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Abstract: Many cities are experiencing persistent risk in China due to frequent extreme weather
events. Some extreme weather events, such as extreme heat hazard, have seriously threatened human
health and socio-economic development in cities. There is an urgent need to measure the degree of
extreme heat risk and identify cites with the highest levels of extreme heat risk. In this study, we
presented a risk assessment framework of extreme heat and considered risk as a combination of
hazard, exposure, and vulnerability. Based on these three dimensions, we selected relevant variables
from historical meteorological data (1960–2016) and socioeconomic statistics in 2016, establishing an
indicator system of extreme heat risk evaluation. Finally, we developed an extreme heat risk index to
quantify the levels of extreme heat risk of 296 prefecture-level cities in China and revealed the spatial
pattern of extreme heat risk in China in 2016 and their dominant factors. The results show that (1)
cities with high levels of extreme heat hazard are mainly located in the south of China, especially
in the southeast of China; (2) the spatial distribution of the extreme heat risk index shows obvious
agglomeration characteristics; (3) the spatial distribution of the extreme heat risk is still mostly
controlled by natural geographical conditions such as climate and topography; (4) among the four
types of hazard-dominated, exposure-dominated, vulnerability-dominated, and low risk cities, the
number of vulnerability-dominated cities is the largest. The results of this study can provide support
for the risk management of extreme heat disasters and the formation of targeted countermeasures
in China.
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1. Introduction

In recent years, global climate change has led to a conspicuous increase in the frequency and
intensity of extreme weather events, which has posed a serious threat to human well-being [1].
According to the Global Risk Report for four consecutive years from 2017 to 2020, extreme weather
events have become the most prominent risk facing the human society [2]. Of all extreme weather
events, extreme heat has a high probability of occurrence, a wide range of impact, and a large risk,
which have severely affected human health, economic development, and infrastructure. During a
record-setting heat wave in Chicago in July 1995, there were at least 700 excess deaths, most of which
were classified as heat-related [3]. In summer 2003, a major heat wave occurred in Europe, causing
approximately 30,000 deaths, with nearly 15,000 in France [4]. The heat wave that hit California for
two weeks in 2006 led to an excess of at least 140 deaths [5]. In 2013, southern China suffered a high
temperature event that broke heat records of the past 141 years, which affected 66,600 km2 of crops, and
the electricity load reached a record high. Meanwhile, persistent extreme heat caused great economic
losses, marking an increase in morbidity and mortality [6]. Studies show a total economic loss of 27.49
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billion CNY for Nanjing in 2013 due to the heat wave [7] and 167 excess deaths in Shanghai’s Pudong
New Area [8]. Relevant research reports indicate that global extreme heat events will occur more
frequently and for longer durations, and the risk to human society will also be more serious in the
future [9]. How to mitigate the risk of extreme heat, adapt to future climate change, and establish a
climate-safe society have become major realistic challenges facing humanity today.

Risk of extreme heat vary widely due to geographical heterogeneity. How to scientifically measure
risk level, assess different characteristics among cities or areas, and identify the leading factors of
extreme heat risk are important to provide targeted mitigation and adaptation measures. Previous
studies evaluated extreme heat risk based on vulnerability. On the one hand, some scholars use
morbidity and mortality data to build multiple models between temperature and heat-associated deaths
to assess the population health vulnerability risk caused by extreme heat [10–13]. Some studies found
that extreme heat is only a trigger, the differences in demographic characteristics are a direct factor in
mortality [14]. Therefore, the assessment results of these studies mainly reflect the risk differences of
different social groups. The elderly, children, and disadvantaged groups are often faced with greater
vulnerability and risk [15–17]. These studies mainly focus on human health and paid insufficient
attention to the hazard themselves. Furthermore, the research scales are usually local, which has
difficulty reflecting the geographical heterogeneity. From the perspective of countermeasures, these
studies are more directed to the prevention for different groups [18], but it is difficult to provide specific
guidance for mitigation and adaptation in different regions.

On the other hand, some scholars developed various heat vulnerability indexes from exposure,
sensitivity, and adaptive capacity to assess risk of spatial units in different levels [12,19–21], such
as census tract [22], neighborhood [23], county [24], and metropolitan area [25]. These studies
quantify relative heat risk spatially, which is important for identifying vulnerable units and making
corresponding countermeasures. However, the above studies are mainly focused on the micro-scale,
while few studies have been conducted on the urban or regional level. In previous researches, variables
or indicators of the three dimensions (exposure, sensitivity, and adaptive capacity) not only differed
greatly, but also focused too much on socio-economic aspects, and the dynamic analysis of extreme
heat hazard was insufficient. In addition, previous studies did not provide a unified framework
for vulnerability or risk assessment, which resulted in an ambiguous relationship among the three
dimensions and multifarious calculation methods for heat vulnerability indices.

