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Abstract: This paper proposes a new methodology for predicting aggregate flight departure delays
in airports by exploring supervised learning methods. Individual flight data and meteorological
information were processed to obtain four types of airport-related aggregate characteristics for
prediction modeling. The expected departure delays in airports is selected as the prediction target
while four popular supervised learning methods: multiple linear regression, a support vector machine,
extremely randomized trees and LightGBM are investigated to improve the predictability and accuracy
of the model. The proposed model is trained and validated using operational data from March 2017
to February 2018 for the Nanjing Lukou International Airport in China. The results show that for
a 1-h forecast horizon, the LightGBM model provides the best result, giving a 0.8655 accuracy rate
with a 6.65 min mean absolute error, which is 1.83 min less than results from previous research.
The importance of aggregate characteristics and example validation are also studied.

Keywords: air traffic; departure delay prediction; aggregate characteristics; supervised learning;
LightGBM

1. Introduction

With the rapid development of civil aviation, flight delays have become an important subject
and problem for air transportation systems all over the world. The aviation industry is continuing
to suffer from economic losses associated with flight delays all the time. According to data from the
Bureau of Transportation Statistics (BTS) of the United States, more than 20% of U.S. flights were
delayed in 2018 [1]. In China, the abnormal flights rate for 2018 was 80.13%, which means more than
850,000 flights were delayed during that year [2]. These flight delays have a severe economic impact
in the U.S. that is equivalent to 40.7 billion dollars per year [3], while a similar cost is expected for
China. Passengers suffer a loss of time, missed business opportunities or leisure activities, and airlines
attempting to make up for delays leads to extra fuel consumption and a larger adverse environmental
impact. In order to alleviate the negative economic and environmental impacts caused by unexpected
flight delays, and balance increasing flight demand with growing flight delays, an accurate prediction
of flight delays in airports is needed.

Fundamentally, flight delays occur due to the lack of supply of airspace capacity that meets
demand for air travel [4,5]. Some researchers have noted that insufficient air traffic control and
irregularity of airline operations can also lead to flight delays [6,7], while adverse weather could also
be a dominant factor that can cause nearly 75% of system delays [8,9]. Flight delays can be generated
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by many different reasons involving multiple different civil aviation agents. Any disruption in the
air traffic system caused by these factors can lead to more subsequent delays for flights involving
numerous airports and airlines [10–12].

Generally, current research methods for delay prediction can be divided into two groups: delay
propagation-based methods and data-driven methods. Delay propagation-based methods focus on
studying the phenomenon of flight delay propagation in the air transportation network, and attempt to
predict flight delay based on the underlying mechanism of that network [13–15]. Beatty et al. studied
the propagation of delays by examining the initial delay, the frequency of delays and airline schedule
connectivity [16]. Allan et al. studied the principal causes of aviation delays using the Integrated
Terminal Weather Forecast System (ITWS) [10]. Xu et al. proposed using Bayesian networks to model
the delay generated and procedures to absorb delays in airports [17,18]. Pyrgiotis et al. developed a
queuing network model to study the delay propagation [19]. Some other models used agent-based
methods to simulate the potential delay propagation [20,21].

Data driven analyses have been very popular methods in recent years, which attempt to predict
flight delay directly by using data mining, statistical analysis and/or machine learning techniques,
rather than by exploring the delay propagation mechanisms. Many popular data driven methods have
been used to predict flight delay, including the random forest algorithm, artificial neural network, logit
probability and deep learning. The critical aim of these methods is to extract appropriate influential
factors from the real system to build reliable and high-efficient prediction models. Abdel-Aty et al. [4]
used mathematical frequency analysis and statistical analysis techniques to identify the periodic
patterns of arrival delay, including multinomial logistic regression and binary logistic regression
methods. The time of day, day of the week, season, flight distance, precipitation and scheduled
time intervals were considered to be significantly correlated with arrival delays. Rebollo et al. [3]
proposed network-based air traffic delay prediction models, which consider both temporal and spatial
delay states as explanatory variables, and used random forest algorithms to predict departure delays.
Khanmohammadi et al. [22] introduced a multi-level input layer artificial neural network (ANN) to
predict the delays of incoming flights. The day in a month, day of the week, original airport, scheduled
departure time and actual departure time were used as inputs in the model. Lee et al. [23] used
parallel algorithms to predict flight arrival delays along with consideration of both flight information
(scheduled departure and arrival times) and weather conditions in departure and arrival airports.
Rodriguez et al. [24] used an asymmetric logit probability model to estimate and predict the daily
probabilities of delays in aircraft arrivals. They identified that the origin-departure delay and distance
between airports are significant delay factors distinct from the departure delay, the size of airline,
the size of airport and the day of the flight. Yu et al. [25] employed a deep belief network method to
mine the inner patterns of flight delays. Some new variables that have been introduced, such as the
delay of the previous flight, the air route situation and airport crowdedness are now considered to be
important influential factors for flight delay prediction accuracy.

