-SSAEPD model has the following form:

rt = β1 + β2X + ηzt zt ∼ SSAEPD(a, p1, p2, 0, 1) (2)

where Zt is the residual error that follows the SSAEPD.
The next section outlines how the SSAEPD model was constructed.

3.1.1. Asymmetric Exponential Power Distribution

From Equation (2), we know that the error series (εt) of the carbon pricing model equals rt − β1
and β2X. Suppose y equals εt. If the time error series y~AEPD(β), its density is:

fAEPD(y
∣∣∣β) =


(
α
α∗

)
1
σKEP(p1) exp

(
−

1
p1

∣∣∣ y−u
2α∗σ

∣∣∣p1
)

i f y ≤ u(
1−α
1−α∗

)
1
σKEP(p2) exp

(
−

1
p2

∣∣∣∣ y−u
2(1−α∗)σ

∣∣∣∣p2
)

i f y ≥ u
(3)

where u ∈ R is the location of the carbon price’s error series (y), σ > 0 is the scale parameter of the
carbon prices’ error series (y), p1 > 0 is the left tail parameter of the carbon prices’ error series (Y),
p2 > 0 is the right tail parameter of the carbon prices’ error series (y), and α ∈ (0,1) is the skewness
parameter of the carbon prices’ error series (y).

α∗ =
αKEP(p1)

αKEP(p1) + (1− α)KEP(p2)
(4)

KEP(p) =
1

2p1/pτ(1 + 1/p)
(5)

The parameter α* in the AEPD density provides the scale adjustments for the left and right parts
of the density to ensure continuity of the density under changes in shape parameters (α, p1, and p2).
KEP (p) is a normalizing constant. If p is small, the AEPD becomes more heavy tailed and leptokurtic,
that is, the carbon price has a heavy tail and kurtosis distribution. If α = 0.5, it becomes an exponential
power distribution. If α = 0.5 and p1 = p2 = 1, it becomes a Laplace distribution. If α = 0.5 and
p1 = p2 = 2, it is a normal distribution.

3.1.2. Standard Asymmetric Exponential Power Distribution (SAEPD)

To standardize the error series (y) of the carbon price, we define a new variable x. Suppose
x =

y−u
σ or y = u + xσ then, the Jacobian matrix is dy

dx = σ. We denote X~standard AEPD(β), β = (α, p1,
p2, u = 0, σ = 1). The density of the standard AEPD random variable x is:

fAEP(x
∣∣∣β) =


(
α
α∗

)
1
σKEP(p1) exp

(
−

1
p1

∣∣∣ x
2α∗σ

∣∣∣p1
)

i f x ≤ 0(
1−α
1−α∗

)
1
σKEP(p2) exp

(
−

1
p2

∣∣∣∣ x
2(1−α∗)σ

∣∣∣∣p2
)

i f x > 0
(6)

The mean of the standard AEPD random variable x is E(x). Then,

Ex =
1

αKEP(p1) + (1− α)KEP(p2)

[
(1−α)2 p2τ(2/p2)

τ2(1/p2)
−α2 p1τ(2/p1)

τ2(1/p1)

]
. (7)



Sustainability 2020, 12, 2754 7 of 16

The variance of the standard AEPD random variable x is Var(x). Then,

Var(x) =

{
(1−α)3 p2

2τ(3/p2)

τ3(1/p2)
+ α3 p2

1τ(3/p1)

τ3(1/p1)
−

[
1−α2 p2τ(2/p2)

τ2(1/p2)
−α2 p1τ(2/p1)

τ2(1/p1)

]2
}

(αKEP(p1) + (1− α)KEP(p2))
2 (8)

3.1.3. Standardized Standard Asymmetric Exponential Power Distribution

Let us assume that X~standard SAEPD(β). We define a new variable z =
x−E(x)
√

Var(x)
. Therefore,

the mean of the standardized SAEPD random variable X is E(x).