There are three main issues in the study of extreme heat events and their risks in China. The first is
spatiotemporal dynamics of extreme heat hazard. Related studies use long-term observed temperature
data from meteorological stations to explore the geographical patterns and temporal variations of
extreme heat events at the national or regional level in China [26–28]. The second is assessing the impacts
and potential risks of extreme heat on human health [29–32], agricultural production [33,34], economic
development [7], psychological perception [35], etc. The third is constructing heat vulnerability index or
heat risk index by integrating hazard, exposure, sensitivity, and adaptive capacity to assess extreme heat
risk at urban or regional level [36–38]. Overall, compared with European and American countries, the
research on extreme heat risk in China started later and there is still a gap with international academics.
Furthermore, existing researches mainly focus on the field of health vulnerability, but studies on
measurement and assessment of extreme heat risk at different spatial units are obviously insufficient.

Based on the present situation, this research aims to (1) develop a risk analysis framework
of extreme heat from three dimensions including hazard, exposure, and vulnerability, and select
corresponding indicators based on these dimensions to construct a risk assessment index; (2) quantify
the extreme heat hazard and vulnerability, and depict the spatiotemporal characteristics of extreme
heat hazard and distribution of vulnerability for Chinese cities, respectively; and (3) reveal risk pattern
of extreme heat in Chinese cities, identify the leading factors of extreme heat risk in each city, and
divide different types of risk zones.
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2. Material and Methods

2.1. Risk Assessment Framework of Extreme Heat

Risk is often represented as probability of occurrence of hazardous events or trends multiplied
by the impacts if these events or trends occurring [39]. The IPCC’s (Intergovernmental Panel on
Climate Change) fifth assessment report provides a climate-related analysis framework for risk. This
framework describes risk as a comprehensive function of hazard, exposure, and vulnerability, and
believes that risk results from the interaction of these three dimensions. As a typical extreme weather
disaster, IPCC’s risk framework can be applied to analyze extreme heat events. Therefore, we built
the Risk Assessment Framework of Extreme Heat (RAFEH) based on the risk framework of IPCC.
In this framework (Figure 1), extreme heat risk is composed of the three dimensions of heat hazard,
exposure, and vulnerability. In this paper, heat hazard refers to extreme heat events and their direct
and indirect impacts on health, livelihoods, infrastructure, service provision, etc. Exposure is whether
human social systems, subsystems, or components could be adversely affected by disaster. It can be
understood as the proximity of people or systems to extreme heat hazard. Vulnerability encompasses a
variety of concepts and elements including sensitivity or susceptibility to harm and lack of capacity
to cope and adapt [39]. Vulnerability reflects the predisposition of evaluation units to be adversely
affected by extreme heat, which can be determined by the sensitivity and adaptive capacity. Based on
the framework, we selected a series of indicators from hazard, exposure, and vulnerability to assess
the risk level of extreme heat in major cities of China.
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2.1.1. Variables for Extreme Heat Hazard

The degree of hazard depends on the physical attributes of the disaster event [40]. In this paper,
we attempted to examine the spatial-temporal changes in physical attributes of extreme heat as a
hazard factor. According to the China Meteorological Administration, a hot day is defined as a day
when the daily maximum temperature reaches or exceeds 35 ◦C. If this lasts three days or more, this is
called a heat wave event. In this study, we adopted the above definitions to identify hot days and heat
wave events in Chinese cities from 1960 to 2016. Furthermore, we defined five variables to describe
the characteristics of urban extreme heat hazard in China (Table 1). Hot days (HDs) refer to the days
with the daily maximum temperature (DMT) ≥ 35 ◦C. Heat intensity (HI) is the average of the daily
maximum temperature for all hot days. Heat wave frequency (HWF) describes the number of heat
wave events occurring in a given time. Heat wave duration (HWD) is the sum of the days in the heat
wave’s length in days. Heat wave intensity (HWI) refers to the cumulative value of the daily maximum
temperature exceeding the threshold (35 ◦C) during the heat wave events.
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Table 1. Variables for risk assessment of extreme heat.