Flight delay prediction has already been investigated by many researchers. However, most of
the previous research focuses on the prediction of expected departure delays from an aircraft aspect.
Also, the main influence elements considered in these models are the time and weather-related factors,
while some aggregate characteristics involving flight plans and airport delays have not yet been
studied closely. Due to the excellent self-learning ability of machine learning, which can analyze
bigger, more complex data and deliver faster, more accurate results, it is now easier and much quicker
to extract new knowledge from the latest available information using machine learning than when
using conventional methods, especially when there is complexity and uncertainty in air transportation
systems. Thus, the goal of this paper is to propose a methodology that can be used to predict flight
departure delays in airports by exploring supervised learning methods considering aggregate flight
data and local weather information in airports. Firstly, we collected raw data of realistic operational
flights with meteorological information for airports. Then, the expected departure delay time in the
airport was set as the prediction target, and the individual flight data and meteorological information
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were processed to obtain four types of airport-related aggregate characteristics for prediction modeling.
Finally, several popular machine learning methods include multiple linear regression, support vector
machine, extremely randomized trees and LightGBM were investigated to improve the predictability
and accuracy of the proposed model. The methodology was applied to Nanjing Lukou International
Airport in China for case study.

The rest of paper is organized as follows: Section 2 briefly introduces the flight delays definition
followed by the research objective. Section 3 describes the process of data collection and preprocessing,
as well as the basic process of prediction methods based on machine learning. Section 4 discusses
the performance of alternative machine learning algorithms according to the prediction results,
and analyzes the impacts of different features. Section 5 summarizes conclusions and indicates next
research steps.

2. Problem Statement

A flight delay is defined as an airline flight taking off and/or landing later than its scheduled
time. The scheduled time is comprised of taxi-out time, airborne time and taxi-in time, as shown in
Figure 1. Usually, a flight will be considered as delayed if it is 15 min later than its scheduled time [26],
and currently approximately 95% of the delays occur at the airports.
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Figure 1. Upper-air-route model linking Beijing to Guangzhou.

Airport delays may result from airlines operations, air traffic congestion, weather, air traffic
management initiatives, etc. Most of the reasons are stochastic phenomena which are difficult to
predict timely and accurately. Table 1 illustrates the reasons of abnormal flight delays in China in 2018
released by Civil Aviation Administration of China (CAAC), among which weather and airlines are
two major reasons that account for 68.6% of the total delays.

Table 1. Reasons of abnormal flight delays in China in 2018.

Reasons for Abnormal Flights Proportion in Total Compared with Previous Year

Weather 47.46% −3.83%
Airlines 21.14% 12.52%

Air traffic control 2.31% −5.42%
Others 29.09% −3.29%

In this research, we focus on the prediction of flight departure delays in airports, determining
how long the flights may be delayed in airports instead of whether some flights would be delayed.
The expected flight departure delayed time per hour in airports was selected as the concerned metric.
Noticeable, all flight departure delay time (actual departure time minus planned departure time) was
counted in, not just for the delayed flights in actual operations (flights delayed more than 15 min).
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Also, some new aggregate characteristics for airport states such as flight plan characteristics and delay
characteristics are proposed in this research.

3. Methods

This section elaborates the methodology framework, starting with data collection (Section 3.1),
followed by characterization of airport states (Section 3.2) and prediction modeling (Section 3.3).

3.1. Data Collection

Nanjing Lukou International airport (ZSNJ) was selected as the study case in this research.
As the main airport serving Nanjing in China, it handled approximated 25.8 million passengers and
374.2 million tons of freight with more than 270 routes in 2017, as shown in Figure 2. An archive of
detailed data for individual flights and the local weather of ZSNJ airport were collected for a one-year
period from March 2017 to February 2018.
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Figure 2. Flight routes for Nanjing Lukou International Airport.