E(z) = E

x− E(x)√
ar(x)

 = E(x) − E(x)√
Var(x)

= 0 (9)

The variance of the SSAEPD random variable x is Var(x).

Var(z) = Var

 x− E(x)√
Var(x)

 = Var(x)
Var(x)

= 1 (10)

Assume E(x) =ω and Var(x) = δ2 for simplicity. x = E(x)+ z
√

Var(x) = ω+ zδ. Then, the Jacobian
matrix is dx

dz =
√

Var(x) = δ.
Therefore, the probability density function of z is:

fAEP(z
∣∣∣β) =

 δ
(
α
α∗

)
KEP(p1) exp

(
−

1
p1

∣∣∣ω+zδ
2α∗σ

∣∣∣p1
)

i f z ≤ −ωδ
δ
(

1−α
1−α∗

)
KEP(p2) exp

(
−

1
p2

∣∣∣∣ ω+zδ
2(1−α∗)σ

∣∣∣∣p2
)

i f z > −ωδ
(11)

If α = 0.2, p1 = 2 and p2 = 2, the probability density function (PDF) of z is reduced to:{
Normal(0, 1) i f z ≤ −ωδ
Normal(0, 1) i f z > −ωδ

(12)

Let us denote z~standard AEPD(0,1) or z~SAEPD(β), β = (α, p1, p2, u = 0, σ = 1), with E(z) = 0 and
Var(z) = 1.

3.2. Linear Programming Algorithm Selection and Optimization

For the given value of the parameters, we estimate the parameters of the APT-SSAEPD model
using a quasi-maximum likelihood method. The likelihood function is:

L
({

rt − r f t, rmt − r f t
}T

t=1
; θ

)
=

T∏
t=1


δ
σ

(
α
α∗

)
K(p1) exp

(
−

1
p1

∣∣∣ω+δzt
2α∗

∣∣∣p1
)
, zt ≤ −

ω
δ

δ
σ

(
1−α
1−α∗

)
K(p2) exp

(
−

1
p2

∣∣∣∣ ω+δzt
2(1−α∗)

∣∣∣∣p2
)
, zt > −ω′δ

(13)

zt =
rt − β1 − β2X

σ
(14)

To achieve the global optimum, we use a genetic algorithm rather than an interior-point
algorithm, which is different from Zhu and Li’s method [21]. The interior point method cannot
assure comprehensive convergence or easily generate local optimal solutions, whereas the genetic
algorithm is a random searching global optimization algorithm.
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4. Results

We analyzed the influencing factors and heterogeneous tail distribution of the carbon price. This
section begins with data analysis and follows with selection of influencing factors, which were used to
verify the hypothesis. Based on the empirical results, we provide some discussion.

4.1. Data

China’s regional carbon emissions trading market is a cap-and-trade market. The transactions
under voluntary emissions reduction, which involve carbon exchanges, are relatively small and largely
for image building. That is, voluntary emissions reductions are based on social responsibility and
personal awareness. Although the technical conditions are available, the demand is limited due to lack
of incentives to limit the total amount. Hence, we do not discuss the voluntary aspect here.

As a vanguard of economic reform, Shenzhen has a wealth of experience in the implementation
and management of carbon market transactions, leading the construction and development of China’s
carbon market. The Shenzhen carbon emission exchange was China’s first regional carbon emissions
market; it is also the first carbon quota trading market in a developing country. It has become the largest
carbon trading market in China since its official launch on June 18, 2013. We selected the Shenzhen
carbon emissions trading market as our sample because it has the highest degree of marketization and
the largest number of transactions. The market trades in seven products: Shenzhen allowance 2013
(SZA 2013), Shenzhen allowance 2014 (SZA 2014), Shenzhen allowance 2015 (SZA 2015), Shenzhen
allowance 2016 (SZA 2016), Shenzhen allowance 2017 (SZA 2017), Shenzhen allowance 2018 (SZA
2018), and Shenzhen allowance 2019 (SZA 2019). The sample period ranges from June 2013 to March 18,
2020. As the Shenzhen allowance 2019 began on October 24, 2019, the daily carbon price data sample
was too small. Shenzhen allowance 2018 began in July 2018. To obtain more sample data, we chose the
daily carbon price data from July 4, 2018 to March 18, 2020. In total, we obtained 411 records.

