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Abstract: Groundwater is one of the most important sources of fresh water all over the world,
especially in those countries where rainfall is erratic, such as Vietnam. Nowadays, machine learning
(ML) models are being used for the assessment of groundwater potential of the region. Credal decision
trees (CDT) is one of the ML models which has been used in such studies. In the present study, the
performance of the CDT has been improved using various ensemble frameworks such as Bagging,
Dagging, Decorate, Multiboost, and Random SubSpace. Based on these methods, five hybrid models,
namely BCDT, Dagging-CDT, Decorate-CDT, MBCDT, and RSSCDT, were developed and applied for
groundwater potential mapping of DakLak province of Vietnam. Data of 227 groundwater wells of
the study area were utilized for the construction and validation of the models. Twelve groundwater
potential conditioning factors, namely rainfall, slope, elevation, river density, Sediment Transport
Index (STI), curvature, flow direction, aspect, soil, land use, Topographic Wetness Index (TWI), and
geology, were considered for the model studies. Various statistical measures, including area under
receiver operating characteristic (AUC) curve, were applied to validate and compare the performance
of the models. The results show that performance of the hybrid CDT ensemble models MBCDT
(AUC = 0.770), BCDT (AUC = 0.731), Dagging-CDT (AUC = 0.763), Decorate-CDT (AUC = 0.750), and
RSSCDT (AUC = 0.766) improved significantly in comparison to the single CDT (AUC = 0.722) model.
Therefore, these developed hybrid models can be applied for better ground water potential mapping
and groundwater resources management of the study area as well as other regions of the world.
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1. Introduction

Groundwater is a vital natural resource for drinking water supply, irrigation and industries in
many countries [1–3]. About 2.5 billion people all over the world depend on groundwater resources
for drinking and agriculture [4]. Most of the world’s groundwater resources are being overexploited,
and thus acute water shortage is expected by 2025 all around the world as the fresh water resources
are limited [5–7]. Population growth creates higher demand for water for domestic use, in addition
to industrial development and extension of irrigated areas [8,9]. This problem is more prevalent in
the arid and semi-arid regions, which have faced numerous drought events in recent years due to
erratic scanty rainfall [10,11]. Thus, the identification and mapping of groundwater potential zones
is an important task to recharge the aquifer. In recent years, several researchers, namely Magesh,
Chandrasekar and Soundranayagam [1], Oikonomidis, Kazakis, Voudouris et al. [12], Rahmati, Samani,
Mahdavi, et al. [13], and Zabihi, Pourghasemi, Pourtaghi, et al. [14], have studied groundwater potential,
considering geological, hydrological and climatic factors using statistical methods, remote sensing, and
geographic information system (GIS) technology [15]. Traditionally, expert’s opinion-based models or
weighted models have been used for groundwater potential mapping. However, these approaches are
considered subjective and uncertainty [16,17].

Nowadays, artificial intelligence (AI)-based machine learning (ML) models are being utilized
for mapping of groundwater potential with the advancement of spatial data acquisition and analysis.
ML models are based on computational algorithms to deal with complex problems with complex
datasets [18]. Chen, Li, Tsangaratos, et al. [19] used ML models based on Random Forest (RF), Kernel
Logistic Regression (KLR), and Alternating Decision Tree (ADT) for groundwater potential mapping
in China. Naghibi, Pourghasemi and Dixon [20] applied and compared several ML models, namely
Classification and Regression Tree (CART), Boosted Regression Tree (BRT) and RF for GIS-based
groundwater potential mapping in Iran. Lee, Hong and Jung [21] used Artificial Neural Network
(ANN) and Support Vector Machines (SVM) models to develop groundwater potential maps in Korea.
Park, Hamm, Jeon, et al. [22] compared two ML-based models of Multivariate Adaptive Regression
Splines and Logistic Regression (LR) for groundwater potential mapping in Korea. Ozdemir [23]
applied LR for mapping of groundwater potential in Turkey. Other popular ML-based models used
for groundwater potential mapping are Adaptive Network-based Fuzzy Inference System [24], Naïve
Bayes [25], K-nearest neighbor and Quadratic Discriminate Analysis [26]. Although all these single
ML models performed well in the studied regions, there is no model available that can be applied to all
regions including hybrid models [25] for optimal groundwater potential mapping.

With the above objective, the present study was carried out to fill the gap of suitable and better
models by improving the predictive capability of Credal Decision Trees (CDT), which is a popular
machine learning method but quite sensitive with tree construction [27,28]. Different ensemble
frameworks namely Bagging, Dagging, Decorate, Multiboost, and Random SubSpace were used to
develop five hybrid models with base classifier CDT such as BCDT, Dagging-CDT, Decorate-CDT,
MCDT, and RSSCDT. For the model studies, the DakLak province of Vietnam was selected, where
groundwater resources are required to be properly exploited as rainfall in this area is erratic due to
climate change’s effects [29,30]. To validate the models, several statistical measures, including area
under the receiver operating characteristics (ROC) curve (AUC), were applied on the datasets. GIS and
Weka software were used for data preparation, analysis and modeling.