The individual flights data were obtained from the Civil Aviation Administration of China (CAAC),
and the critical data fields include the operational date, flight number, aircraft type, planned/real
departure airports, planned/real arrival airports, planned/real departure time and planned/real arrival
time, etc., as shown in Table 2. The difference between real departure time and planned departure time
is calculated as the departure delays for each flight. Figure 3 shows that there were 105,993 flights
departing from ZSNJ between 1 March 2017 and 28 February 2018, including 68,165 (64.3%) flights
delayed for more than 15 min, 41,693 (39.3%) flights delayed for more than 30 min, 28,183 (26.6%)
flights delayed for more than one hour, and 8697 (8.2%) flights delayed for more than 2 h. The most
severe delay for a flight lasted for 957 min.

Table 2. Critical individual flight data fields.

Date Flight Number R_Arrap P_Deptime P_Arrtime R_Deptime R_Arrtime

1 March 2017 JYH1119 ZGNN 201703011150 201703011415 201703011202 201703011431
1 March 2017 CHH7274 ZSAM 201703011605 201703011731 201703011647 201703011811
1 March 2017 CSZ9842 ZGSZ 201703011105 201703011312 201703011119 201703011328
1 March 2017 CSZ9682 ZGGG 201703011605 201703011801 201703011614 201703011819
1 March 2017 CDG4695 ZPPP 201703010925 201703011210 201703010931 201703011233
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Figure 3. Flight delays distribution in ZSNJ in 2017.

The meteorological data were collected in a historical archive that is publicly accessible from the
website of WEATHER UNDERGROUND: https://www.wunderground.com/. The data set includes
8860 pieces of meteorological data of each hour of the airport ZSNJ every day. The data fields used
include observation time, air temperatures, dew point temperatures, humidity, wind directions, wind
speeds, gust rates, pressures and weather conditions. Some formats of the raw weather data are shown
in Table 3.

Table 3. Sample of weather raw data.

Date Time Temp Dew Point Humidity Wind Direction Wind Speed Pressure Condition

1 January 2017 1:00 PM 52 ◦F 45 ◦F 76 % E 7 mph 30.18 in Fog
1 January 2017 2:00 AM 32 ◦F 32 ◦F 100 % CALM 0 mph 30.30 in Fog
1 January 2017 3:00 AM 34 ◦F 32 ◦F 93 % CALM 0 mph 30.27 in Fog
1 January 2017 4:00 AM 32 ◦F 32 ◦F 100 % VAR 2 mph 30.24 in Fog
1 January 2017 5:00 AM 32 ◦F 32 ◦F 100 % NNE 2 mph 30.24 in Fog
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Initial data cleaning was also conducted to remove some irrelevant characteristics and to delete
some exception data. For example, the cancelled and returned flight records were also removed from
the raw data because the flight delays cannot be computed properly. In total there were 388 departure
flights cancelled and 32 flights returned due to the thunderstorms, heavy snow and other severe
weather in the raw data.

3.2. Characterization of Airport States

The aggregate of flight states in airports with weather information may reflect not only the current
delay situation at the airport, but also changing trends and repetitive traffic patterns. Accordingly,
some aggregate characteristics for airport states were extracted from the raw data for prediction
modeling after investigating experts and air traffic controllers working in airports.

Based on the obtained raw data, four types of aggregate characteristics were considered in this
research, including the time characteristics, flight plan characteristics, delay characteristics and local
weather characteristics as shown in Table 4. The flight plan characteristics and delay characteristics for
airports are two new types of features proposed in this paper and not well studied in previous research.

https://www.wunderground.com/
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Table 4. Aggregate characteristics for airport states.

Aggregate Characteristic Sub-Characteristic

Time characteristics Month, Day of the week, Hour of the day

Flight plan characteristics

Number of planned arrivals/departures before the prediction period,
Number of actual arrivals/departures before the prediction period,
Number of planned arrivals/departures in the prediction period
Accumulated number of arrival/departure demand in the prediction period

Delay characteristics

Number of delayed arrival flights before the prediction period,
Number of delayed departure flights before the prediction period,
Expect delay time of arrival flights before the prediction period,
Expect delay time of departure flights before the prediction period

Local weather characteristics dew point temperature, temperature, humidity, wind direction, wind speed,
pressure and weather condition

The time characteristics are the month, day of the week and hour of the day, for the purpose of
embracing multiple time granularities.