We calculate the data and list the descriptive statistics in Table 1. Table 1 shows that carbon trading
price returns have slight skewness and a large excess kurtosis, which reflects the asymmetric and
fat-tail characteristics. The p value of the Jarque–Bera test for each carbon price return is zero. Hence,
we concluded that all asset returns do not follow a normal distribution at the 1% significance level.

Table 1. Descriptive statistics of China’s carbon price returns.

Shenzhen
Allowance
2013 (SZA

2013)

Shenzhen
Allowance
2014 (SZA

2014)

Shenzhen
Allowance
2015 (SZA

2015)

Shenzhen
Allowance
2016 (SZA

2016)

Shenzhen
Allowance
2017 (SZA

2017)

Shenzhen
Allowance
2018 (SZA

2018)

Mean −0.0023 −0.0020 −0.0020 −0.0025 −0.0022 −0.0024
Maximum 0.2598 0.0961 0.1906 0.0965 0.0962 0.1280
Minimum −0.1056 −0.1061 −0.1762 −0.2100 −0.3157 −0.1379

SD 0.0374 0.05297 0.0546 0.0764 0.0638 0.0478
Skewness 0.5017 −0.2068 −0.1738 −0.1261 −0.5702 −0.2759
Kurtosis 13.7309 3.5895 3.8157 1.8198 4.3431 4.5366

Jarque–Bera 1989.2080 8.8815 13.4619 24.942 53.1667 45.6535
Probability 0.00 0.01 0.00 0.00 0.00 0.00

4.2. Selection of Influencing Factors

We did not consider policy changes because the sample period covers only 1 year; therefore,
we ignored the influence of policy changes. As previously stated, China’s regional carbon price
is influenced by the macroeconomy, similar products, energy price, and exchange rate. Therefore,
we selected the international macroeconomic and domestic macroeconomic indices to represent
macroeconomy development. The Standard and Poor’s 500 Composite Stock Price Index (S&P 500)
and China Securities Index 300 (CSI300) represent international and domestic macroeconomic trends,
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respectively. As previously mentioned, because China is a participant in CDM projects, its regional
carbon emissions trading price is affected by the international carbon price. Hence, we chose the CER
and the EUA as similar products of China’s carbon price. As the currency of settlement in international
carbon trading is mainly the Euro, changes in the exchange rate directly affect the carbon price.
The Euro area market has considerably gained in importance in world financial markets. Therefore,
we chose the Euro against the Chinese Yuan exchange rate as the factor influencing the financial market.
Table 2 lists the influencing factors chosen.

Table 2. Factors influencing China’s regional carbon price.

Factors Index

International economic development Standard and Poor’s 500 Composite Stock Price Index (S&P 500)

Domestic economic development China Securities Index 300 (CSI300)

Similar product

Certification emission reduction (CER)
European Union allowance (EUA)

SZA 2013
SZA 2014
SZA 2015
SZA 2016
SZA 2017

Fujian carbon price
Tianjin carbon price
Beijing carbon price
Hubei carbon price

Guangdong carbon price
Shanghai carbon price

Chongqing carbon price
Shenzhen carbon price

Energy price Coal price
Oil price

Exchange rate Euro against Chinese Yuan

The most important problem in the APT model is screening the factors; thus, we used a stepwise
regression analysis to discuss the influencing factors. By the stepwise regression analysis, we determined
the main factors influencing the carbon price (Table 3) to use in the APT models.

Table 3. Stepwise regression analysis of China’s carbon price.