Dimension Variable Name Unit Weight Details Data Source

Hazard

Hot days (HDs) Days 0.1877 Days with DMT ≥ 35 ◦C Dataset of daily climate
data (1960–2016) from

Chinese surface stations
on China Meteorological

Data Service Center

Heat intensity (HI) ◦C 0.0197 Average of DMT for all HDs

Heat wave frequency (HWF) Time 0.2026 Number of heat wave events

Heat wave duration (HWD) Days 0.3355 Heat wave’s length in days

Heat wave intensity (HWI) ◦C 0.2545 Cumulative value of DMT ≥ 35 ◦C
during heat waves

Exposure Total population Million 0.3740 Large population means more people
exposed in risk China City Statistical

Yearbook (2017)

Population density Person/km2 0.6260 High population density means more
people exposed in risk

Vulnerability
Sensitivity

Percent of children % 0.3734 Percentage of the population under 5
years old National Census of

China (2010)
Percent of the elderly % 0.2468 Percentage of the population over 65

years old

Percent of urban population % 0.3798 Percentage of urban population in
total population

Adaptive
capacity

Economic level CNY 0.1841 Per capita GDP

China City Statistical
Yearbook (2017)

Educational level % 0.2176 Percentage of the population attended
high school and above

Medical level Person 0.1415 Number of physicians per 10,000
people

Information level % 0.2678 Percentage of the population with
mobile phone

Water supply m3 0.1045 Per capita water supply

Green space m2 0.0845 Per capita green space area

Note: The DMT is daily maximum temperature.

2.1.2. Variables for Extreme Heat Exposure

Exposure describes to what extent humans, natural assets, or material goods are located in places
endangered by climatic changes and their consequences [41]. Some approaches use the exposed
population or area as a variable for the risk analysis [42–44]. In terms of urban extreme heat exposure,
it is clear that cities with large population or high-density population are relatively more likely to be
affected by extreme heat hazard. Therefore, we selected the total population and population density to
measure the extreme heat exposure of the city.

2.1.3. Variables for Extreme Heat Vulnerability

Vulnerability is a measure of both the sensitivity of a population to natural hazard and its ability
to respond to and recover from the impacts of hazard [45]. According to the RAFEH mentioned
above, we considered vulnerability as a combination of sensitivity and adaptive capacity, and selected
corresponding variables from these two dimensions to construct vulnerability indicators (Table 1).

In terms of extreme heat sensitivity, the more sensitive groups are the elderly and children. Many
studies have shown that children and the elderly have higher morbidity and mortality in extreme hot
weather [5,10,16,46]. Therefore, we selected the proportion of the population under 5 years old and
over 65 years old as two sensitivity variables. In addition, the increase of urban building density and
impervious surface area caused by urbanization can significantly alter the surface energy budget and
leads to higher temperature than rural areas, namely the urban heat island effect [47,48]. Warmer air
caused by the urban heat island increases heat load stress of urban residents, potentially raising the
threat of mortality [49]. This means that residents living in cities suffer from higher risk of extreme
heat [50]. Hence, the proportion of urban population was also used as one of the sensitivity indicators.

Adaptive capacity is the general ability of institutions, systems, and individuals to adjust to
potential harm, to take advantage of opportunities, or to cope with the consequences of climate
variability and change [51]. In terms of adaptive capacity to extreme heat, it is used to depict ability
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of a city to respond or adapt to extreme heat hazard. It can be measured by some variables such as
the economic level, medical resources, cooling facilities, and information acquisition capabilities, etc.
In this study, we selected six variables to examine urban adaptive capacity to extreme heat hazard
(Table 1). Economic level reflects the economic ability of a city to cope with extreme heat hazard.
Educational level indicates the risk perception level of urban resident to extreme heat hazard. Medical
level measures the health protection resources of a city. Information level describes the ability to obtain
warning information of extreme heat hazard. Water and green space have the effect of mitigating
extreme heat risk, which reflect the city’s ability to cope with extreme heat hazard.

2.2. Data Source and Processing

2.2.1. Data Source

In view of the availability of research data, in this paper, the objects of risk assessment to extreme
heat were 296 prefecture-level cities in the China City Statistical Yearbook. The Hong Kong Special
Administrative Region of China, the Macao Special Administrative Region of China, and Taiwan
Province, as well as autonomous prefectures or leagues of some minority nationality areas were outside
the scope of this study.