Flight plan characteristics include eight sub-characteristics for the purpose of embracing flight
plan execution information. Notice that the number of planned arrivals/departures before the
prediction period represent the two aggregate flight states (arrivals and departures) just one time
period before the prediction one. These two characteristics are extracted from the scheduled flight plan
determined by civil aviation administration and airlines at least one day before execution, reflecting
the number of flights supposed to arrive in and depart from the target airport in one time period (e.g.,
1 h). These characteristics may also reflect some demand and capacity information for the airport.
The number of planned arrivals/departures in the prediction period is similar to the metric one time
period before the prediction one, but using the data for the predicted time period instead of the prior
time period. The accumulated number of arrival/departure demand in the prediction period represents
the sum of the delayed flights and original planned flight in the prediction period. Different from the
number of planned arrivals/departures proposed above, these characteristics are usually larger than
the planned values, due to some previous planned flights encountering unexpected delays and having
to postpone the departure or arrival time. The number of affected flights can be obtained in advance
and could be very useful information.

The delay characteristics include four sub-characteristics in order to include more detailed flight
delays information for the airport. The number of delayed arrival and departure flights before the
prediction period contain the delay situation of the delayed flights (delayed more than 15 min) for the
airport in the prior time period. The expect delay time of arrival/departure flights before the prediction
period could capture more detailed delay time information for the airport.

The local weather characteristics include all seven sub-characteristics, and the weather conditions
include fair, cloudy, mostly cloudy, fog, haze, rain, heavy rain, snow, heavy snow and thunderstorm.
Note that two weather characteristics, the wind direction and weather condition, are categorical
attributes which cannot be computed directly. Thus, these two types of text labels were converted
into numbers for model building. Also, since different characteristics have very different scales,
features scaling was applied to transform these characteristics to new ones with the same scale.
The standardization method was selected for data transformation according to the formula (1).

x̂i =
xi − E[x]√

Var[x]
(1)

where xi represents the original value of a characteristic sample, E[x] represents the expected
value, Var[x] represents the variance, and x̂i represents the standardized characteristic value.
The standardization method does not bound values to a specific range but is much less affected
by outliers.
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3.3. Prediction Modeling

The research purpose of this paper is to make a prediction of the flight departure delays in airports
based on the proposed multiple aggregate characteristics.

According to the characterization of airport states proposed above, four types of aggregate
characteristics including 22 features in total were considered as inputs for the prediction modeling.
The expected delay time for departing aircraft per hour in airports was considered as the label and
prediction target which were calculated based on the raw data. Thus, the problem proposed in this
research can be treated as a typical supervised learning task.

In order to provide an unbiased evaluation of the proposed model, the data used for modeling
were split into three datasets which are the training dataset, validation dataset and test dataset.
The training dataset is a set of examples used to fit the parameter of the model, the validation dataset
is used for an unbiased evaluating of the model and the tuning of the hyperparameters, and the test
dataset is used for providing an unbiased evaluation of the final model. The dataset division method
of this study is illustrated in Figure 4. Approximately 20% of the original data were split as the test
datasets, while the remains were divided into the training and validation dataset by a 5-fold cross
validation method. The green parts in the figure represent training datasets, while the yellow ones are
the validation datasets.
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The aggregate characteristics proposed in the Section 3.2 were set as explanatory variables,
the expected delay time for departing aircraft per hour in airports were set as labels. Several supervised
learning methods including the multiple linear regression (LinearR), support vector machine (SVM),
extremely randomized trees (ExtraRT) and LightGBM were tested for prediction modeling. ExtraRT
and LightGBM are two popular machine learning models developed in recent years.

The ExtraRT is similar to random forest model. However, in the extreme case, it builds total
randomized trees whose structures are independent of the output values of the learning sample.
While similar to ordinary random forests in that they are an ensemble of individual trees, there are two
main differences: First, each tree is trained using the whole learning sample (rather than a bootstrap
sample), and second, the top-down splitting in the tree learner is randomized. Instead of computing the
locally optimal cut-point for each feature under consideration (based on, e.g., information gain or the
Gini impurity), a random cut-point is selected. This value is selected from a uniform distribution within
the feature’s empirical range (in the tree’s training set). Then, of all the randomly generated splits,
the split that yields the highest score is chosen to split the node. The strength of the randomization can
be tuned to problem specifics by the appropriate choice of a parameter [27,28].