Influencing Factor Coefficient

SZA 2015 0.1512 ***
SZA 2017 0.1091 ***
SZA 2013 0.1732 ***

Fujian carbon price −0.1151 ***
CSI 300 0.4012 **

Tianjin carbon price 0.3073 **
Euro against Chinese Yuan −0.7108 *

Shanghai carbon price −0.0448 *
Coal −0.2922 *

Note: *,**, and *** indicate significance at the 10%, 5%, and 1% levels, respectively.

The stepwise regression showed that SZA 2015, SZA 2017, SZA 2013, Fujian carbon price, CSI 300,
Tianjin carbon price, Euro against Chinese Yuan, Shanghai carbon price, and coal price affected the
price of SZA 2018 at the 10% significance level. Therefore, we chose these indices as the influencing
factors of carbon price in the next empirical analysis.
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4.3. Estimation Results

4.3.1. Parameters Estimation of China’s Carbon Pricing

We estimated the parameters in the new APT-SSAEPD-GA model. Table 4 reports the estimation
results. For comparison, we also estimated the arbitrage pricing theory-normal (APT-Normal) and
arbitrage pricing theory-standardized standard asymmetric exponential power distribution-interior
point (APT-SSAEPD-IP). Table 4 lists the estimation results for the APT-Normal, APT-SSAEPD-IP,
and APT-SSAEPD-GA models. The empirical results showed that the APT-SSAEPD models can capture
skewness and the asymmetric fat tail.

Table 4. Estimates for the models.

Factors

Arbitrage
Pricing

Theory-Normal
(APT-Normal)

Arbitrage Pricing
Theory-Standardized
Standard Asymmetric

Exponential Power
Distribution-Interior Point

(APT-SSAEPD-IP)

Arbitrage Pricing
Theory-Standardized
Standard Asymmetric

Exponential Power
Distribution-Genetic

Algorithm
(APT-SSAEPD-GA)

SZA 2015 0.1503 0.1700 0.1967
SZA 2017 0.1077 0.1058 0.3584
SZA 2013 0.1705 0.9935 0.9991

Fujian carbon price −0.1167 −0.1913 −0.2101
CSI 300 0.4035 0.6980 0.7631

Tianjin carbon price 0.3157 0.3159 0.4098
Euro against Chinese

Yuan −0.7096 −1.0300 −1.1124

Shanghai carbon price −0.0453 −0.0423 −0.0710
Coal −0.3318 −0.4470 −0.5212
α 0.5 0.6448 0.7009
p1 2 0.7975 0.9792
p2 2 0.2622 0.2912

Akaike information
criterion (AIC) −3.3165 −4.9775 −5.7251

Schwarz criterion (SC) −3.2187 −4.9678 −5.7153

Note: α: skewness parameter; p1 and p2: tail parameters.

Table 4 shows that the Akaike information criterion (AIC) and Schwarz criterion (SC) values
of APT-SSAEPD-GA model are lower than that of the APT-Normal and APT-SSAEPD-IP models.
Therefore, the APT-SSAEPD-GA is more suitable for carbon pricing in China.

The parameters of the APT-SSAEPD-GA and APT-SSAEPD-IP are not consistent with the
parameters of APT-Normal, indicating that the APT-SSAEPD describes the asymmetric fat tail and
skewness. The estimation of skewness parameter α is approximately 0.5, that is, skewness is not an
obvious characteristic. For the APT-SSAEPD-GA and APT-SSAEPD-IP models, the fat-tail tendency is
strong in both series as the tail parameters (p1 and p2) of all innovations are obviously lower than two;
therefore, the fat tail is obvious in China’s carbon trading emissions price. p1 and p2 are not equal,
which indicates an asymmetric effect in the fat tail. Overall, the APT-SSAEPD-GA and APT-SSAEPD-IP
have better data applicability than APT-Normal.