2. Methods Used

2.1. Credal Decision Trees (CDT)

CDT is a classifier which is based on uncertainty measures and imprecise probabilities. CDT was
first proposed in 2003 by Abelléan and Moral to solve the classification problem using credal sets [27].
To avoid complicated decision tree production, a new concept was developed, which is stopping the
classification process from increasing the total uncertainty due to ramification of the decision tree [31].
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Therefore, a new advanced method is built to measure quantitatively the total uncertainty from credal
set based on the theory of Dempster and Shafer, as presented in following equation:

TU(x) = IG(x) + GG(x) (1)

where x is defined as a credal set on frame X, TU is the total uncertainty value, IG is defined as a
general function of non-specificity on the corresponding set of credits and GG is defined as a general
randomness function for a credal set [32].

2.2. Bagging

Bagging is an ensemble technique that combines many ML classifiers together to create more
accurate predictors. The Bagging algorithm is constructed from the combination of Bootstrap and
Aggregating to create a unique overall model [33,34]. Bagging is a sensitive algorithm. In the Bagging
method, small changes in the dataset can cause significant changes in the final results [35]. In this
algorithm, learning data to be used for each learner is obtained by bootstrap sampling, and the learned
learner is used for prediction and the final ensemble [36]. Bagging produces better accuracy as it can
perform more independent learning.

2.3. Dagging

Dagging was first proposed by Ting and Witten in 1977. It uses certain separate samples instead
of Bootstrap samples to extract the basic classifications [37]. The name of Dagging is the original of
Bagging. In the Dagging algorithm, the dataset is used to classify once, and it is also disjointed [38].
In this model, majority voting is used to group the classifications to improve the accuracy of basic
classification prediction [39].

2.4. Decorate

Decorate algorithm was introduced by Melville and Mooney in 2003 [40] to improve training
data by creating artificial data. These data are constructed using the training variables of means and
standard deviation according to the Gaussian distribution. They are added to the training samples.
The difference between Decorate and other ensembles (Bagging and Adaboost) is that Adaboost and
Bagging use only given training variables to create the various classifications [41], whereas Decorate
builds the basic classifications using artificial data, which allows us to no longer be constrained by the
training samples given when managing a set.

2.5. MultiBoost

Multiboost was introduced by Webb in 2000 [42]. This technique is produced by combining
Adaboost and Wagging techniques to reduce the problem of variance and over-fitting [43]. The use
of training boxes with different weights in the Wagging model can reduce the high bias in Adaboost
model [44]. Combination of Adaboost and Wagging is an advantage in the classification process of
weak learning and transforming it into strong learning [42]. Multiboost is formed in three stages. The
first is randomly selecting a subset from the original data which are used to form the models. The
second is the weights, which show the changes in the model prediction. In the third, the new subsets
are chosen from the weighted instance to produce the new models [45].

2.6. Random SubSpace

Random SubSpace is considered to be one of the most popular random sampling methods which
Ho proposed in 1988 to improve predictive capability of the individual classifications and accuracy
of weak classifications [43,46]. In this technique, the original characteristic vector with the strong
dimension is randomly divided to construct the subspace with a small dimension and then several
classifications are randomly grouped in subspace at the final decision [46]. The subset characteristic
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series of each sub-classification formation to the final prediction results are grouped using a majority
vote [47].

2.7. Correlation-based Feature Selection

Selection of the appropriate factors is a very important task for constructing input variables
and testing the ML models [20,48]. It can help to assess each variable in predicting outcomes by
removing unnecessary factors from the input data. Therefore, the quality of the data is improved by
reducing over-fitting and the noise-related problems. This leads to an increase in the model’s predictive
capacity [49]. There are several methods to select variables, such as ORAE, Gain information, and
correlation-based feature selection [50]. Among them, correlation-based feature selection was selected
in the present study. This method evaluates the attributes of the target class. It can be used to measure
the correlations between each input variable and the output variable on which importance of input
variables is evaluated and ranked [51].

2.8. Validation Methods

The performance of the models is evaluated by validation methods [52,53]. In addition, comparison
of the training data and validation data plays an important role in determining the fit of the model [54].
For the validation of models, various statistical indices were used namely Negative Predictive Value
(NPV), Positive Predictive Value (PPV), Specificity (SPF), Kappa (k), Sensitivity (SST), Accuracy (ACC),
Root Mean Squared Error (RMSE) and Receiver Operating Characteristic (ROC).