LightGBM is a gradient boosting framework that uses tree based learning algorithms. It contains
two novel techniques: Gradient-based One-Side Sampling and Exclusive Feature Bundling to deal
with large number of data instances and large number of features respectively. It is designed to be
distributed and efficient with the parallel training. The main advantages include the support of parallel
and graphics processing unit (GPU) learning, faster computing speed, higher prediction accuracy and
capability of handling large-scale data [29].

4. Analysis of Experimental Results

The performance of the supervised learning-based prediction models was evaluated for the ZSNJ
airport with the expected departure delay time within a 1-h prediction window.
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4.1. Performance Measures

The mean square error (MSE) and mean absolute error (MAE) were selected as performance
measures for comparing the prediction results of different models. MSE is the ratio of the square sum
of the deviation between the estimated value and the actual value. It can measure the average of the
squares of the error. The smaller the MSE value indicates the higher the prediction accuracy. MAE is
the mean of the absolute error, which may better reflect the actual situation of predicted value error.
The calculation formulas of MSE and MAE are as Equations (2) and (3).

MSE =
1
m

∑m
i=1(yi − ŷi)

2 (2)

MAE =
1
m

∑m
i=1

∣∣∣yi − ŷi
∣∣∣ (3)

where yi represents the original data, ŷi represents the forecast data and m is the number of
prediction samples.

Table 5 shows the performance results in terms of prediction accuracy on the validation set and
test set, separately. Generally, the performance of models on the validation set was slightly worse than
that on the test data. The LightGBM model provided the best accuracy result, giving 0.8655 R-score on
the test data while the SVR model provided the worst result with only 0.8603 R-score.

Table 5. Prediction accuracy for different models on validation and test data. LinearR: multiple linear
regression; SVM: support vector machine; ExtraTR: extremely randomized trees.

Prediction Model
Accuracy

Validation Data Test Data

LinearR 0.8696 0.8625
SVM 0.8674 0.8595

ExtraTR 0.8668 0.8623
LightGBM 0.8763 0.8653

Table 6 shows the performance measures for different supervised learning models. The MAEs
range from 6.64 min to 6.82 min, implying the LightGBM model provided the best performance while
the extremely randomized trees model showed the worst result.

Table 6. Performance measures for different models.

Prediction Model MSE MAE

LinearR 95.47 6.80 min
SVM 97.56 6.69 min

ExtraTR 95.61 6.82 min
LightGBM 93.51 6.64 min

Figure 5 shows the distribution of error values for the proposed four models on the test set.
Figure 5a shows the distribution of the prediction error values of the proposed four methods with the
actual delay values. It can be seen that the prediction errors increased with the growth of actual delay
values. Additionally, most of the prediction errors were less than 15 min when the actual delays were
less than 60 min. However, if the actual delays were larger than 60 min, the prediction errors show
obvious divergences, implying the increase of errors. Figure 5b shows the cumulative distribution of
error values on the test set; it can be seen that all models show similar trends, but the ExtraRT model
reached its maximum error first while the LightGBM reached its maximum last.
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4.2. Characteristic Analysis

The analysis of feature importance enables us to discriminate and study the most impactful
features on the proposed methods. Since the LightGBM model obtained the best performance in this
study, it was used to extract the features for further analysis. Feature importance provides a score
that indicates how valuable each feature was in the construction of the LightGBM within the model,
and the higher score implicates the more important the feature in modeling.

Figure 6 shows the importance for all 22 characteristics used in the prediction model.
The description of characteristics can be found in Section 3.2. It can be seen that accumulated
number of departure demand in the prediction period was the dominating factor in the LightGBM
model, implicating the delayed flights in previous time period have significant influence on the
final results. The more flights delayed from previous time, the more delays may happen in the
following period.
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The number of planned departures in the prediction period and the expected delay time of
departures before the prediction period are two others obvious factors in the model. This implies
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that once some delay happened in airports, the delays can hardly be released in short term; delays in
airports have some time correlation.

The expected delay time of arrivals before the prediction period, hour of the day, and the number
of planned departures before the prediction period are three following characteristics in the model.
The results indicate that although the concerned metric is the departure delays, the arrivals information
could also bring some important information for the final results. The hour of the day reveals that
some “busy hours” may be more likely to generate delays than others, while the planned departures
before the prediction period sometimes affect the delay generation and release in the following time
period. The balance between capacity and demand could be a reasonable explanation.