The temperature data used for the analysis of extreme heat hazard in this paper were from the
dataset of daily climate data from Chinese surface stations for global exchange (V3.0) on the China
Meteorological Data Service Center (http://data.cma.cn/en). We selected a national meteorological
station in each city and collected daily maximum temperature data from 1960 to 2016. Because there
are no national meteorological stations in 23 cities, or part of the annual data is missing, we used
national meteorological stations data from adjacent cities to replace them. Finally, the daily maximum
temperature data of 273 national meteorological stations from 1960 to 2016 were collected (Figure 2).
The socioeconomic statistical data used for the analysis of exposure and vulnerability were derived from
China City Statistical Yearbook (2017), the Sixth National Census of China (2010), and the statistical
yearbooks of each city.
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2.2.2. Data Processing

In view of different scales and magnitudes of the variables in Table 1, a standardization of the
initial value was required. This was undertaken using the method in Equation (1):

Yi j = (xi j − x jmin)/(x jmax − x jmin) (1)

where Yij is the standardized value of the indicator; xij is the original value of the indicator; xjmin and
xjmax are the minimum and maximum value of each indicator, respectively; i is the number of the city;
and j is the serial number of the indicator. (i=1, 2, . . . m; j=1, 2, . . . n).

Entropy is a common objective weighting method. It reflects the importance of indicators by
calculating the difference between the numerical values of the objective indicators [52]. Compared
with the subjective weighting method, the weights obtained through entropy have higher reliability
and accuracy [53]. Therefore, the entropy method was applied to calculate the weight of each indicator.
The calculation steps of this method are as follows:

Step 1: Calculate the proportion of indicators

P = Yi j/
m∑

i=1

Yij (2)

where Pij represents the proportion of i city in the j indicator; Yij is the standardized value of the
indicator.

Step 2: Calculate the entropy value

e j =
1

ln m

m∑
i=1

Pi j ln Pi j (3)

where ej represents the entropy of indicator j.
Step 3: Calculate the indicator weight

ω j = (1− e j)/
n∑

j=1

(1− e j) (4)

where wj is the weight of indicator j (Table 1).
The extreme heat risk index (EHRI) was developed based on risk assessment framework mentioned

above. The EHRI was calculated as a combination of hazard, exposure, and vulnerability. Within
the model, separated quantifications of hazard index, exposure index, and vulnerability index were
given to determine variations in extreme heat risk levels. Compared with addition and subtraction,
multiplication and division could express the synergistic relationship among various indexes more
effectively [36,54]. Therefore, the EHRI value was calculated using a multiplicative model described by
Equation (5):

EHRIi = HIi × EIi ×VIi
EHRIi = HIi × EIi × SIi/AIi

(5)

where HIi is the hazard index in city i, EIi is the exposure index in city i, and VIi corresponds to the
vulnerability index of city i. HIi and EIi were calculated using a weighted summation method. VIi was
calculated by sensitivity index and adaptive capacity index. As mentioned above, sensitivity has a
positive effect on the vulnerability, while adaptive capacity has a negative effect on the vulnerability.
Therefore, the VIi is calculated using the ratio of SIi to AIi. The VIi is in proportion to SIi, and in contrast
to AIi. SIi and AIi were also calculated using a weighted summation method. After calculating HIi, EIi,
and VIi and normalizing each to a scale of 0 to 1, the final EHRI value was calculated and obtained
using Equation (5).
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3. Results

3.1. Extreme Heat Hazard

3.1.1. Extreme Heat Characteristics

According to the five variables of extreme heat hazard, the HDs, HI, HWF, HWD, and HWI
were identified and counted in 296 cities in China from 1960 to 2016. The resulting values of each
variable were grouped into five categories using natural breaks method to show the characteristics and
spatial distributions of extreme heat variables at the prefecture-level city in ArcGIS software. Natural
breaks method is a standard classification method in ArcGIS. Natural breaks classes are based on
natural groupings inherent in the data. Class breaks are identified that best group similar values and
that maximize the differences between classes. Figure 3a shows that the annual average HDs in 23
cities exceed 30 days, and the annual average HDs in 38 cities range from 20 to 30 days. The spatial
distribution shows that, except for Hami and Turpan of Xinjiang Uygur Autonomous Region in the
north of China, higher HDs values are mainly located in the south of China, especially in western East
China, eastern Central China, and South China. In terms of annual average HI, seven cities present the
highest HI values, and these cities are more spatially dispersed (Figure 3b). In addition, it can be found
that although the annual average HDs in the north of China are less than that in the south of China, the
HI values in the north of China are generally higher than in the south.
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Figure 3. Spatial distribution of urban hot days (a) and heat intensity (b) in China.