PPV and NPV present the percentage of pixels which are correctly predicted as “potential
groundwater” and “non-potential groundwater” [55,56]. Meanwhile, SST and SPF express the pixels
which are correctly classified as “potential groundwater” and “non-potential groundwater” [57]. ACC
shows the proportionality of classification “true negative” and “true positive” for the test, which
are the pixel rate which is correctly classified from “potential groundwater” and “non-potential
groundwater” [58,59]. False Positive (FP) and True Positive (TP) are considered to be the probability of
a pixel which is incorrectly and correctly classified from “groundwater potential”, respectively, while
False Negative (FN) and True Negative (TN) show the probability of a pixel which is incorrectly and
correctly classified as “non-potential groundwater” [60]. These statistical measures can be calculated
by following equations:

PPV =
TP

TP + FP
(2)

NPV =
TN

TN + FN
(3)

SST =
TP

TP + FN
(4)

SPF =
TN

FP + TN
(5)

ACC =
TP + TN

TP + TN + FP + FN
(6)

Kappa (k) index is considered to be one of the most popular statistical measures for evaluating the
ML models. Kappa presents the percentage of the agreement between the evaluators. The Kappa is
often considered as a random chord. It was used to classify N objects into C mutually exclusive sets. The
value of kappa ranges between −1 and 1. If kappa equals 1, the model has perfect performance [61–63].
Kappa (k) can be calculated by following equation:

k =
Pp − Pexp

1− Pexp
(7)

where Pp is the accuracy and Pexp is the expected agreements.
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RMSE is the statistical index to assess differences between the predictive value and the target
value [64–66]. RMSE is a good metric for the comparison between the performances of the models,
which is calculated as follows:

RMSE =

√√
1
n

n∑
i=1

(
Xpredicted −Xactual

)2
(8)

where n is defined as the total of variables, Xpredicted and Xactual are the prediction and actual values of
variable i-th.

ROC is a graph commonly used in the validation of binary classification models. This curve
is created by expressing sensitivity and specificity [67,68]. Therefore, the ROC curve will show the
relationship, the trade-off and the significance of choosing an appropriate model of sensitivity and
false alarm rate. Area under the ROC curve, called AUC, is often utilized quantitatively to validate and
compare predictive capability of the models, which is calculated as follows:

AUC =
∑

TP +
∑ TN

P
+ N (9)

where P and N are defined as the total number of “potential-groundwater” and “non-potential
groundwater” samples, respectively.

3. Study Area

The study area of DakLak province is located in between 107◦28’57" to 108◦59’37" East longitude;
and 12◦9’45" to 13◦25’06" North Latitude in the central highlands of Vietnam (Figure 1) on the upper
course of Serepok River and a part of Ba River, covering about 13085 km2. The topography of the
DakLak province ranges from flat highland to mountainous. The highest peak in this area is Chu Yang
Sin (2442 m). Other mountain peaks are Chu H’mu (2051 m), Chu De (1793 m), and Chu Yang Pel
(1600 m). The average height of the highland is 450 m.

In general, the climate of the DakLak province varies as per the variation of topography. The area
below 300 m elevation is hot, that between elevation 400 and 800 m is hot and humid; and that above
800 m is cold. In this region, about 90% of the annual rainfall occurs during the rainy season (May to
October) and is almost negligible during summer (November to April).

Groundwater resource in the DakLak province is widely used for all needs, especially for irrigation.
According to the Vietnam Academy for Water Resources (2018), in the dry season, the total volume
of water needed is 264,000 hectares. For coffee cultivation, the total water requirement is about 660
million m3 against the availability of surface water of 250 million m3. Therefore, the remaining water
requirement is to be met by groundwater for coffee production as well as for other crop cultivation to
avoid drought conditions. Currently, the amount of water exploited in the dry months in this province
is estimated to be about 500,000 m3/day for irrigation, which is mainly concentrated in the Basalt
Complex. About one third of the study area is covered by basalt rock and remaining by quaternary
sediments, Pliocene formation and Proterozoic metamorphic rocks.
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Figure 1. Location map of the study area showing well and rain gauge locations.

4. Data Used

4.1. Well Yields

Well yield data of 227 wells of the DakLak province obtained from the Vietnam Academy for
Water Resources (VAWR) were used in the present study (VAWR 2018). The data were split into
two parts: 70% of the data were used to train the model, and the remaining 30% of the data for the
validation of the model. Based on the local conditions and requirements, 1.6 l/s yield of wells was used
as a threshold value for the model study [69].