Of special note is that most local weather characteristics in airports show no obvious effect on the
final results, which seems inconsistent with the reality in airports. One major reason is that all cancelled
and returned flight records were removed from the training data due to calculating inability as delays,
but these flights are usually affected by the severely local weather conditions. Another reason could be
that most of flight departure delays in airports may be affected by the severe weather en-route and/or
in other related airports. Thus, the weather characteristics in local airports have limited effects on the
final prediction results.

Table 7 shows the test error with and without local meteorological data for prediction modeling.
The table shows that the model performances with local weather characteristics were not as good as
those without meteorological data. Two potential reasons are that the cancelled and returned flight
records caused by local weather characteristics can hardly be translated into specific delay time in
departing airports, and the local flight delays are often caused by weather condition en-route or in the
airports of the previous flights, not just in local airports.

Table 7. Model performance measures with and without local weather characteristics.

Model Data Set MSE MAE

LightGBM Without local meteorological data 92.74 6.58 min
With local meteorological data 93.51 6.64 min

ExtraTR
Without local meteorological data 94.05 6.75 min

With local meteorological data 95.61 6.82 min

SVM
Without local meteorological data 97.96 6.69 min

With local meteorological data 97.56 6.69 min

LinearR
Without local meteorological data 95.76 6.78 min

With local meteorological data 95.47 6.80 min

Furthermore, we compared the results with previous research in 2019 [25], which used a deep
belief network method to mine the inner patterns of flight delays with different characteristics including
air route situation, delay of previous flight, airline properties, number of passengers for a flight, aircraft
capacity, boarding option, air traffic control, crowdedness degree of airport and other factors. The MAE
obtained by the LightGBM model in this study was 6.58 while the result was 8.41 with the DBN-SVR
method for delay prediction of departure flights from PEK to HGH.

4.3. Example Validation

Using the LightGBM prediction model trained above, the real flight departure delays in ZSNJ
in March 2018 were also tested for example validation. Figure 7 shows the prediction samples with
the with the actual data within a 1-h prediction window on 1 March 2018. The time of the day ranges
from 6:00 to 24:00, and the predicted expected departure delay time is plotted with the blue dotted line
while the actual data is plotted with the red one. It can be seen that the predicted values fluctuated
with the actual data, and most of the prediction errors were within 8 min.
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All test results for the whole month of March 2018 in ZSNJ are displayed in Figure 8 by heat
maps, which are graphical representation of data where the individual values contained in matrix
are represented as colors. The horizontal axis of each chart represents the date and the vertical axis
represents the hour of the day, the unit of the right axis is minute. Figure 8a shows the actual expected
departure delay time while Figure 8b shows the predicted values. In general, the two heatmaps are
similar especially in severely delayed time blocks, which implies the feasibility and reliability of the
proposed model.
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5. Conclusions

This paper presented a methodology for predicting aggregate flight departure delays in airports
by exploring supervised learning methods. The proposed new model was enabled by four types
of airport-related aggregate characteristics, including time characteristics, flight plan characteristics,
delay characteristics and local weather characteristics. The results obtained show that for a 1-h forecast
horizon, LightGBM model provides the best result, giving 0.8653 accuracy with 6.58 min mean absolute
error, which is 1.83 min less than previous research.

Analysis also found that accumulated number of departure demand in the prediction period is the
dominating factor in the LightGBM model. The number of planned departures in the prediction period
and the expected delay time of departures before the prediction period are two other obvious factors,
while the expected delay time of arrivals before the prediction period, hour of the day, and the number
of planned departures before the prediction period are three following characteristics. Of special note
is that the model performances with local weather characteristics are not as good as those without
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meteorological data. Two potential reason are that the cancelled and returned flight records caused by
local weather characteristics can hardly be translated into specific delay time in departing airports,
and the local flight delays are often caused by weather conditions en-route or in the airports of the
previous flights, not just in local airports.

The prediction model presented in this paper yields a better understanding of delays interactions
between time, flight plan and previous delay. Since we predict the flight departure delays from
the airport aspect, the model could be used for reminding airport managers, air traffic controllers
and passengers to deal with the impending congestion in airports. Future works include exploring
some other explanatory characteristics such as national weather, city-pair, and network states, etc.,
and extending forecast horizon with more accuracy results.
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