Figure 4a shows that the annual average HWF in 54 cities exceed three times. Among the 54
cities, there are 20 cities with annual average HWF exceeding four times, and four cities exceeding
five times. Higher HWF values are mainly concentrated in the south of China, especially in southern
East China and eastern Central China. In the north of China, heat wave events mainly occurred in
southern North China. Figure 4b shows that the annual average HWD in 39 cities exceed 20 days, of
which eight cities present the highest HWD values exceeding 30 days. Turpan has the highest annual
average HWD value with 96 days, followed by Lishui (Zhejiang province), Sanming (Fujian province),
Yingtan (Jiangxi province), Shangrao (Jiangxi province), Nanping (Fujian province), Hengyang (Hunan
province), and Ji’an (Jiangxi province). These cities are mainly concentrated in southern East China.
Figure 4c shows that the cumulative HWI values in 26 cities exceed 2000 ◦C from 1960 to 2016, of which
10 cities present the highest cumulative HWI values exceeding 3000 ◦C.
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Among all cities in China, Turpan has the largest values of HDs, HI, HWF, HWD, and HWI. There
are two main reasons: (1) The climate type in the northwest of China is temperate continental desert
climate with large evaporation and very little rainfall; (2) the topography of Turpan is a basin at an
altitude of –155 m, which is the lowest place in China. Turpan city is surrounded by mountains, and
the heat generated by subtropical high pressure cannot be dissipated.

3.1.2. Spatial Pattern of Extreme Heat Hazard

In order to reveal the spatial pattern of extreme heat hazard of China’s cities, the extreme heat
hazard index of each city was calculated using a weighted summation method based on the annual
average values of HDs, HI, HWF, HWD, and HWI of each city from 1960 to 2016. The values of
hazard index were grouped into five categories using the natural breaks method in ArcGIS software.
The results are shown in Figure 5. Very high values (0.1909~1) of hazard index were found in 56
cities located in southern East China, southeastern Central China, northeastern Southwest China, and
Xinjiang, such as the whole Jiangxi province, inland areas of Fujian province (e.g., Sanming, Nanping,
Fuzhou, Putian), southwestern Zhejiang province (e.g., Lishui, Jinhua, Hangzhou, Quzhou), southern
Anhui province (e.g., Wuhu, Xuancheng, Huangshan), etc. Overall, the cities with the highest levels
of hazard index are mainly distributed in the south of China, while there are relatively few cities in
the north of China. High values (0.1046~0.1908) of hazard index were found in 82 cities concentrated
in inland China and South China. Medium values (0.0531~0.1045) of hazard index were found in 34
cities concentrated in eastern North China and coastal areas of East China. Lower values (0~0.0530) of
hazard index were found in 124 cities located in Northeast China, northern North China, Southwest
China, Northwest China, and Shandong Peninsula.
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3.2. Extreme Heat Exposure and Vulnerability

The extreme heat exposure index was calculated using a weighted summation method based
on total population and population density of each city in 2016. The values of exposure index were
grouped into five categories using natural breaks method in ArcGIS software. The results are shown in
Figure 6a.
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After calculating the urban sensitivity index and adaptive capacity index, vulnerability index of
extreme heat was calculated using Equation (5). The values of vulnerability index were grouped into
five categories using natural breaks method in ArcGIS software. The results show that the spatial
distribution of the urban vulnerability index is relatively scattered (Figure 6b). Very high values
(0.3824~1) of vulnerability index were found in 57 cities located in western East China, northeastern
Central China, central, southern, and eastern Southwest China, central and eastern South China,
eastern Gansu province, western Ningxia province, and other cities in North China. High values
(0.2627~0.3823) of vulnerability index were found in 71 cities concentrated in eastern Northwest
China, southern North China, northern and central East China, south of Central China, northeastern
Southwest China, northeastern South China. Medium values (0.1726~0.2626) of vulnerability index
were found in 74 cities concentrated in Central China, Northwest China, East China, and Northeast
China. Lower values (0~0.1725) of vulnerability index were found in 94 cities located in central and
northern coastal areas of Eastern China, Northeastern China, North China, and Southwest China.