4.3.2. Residual Comparison of China’s Carbon Pricing

The test results for residuals show that the error terms of carbon price follow the SSAEPD
distribution, and the APT-SSAEPD-GA and APT-SSAEPD-IP models are adequate for China’s regional
carbon price. However, the APT-Normal is inadequate, as most of its residuals do not follow
normal distribution.
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First, we applied the Kolmogorov–Smirnov (K–S) test to check the residuals in both models.
For the APT-SSAEPD-GA and APT-SSAEPD-IP models, the K–S test accepted the null hypothesis at
the 5% significance level, whereas the null hypothesis of APT-Normal was rejected. As expected, the
SSAEPD provides a better fit than the normal distribution.

Second, we applied the likelihood ratio test to run normality tests. The results showed that the
null hypotheses for skewness and tail parameters were rejected, confirming that both samples are
asymmetric and have fat tails. Hence, we concluded that there is non-normality in the sample data.

Lastly, the results showed that the residuals are more likely distributed such as in the SSAEPD
model. We thus drew conclusions from the PDF of the residuals. We found that these curves are very
close to each other. However, we observed significant differences between the PDF of the residuals
and that of the normal (0, 1).

We plot the residuals of the APT-Normal and APT-SSAEPD-GA in Figure 2a,b. In Figure 2,
the difference between the PDFs of the real residuals and the APT-SSAEPD-GA is smaller, and these
curves are very close to each other, unlike the APT-Normal. Therefore, we concluded that the
APT-SSAEPD-GA closely fits the data. 2 of 16 
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The complete information transmission network of carbon emission trading market considers the
investors in the carbon market as a psychological group. When the market is calm, investors’ concerns
are quite scattered and their emotions are stable, and they seem like an objective group. However,
once the market is strongly stimulated by an event such as major good or bad news, the investors’
concerns are immediately focused, and their emotions are quite excited. At this time, investors become
a psychological group. The investors in the psychological group adopt the approach of “buying
the winners,” which makes the price more unstable, thus making the distribution characteristics of
carbon price heterogeneous, which is the fat-tail and asymmetric characteristics we observe in the
carbon market.

4.4. Robustness Test

To test the robustness of the new model, we chose the Hubei carbon price as a sample. Using
a stepwise regression analysis, we found the main factors influencing the carbon price. The main
factors were SZA 2015, SZA 2014, Guangdong carbon price, SZA 2013, CER, Euro against Chinese
Yuan, SZA 2017, and EUA. Table 5 provides the estimated results. The APT-SSAEPD-GA can capture
the influencing factors and heterogeneous tail distribution of the Hubei carbon price.

Table 5. Robustness test for arbitrage price theory-standardized standard asymmetric exponential
power distribution models.

Factors APT-Normal APT-SSAEPD-IP APT-SSAEPD-GA

SZA 2015 −0.0897 −0.3709 −0.4903
SZA 2014 0.0666 0.0904 −0.1507

Guangdong carbon price 0.0948 0.2033 0.2180
SZA 2013 −0.0539 −0.1521 −0.1713

CER 0.0597 0.0873 0.0967
Euro against Chinese

Yuan −0.4215 −0.7017 −0.8144

SZA 2017 0.0212 0.0406 0.0637
EUA 0.0374 0.1549 −0.2501
α 0.5 0.4190 0.4225
p1 2 0.4760 0.4761
p2 2 1.1537 1.2842

AIC −3.9132 −4.0214 −4.9468
SC −3.8252 −4.0116 −4.9371

Note: α: skewness parameter; p1 and p2: tail parameters.

4.5. Discussion

The empirical results showed that macroeconomy, similar products, energy price, and finance
market all affect carbon price fluctuation. The carbon emissions trading price has a heterogeneous tail
distribution due to the effect of factors such as market mechanism and heterogeneous events.

4.5.1. Influencing Factors and Carbon Price Mechanism

We discuss all the driving factors that can affect the carbon price fluctuation.