3.3. Urban Extreme Heat Risk

The EHRI of each city was calculated using Equation (5), and the values of EHRI were grouped into
five categories using natural breaks method in ArcGIS software (Figure 7). The results show that the EHRI
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at the same level has obvious spatial agglomeration characteristics. Very high values (over 0.0048) of EHRI
were found in 48 cities located in northeastern and southern Central China, southwestern East China,
eastern Southwest China, and some cities in South China. High values (0.0025~0.0047) of EHRI were
found in 58 cities concentrated in Central China, central East China, and central South China. Medium
values (0.0014~0.0024) of EHRI were found in 64 cities concentrated in western Central China, coastal
areas and northern South China. Lower values (0~0.0013) of EHRI were found in 126 cities located in
Northeast China, Northwest China, Southwest China, and northern North China.
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To reveal the variation in the EHRI spatial pattern, the Getis-Ord Gi* statistic for the EHRI of
each city was calculated using the Hot Spot Analysis tool of ArcGIS. The Gi* statistic is a Z score that
indicates where high or low EHRI values are spatially clustered [55,56]. If the Gi* is positive and
statistically significant, the city is identified as a hot spot, which implies it is surrounded by other cities
with high EHRI values. If the Gi* is negative and statistically significant, the city is identified as a
cold spot, which indicates it is surrounded by other cities with low EHRI values. Figure 8 shows the
results of EHRI hotspot analysis. The hotspot areas (values ranging from 3.7598 to 15.7721) are mainly
concentrated in northern and eastern Central China, western East China, eastern Southwest China,
and northeastern South China. The secondary hotspot areas (values ranging from 0.8409 to 3.7597) are
mainly distributed around hotspots. The cold spots (values ranging from −2.5514 to −1.1096) and the
secondary cold spots (values ranging from −1.1095 to −0.3848) are mainly located in Northeast China,
Northwest China, and Southwest China.Sustainability 2020, 12, x FOR PEER REVIEW 11 of 17 
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3.4. Dominant Factors of Urban Extreme Heat Risk

In order to explore the dominant factors of urban extreme heat risk, the values of hazard index,
exposure index, and vulnerability index of each city were divided into two categories, namely high level
and the low level, using the natural breaks method in ArcGIS software. According to the combination
relationship between different indexes, the overlapping method was adopted to classify the dominant
factor types of urban extreme heat risk. There are four dominated types: (1) Cities with high hazard
index level and low vulnerability index level are classified as hazard-dominated type; (2) cities with
high vulnerability index level and low hazard index level are classified as vulnerability-dominated
type; (3) cities with low hazard index level, low vulnerability index level, and high exposure index
level are classified as exposure-dominated type; and 4) cities with low values for three indexes are
classified as low risk type. Figure 9 shows the spatial distribution of these four types of cities in China.
The number of hazard-dominated cities, exposure-dominated cities, vulnerability-dominated cities,
and low risk cities in China is 80, 27, 107, and 82, and the percentage of total cities is 27.03%, 9.12%,
36.15%, and 27.70%, respectively.

Sustainability 2020, 12, x FOR PEER REVIEW 11 of 17 

 

 

Figure 8. Hot spot and cold spot areas of extreme heat risk index in China. 

3.4. Dominant Factors of Urban Extreme Heat Risk 

In order to explore the dominant factors of urban extreme heat risk, the values of hazard index, 
exposure index, and vulnerability index of each city were divided into two categories, namely high 
level and the low level, using the natural breaks method in ArcGIS software. According to the 
combination relationship between different indexes, the overlapping method was adopted to classify 
the dominant factor types of urban extreme heat risk. There are four dominated types: 1) Cities with 
high hazard index level and low vulnerability index level are classified as hazard-dominated type; 2) 
cities with high vulnerability index level and low hazard index level are classified as vulnerability-
dominated type; 3) cities with low hazard index level, low vulnerability index level, and high 
exposure index level are classified as exposure-dominated type; and 4) cities with low values for three 
indexes are classified as low risk type. Figure 9 shows the spatial distribution of these four types of 
cities in China. The number of hazard-dominated cities, exposure-dominated cities, vulnerability-
dominated cities, and low risk cities in China is 80, 27, 107, and 82, and the percentage of total cities 
is 27.03%, 9.12%, 36.15%, and 27.70%, respectively. 

 

 

 

Figure 9. Spatial distribution of different dominant factor cities. 