Macroeconomy

The parameter estimates (Table 4) show that the CSI 300 parameter is greater than zero. This means
that macroeconomic growth drives the carbon price [22]. If growth is high in the macroeconomy,
companies will quickly ramp up production. Increased production will then heighten the demand
for power and industrial development, which, in turn, increase carbon emissions. The greater the
emissions, the higher the demand for carbon emissions trading rights; therefore, carbon prices will rise.
Conversely, economic downturns diminish carbon emissions, making it easier to implement emissions
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reduction targets efficiently and thus reduce the demand for carbon quotas. Therefore, macroeconomy
is the main factor influencing carbon price.

Similar Products

The parameter estimates in Table 4 show that the SZA 2015, SZA 2017, and SZA 2013 parameters
are greater than zero. The price fluctuations in carbon emissions in the same region could spread easily
from one to another. The parameter estimates in Table 5 show that the CER and EUA parameters are
greater than zero, which means international carbon price fluctuation also impacts China’s carbon
price. As China is the largest supplier of CDM projects in the international carbon market, CER, which
is also a substitute for China’s carbon emissions trading rights, affects its regional carbon emissions
trading prices.

Energy Price

The parameter estimates in Tables 4 and 5 show that the coal parameter is less than zero, indicating
that higher energy prices lead to lower carbon prices. The energy price is closely related to the cost
of production price. The volatility of energy prices will change the demand conversion of different
energies. Different energies have different carbon emissions, thus forming an inner transmission
mechanism between the energy market and the carbon emissions trading market. Therefore, changes
in carbon prices have a close relationship with energy price fluctuations [23].

Exchange Rate

The parameter estimates in Tables 4 and 5 show that the Euro against Chinese Yuan parameter is
less than zero. As a participant in clean development mechanism projects, China faces an exchange
rate volatility risk. The most common settlement currency in international carbon trading is the Euro,
so changes in the exchange rate directly affect the carbon price.

4.5.2. Heterogeneous Tail Distribution

The complexity of the carbon emissions trading market yields a non-normal distribution of
China’s carbon price return. We discuss two characteristics of carbon price distribution in this section:
non-normal and heterogeneous tail distribution.

Non-normal Distribution of Carbon Price Return

The carbon market is not a simple, linear system; it results from anthropogenic global climate
and temperature changes, a feature that other financial markets do not have. The correlation between
the carbon price along with the effect of carbon emissions reduction and the evolution of the carbon
market mechanism increases the complexity of the carbon financial market. The dynamic dependence
between various products of the carbon market, as well as other markets such as stocks and energy,
also implies a non-normal distribution of the carbon emissions trading price. In addition, the carbon
trading price experiences massive fluctuations due to the emergence of information piles that cause a
non-normal carbon trading price.

Heterogeneous Tail Distribution of Carbon Price Return

Rational behavior is generally interpreted as the pursuit of self-interest maximization. However,
investors appear risk averse to small losses, but indifferent to a low chance of a large loss. This violates
economic rationality as conventionally understood.

First, according to behavioral finance, investors in the financial market are limited rational, and they
cannot fully follow the optimization principle when they are trading on the carbon market. Investors’
information processing is nonlinear, and the current price cannot immediately reflect this information.
The cumulative effect of information increases the price volatility, causing a fat-tail phenomenon.
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Second, carbon price behavior is asymmetric, where the long-term bearish probability is greater
than the long-term bullish probability. Given complex decision problems, investors in the carbon
financial market often have cognitive biases due to their limited cognitive ability. According to
prospect theory, the sensitivities to losses and gains differ, producing an asymmetric carbon emissions
trading price. The deviation of investors’ expectation on price causes the “uying the winners” activity.
The investors’ behavior is the fundamental reason for the fat-tail distribution of carbon price.

5. Conclusions

5.1. Conclusions

In the context of addressing climate change, the carbon emission trading scheme has become one
of the main measures used to achieve emission reduction goals. One of the core problems in building
carbon emissions trading markets is carbon pricing. The science and rationale of carbon emissions
pricing determine the effect of the market function. The characteristics of the carbon market turn
any carbon pricing mechanism into a complex affair. Therefore, examining the driving factors and
characteristics of China’s carbon price can help improve carbon pricing, which has both practical and
theoretical significance.