In terms of distribution of various types, the hazard-dominated cities are mainly located in East 
China, accounting for 47.5% of total hazard-dominated cities in China. The exposure-dominated cities 
are also mainly concentrated in East China, accounting for 52.9% of total exposure-dominated cities 
in China, mainly due to a large population in East China, accounting for 26.9% of China’s population. 

Figure 9. Spatial distribution of different dominant factor cities.

In terms of distribution of various types, the hazard-dominated cities are mainly located in East
China, accounting for 47.5% of total hazard-dominated cities in China. The exposure-dominated cities
are also mainly concentrated in East China, accounting for 52.9% of total exposure-dominated cities in
China, mainly due to a large population in East China, accounting for 26.9% of China’s population.
The vulnerability-dominated cities are distributed in all regions, with the largest number in Central
China, accounting for 28.0% of total vulnerability-dominated cities in China. The low risk cities are
mainly distributed in Northeast China, Southwest China, North China, and Northwest China, with the
largest number in Northeast China, which accounts for 26.8% of total low risk cities in China.

In terms of different regions, the number of low risk cities in Northeast China, North China, and
Southwest China is the largest, accounting for 64.71%, 45.45%, and 47.37% of the total regional cities,
respectively. The number of vulnerability-dominated cities and low risk cities in Northwest China is
the same, both of which account for 39.39% of the total regional cities. In South China and Central
China, the number of vulnerability-dominated cities is the greatest, accounting for 42.11% and 71.43%
of the total regional cities, respectively. The number of hazard-dominated cities in East China is the
largest, accounting for 48.72% of the total regional cities (Table 2).
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Table 2. Number of different dominated types of urban extreme heat risk in different area of China.

Country/Area Total
Hazard-

Dominated
Cities

Percentage
Exposure-

Dominated
Cities

Percentage
Vulnerability-
Dominated

Cities
Percentage Low Risk

Cities Percentage

China 296 80 27.03% 27 9.12% 107 36.15% 82 27.70%
Northeast China 34 0 0 4 11.76% 8 23.53% 22 64.71%
Northwest China 33 7 21.21% 0 0 13 39.39% 13 39.39%

South China 38 13 34.21% 4 10.53% 16 42.11% 5 13.16%
Central China 42 12 28.57% 0 0 30 71.43% 0 0

East China 78 38 48.72% 14 17.95% 17 21.79% 9 11.54%
North China 33 3 9.09% 4 12.12% 11 33.33% 15 45.45%

Southwest China 38 7 18.42% 1 2.63% 12 31.58% 18 47.37%

4. Discussion and Conclusion

4.1. Discussion

In this paper, we establish the Risk Assessment Framework of Extreme Heat based on the risk
analysis of IPCC to understand the extreme heat risk as a comprehensive function of hazard, exposure,
and vulnerability and develop an extreme heat risk index to measure the risk of extreme heat risk in
296 prefecture-level cities in China.

In previous studies, scholars had different descriptions for the concepts of hazard, exposure, and
vulnerability. In terms of hazard, according to existing literatures [26,57], we selected some variables
from the extreme heat disaster itself, such as the intensity, frequency, and duration of disaster. Based
on these variables, we described the characteristics of extreme heat hazard from 1960 to 2016 in cities
and reveal the spatial pattern of extreme heat hazard in Chinese cities. In terms of exposure, many
studies [58–60] use alternative indicators related to the disaster itself, while we believe that exposure
to disaster means being in a situation where it might affect people. Therefore, we chose population
exposure to measure the probability that a city may be affected by extreme heat hazard. Here, our
hypothesis is that a city with large population or higher population density is relatively more likely
to be affected by extreme heat hazard, that is, the city’s exposure degree is higher. Therefore, we
selected the total population and population density to measure the extreme heat exposure of the
city. In terms of vulnerability, some studies consider it as a combination of exposure, sensitivity, and
adaptive capacity [23,41,61,62]. We believe that vulnerability is an inherent attribute of a place, and it
can be completely independent of external disasters. That is to say, regardless of whether the disaster
has an impact on the place or not, the potential vulnerability of the place exists. However, when
disasters occur, the places with greater vulnerability face greater risk and the consequences will also be
more serious. Therefore, instead of considering the impact of external disaster events, we measured
vulnerability from local sensitivity and adaptive capacity.