We thus used an empirical analysis with quantitative models to improve our understanding of
carbon price formation mechanisms. We used the APT-SSAEPD-GA model to describe an asymmetric
tail distribution and the influencing factors of China’s carbon price. This method improves carbon
pricing accuracy and the effectiveness of China’s carbon market, further reducing emissions and
achieving the sustainable development of a low-carbon environment.

Our empirical results showed that: (1) the influencing factors followed by the description of the
heterogeneous tail could improve the accuracy of carbon pricing. APT-SSAEPD models could be used
to price assets that have heterogeneous tail distributions and key drivers. The fit was better than that
of APT-Normal, and the estimates of the SSAEPD parameters can capture the fat-tail and asymmetric
effects in the data. (2) Investors’ behavior plays an important role in the heterogeneous tail distribution
of carbon price. The sensitivities to losses and gains differ, and the “buying the winners” activity is the
main reason for the heterogeneous tail distribution of carbon price.

5.2. Policy Implications

The international carbon emissions trading market and China’s emissions trading market have to
be coordinated. The operational processes in China’s carbon market should maintain the stability of the
regional quotas and the international carbon quotas. Therefore, the market could avoid impacts from
violent fluctuations in the latter on the former. In constructing a national carbon market, managers can
control a trial batch of certified emissions reduction projects, maintain stability in certification and
emission reductions, and avoid the indirect effect of frequent international market changes on the
operation of a carbon market.

The management system and principles should be perfected to guarantee the stability of the
market operational mechanism. The complexity of the carbon financial market and the investor
preferences impart an asymmetric fat-tailed distribution to China’s carbon price. The fat-tailed
distribution shows that the probability of extreme events is greater than that of normal distribution.
Thus, under the condition of heavy-tailed distributions, managing risks in the carbon emissions trading
market is more important, especially the tail risk. Therefore, the market mechanism must be further
improved, investors should be guided, and a stable policy environment should be created to reduce the
carbon market risk. Hence, the government should ensure strong risk management and better market
discipline through transparency. Policymakers can establish a unified trading platform, improve
trading rules, and disclose information publicly. Policymakers also need to improve the investment
environment by creating consistent and stable long-term policies that will give confidence to the
investors. As such, a fully exertive market would realize the function of fair price discovery.
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Investors’ psychological and behavioral reactions should be considered in China’s carbon pricing
and risk management. The carbon price shows a peak and heavy-tailed phenomenon and cluster effects,
with individuals showing evident nonsymmetric reaction to good and bad news. The asymmetry of
carbon price shocks indicates that market mechanisms in emerging markets are not yet sound; it also
shows the uninformed approach of the traders to investments. Thus, investors’ behavior impacts
carbon price. In this case, we should consider investors’ behavior in China’s carbon pricing and
risk management.

5.3. Future Studies and Limitation

Future studies that could extend our work include, but are not limited to, the following. First,
as shown, the APT-SSAEPD-GA model can characterize China’s regional carbon price. From the
perspective of risk management, the risk of extreme events is higher than under the normal distribution
because of the fat tail; thus, future studies could apply the SSAEPD to risk management (e.g., calculating
value at risk). This method also can be extended to the international carbon emissions trading market.
Second, as the heterogeneous tail distribution is shown by China’s carbon price, we know that some
influencing factor has not been considered, such as investors’ psychology and behavior; thus, future
studies could consider investors’ behavior in carbon pricing. Third, with the spread of COVID-19,
the global finance market has crashed sharply; thus, we can apply SSAEPD to discuss the impact of
special events on financial markets.

The research method in this study is valid only when its conditions are satisfied. One of the
important conditions is that observation data are sufficient. In the emerging markets, if the sample
data are inadequate, it is difficult to calculate the real numerical value, and the parameter may not
reveal the actual value.
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