Based on the different understandings above, this paper chose different alternative indicators and
risk assessment methods. In our opinion, considering the availability of prefecture-level city data,
the framework and indicator system constructed in this paper is more conducive to describing the
characteristics of extreme heat hazard in Chinese cities, revealing the pattern of extreme heat risk in
Chinese cities, and better realizing the comparison of the levels of extreme heat risk in different cities.

From the spatial pattern of urban risk to extreme heat in China, we can find that the formation of
this spatial pattern is still mainly controlled by natural geographical conditions such as climate and
topography. First, cities with high risk levels of extreme heat are mainly concentrated in the eastern
monsoon region of China. In contrast, urban risk levels of extreme heat in the arid and semi-arid
regions of the northwest and the Qinghai-Tibet Plateau are very low. Second, in the eastern monsoon
region, the boundary between the north of China and the south of China (0 ◦C isotherm) further
outlines the basic pattern of extreme heat risk in Chinese cities. The majority of cities with high risk
levels are located in the south of the 0 ◦C isotherm, while in the north of the 0 ◦C isotherm, the number
of cities with high risk levels of extreme heat decreases as latitude increases. In our view, it is very
difficult to change the natural geographical pattern that affects the risk of extreme heat in Chinese cities.
In this case, how cities adapt to extreme heat environment becomes even more important. Therefore,
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actively adjusting urban systems and improving the city’s adaptive capacity are the most important
and realistic choices to deal with extreme heat risk.

The attitude of the international community towards climate change has shifted from passive
response to active adaptation, with more emphasis on systematic behavioral adjustment to mitigate the
adverse effects of risk. With respect to extreme heat hazard, many cities have developed corresponding
action plans and adaptation countermeasures, such as the Heat Wave Plan for England, Toronto Hot
Weather Response Plan, and Chicago Climate Action Plan [63,64]. Although related actions such
as early warning of high temperature weather, online reports of heat stroke cases, and protection
of outdoor workers have been carried out in China, specialized planning actions and systematic
adaptation countermeasures for different cities have not yet been formed. In terms of urban planning,
due to a long-term lack of awareness of climate change adaptation, cities are severely inadequate in
their ability to resist, recover, and adapt to risk of uncertainty [65]. It is encouraging that the Chinese
government launched a pilot project of climatic adaptability cities in 2017, which required that climate
change risk and extreme weather events must be considered in urban planning, but there is still a long
way to go.

Some limitations should also be recognized in this paper. First, considering the integrality
and reliability of the data from national meteorological stations, this study used data from national
meteorological stations to analyze the extreme heat risk of prefecture-level cities. In the future, data
from some non-national meteorological stations can also be used to reveal the spatial pattern of extreme
heat hazard at the county level in China. Second, heat-related morbidity or mortality is an important
indicator to verify the risk assessment results. Unfortunately; however, such data are very difficult
to obtain in China. Third, compared with prefecture-level cities, the concentration of population
and socio-economic elements in municipal districts is higher. Coupled with the impact of the urban
heat island effect, the risk of extreme heat may be more prominent. However, it is very difficult to
collect population and socio-economic statistics at the municipal district level. In the future, the author
will select typical cities to carry out systematic research to further improve the research content of
this article.

4.2. Conclusion

In this study, we constructed a risk assessment framework of extreme heat to understand the
extreme heat risk from three dimensions (including hazard, exposure, and vulnerability), collected
meteorological data from 1960 to 2016 and socioeconomic statistics, developed an extreme heat risk
index and evaluation indicator system, revealed spatial pattern of urban extreme heat risk in 2016, and
explored its dominant factors and distribution of different types.

This study led to several conclusions. First, cities with high levels of extreme heat hazard are
mainly concentrated in the south of China, especially in the southeast of China. Overall, the urban
hazard index to extreme heat showed a trend of gradually increasing from north to south and from
west to east. Second, the extreme heat risk index in Chinese cities shows a significant agglomeration
characteristic. Cities with high levels of extreme heat risk are mainly concentrated in northern and
eastern Central China, western East China, eastern Southwest China, and northeastern South China,
while cities with low levels of extreme heat risk are mainly located in Northeast China, Northwest China,
and Qinghai-Tibet Plateau. The formation of this spatial pattern is still mainly controlled by natural
geographical conditions such as climate and topography. Finally, the number of hazard-dominated
cities, exposure-dominated cities, vulnerability-dominated cities, and low risk cities in China accounts
for 27.03%, 9.12%, 36.15%, and 27.70% of the total number of cities, respectively.
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