4.2. Groundwater Influencing Parameters

In the groundwater model study, the groundwater influencing parameters or conditioning factors
based on topography, hydrology, geo-environmental conditions and anthropogenic activities play an
important role in the model’s predictive capacity [70]. In the present study, 12 groundwater affecting
factors, namely aspect, curvature, elevation, slope, Sediment Transport Index (STI), flow direction,
rainfall, river density, soil type, Topographic Wetness Index (TWI), land use, and geology (lithology),
were selected for modeling. Topography and hydrology factors were extracted from the Aster Digital
Elevation Model (DEM) of 30m resolution from the United States Geological Survey (USGS) website
(https://earthexplorer.usgs.gov/) using GIS application and SAGA software [71]. Land use map (scale
1:50000) and soil map (scale 1:100000) was obtained from the Daklak Department of Natural Resources
and Environment (DARD). Geology and rainfall maps were extracted from the hydrogeological map
(1:300.000 scale) of South Central and Central Highland Vietnam conducted by the Central region of
Vietnam Division for Water Resources Planning and Investigation (CEVIWRPI).

The aspect map shows the direction of the slope [72–74]. In this study, the aspect map is divided
into nine classes (Figure 2a). The curvature map indicates the relationship with the ability to accumulate

https://earthexplorer.usgs.gov/
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and retain water on the surface. Normally, the concave slope accumulates more water [48,75,76].
In this region, curvature ranges from 23.5 to 30.8 (Figure 2b). Elevation is considered as one of the
most important factors in the groundwater potential model as it has the inverse proportionality with
the potential of underground water [77]. In the study region, elevation ranges from 117 to 2424
m (Figure 2c). Slope has a direct relationship with the hydrological process. On flat ground, the
accumulation of surface water would be more and thus more infiltration is likely, which would help in
groundwater recharge [76]. Slope in the DakLak province is grouped in different classes based on the
natural break method between 0 and 69.9 degrees (Figure 2d).
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Figure 2. Groundwater conditioning factor maps used in this study: (a) aspect, (b) curvature, (c)
elevation, (d) slope, (e) Sediment Transport Index (STI), (f) Topographic Wetness Index (TWI), (g) flow
direction, (h) rainfall, (i) river density, (j) soil, (k) land use, and (l) geology.

STI helps in assessing erosion and deposition [78,79]. In this region, it varies from 0 to 25,019
(Figure 2e). TWI reflects the relationship between topography and the condition of the groundwater
occurrence [80]. In this area, the value of TWI ranges from 6.04 to 20.433 (Figure 2f). Flow direction
indicates the direction of runoff from higher to low region thus affecting infiltration [81,82]. In this
area, the flow direction value ranges from 1 to 255 (Figure 2g). Rainfall is considered as an important
factor for groundwater potential mapping because the chances of infiltration are greater in cases of
high precipitation, thus leading to more recharge [83,84]. The average yearly rainfall value in the
study area ranges from 4.80 to 7.23 mm (Figure 2h). River density is the inverse proportionality with
infiltration [48,83–85]. The study area has a high river density (7.565km/km2) thus less probability of
recharge (Figure 2i).

Soil is also an important factor in the modeling of groundwater potential. Permeability of the soil
depends on its texture and structure which reflects the infiltration capacity of the soil [86–88]. The
soil map of the study area is grouped into different classes based on local variations of soil properties
(Figure 2j and Table 1). Land use depends on the topography, nature of the soil, hydrology, meteorology
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and human (anthropogenic) requirement. Anthropogenic activities generally change the land use
pattern, thus affecting groundwater potential locally [48,89]. In this study, the land use map was
classified into various classes (G1 to G18) (Figure 2k and Table 2). Geology plays an important role in
groundwater occurrence and thus in modeling of groundwater potential. Geological structure affects
surface water infiltration (recharge) and groundwater movement. The porosity and permeability of
rocks are important for assessing the characteristics of the ground surface and aquifer [90,91]. The
geology map of the region was classified into different types of formation based on the characteristics
of rocks (Figure 2l).

Table 1. Information of soil map.

No. Code Description No. Code Description

1 Ba Faded soil on acid magma and
sand 13 J Grab soil

2 D Land sloping valley by the
convergence 14 Pbc Sour alluvial soil

3 E Soil erosion, inert 15 Pc Alluvial soil

4 Fa Red yellow soil on acid
magma 16 Pf

The alluvial soil has red
and yellow sloping

layers

5 Fk Red-brown soil on basalt 17 Pg Alluvium Clay soil

6 Fl Red-yellow soil changes due
to wet rice cultivation 18 Py Stream alluvial soil

7 Fp Brown-yellow soil on ancient
alluvial gold 19 Rk Black soil on basalt

accretion products

8 Fq Pale yellow soil on sand stone 20 Ru Permeable brown soil on
foam basalt products

9 Fs Yellow-red soil on clay and
metamorphic rocks 21 X Gray soil on ancient

alluvium

10 Ft Purple-brown soil on basalt 22 Xa Gray soil on acid magma
and sand stone

11 Fu Brown-yellow soil on basalt 23 Xg Gray Glay soil

12 Ha Red yellow humus on acid
magma rock

Table 2. Information of land use map.

No. Code Description No. Code Description

1 G1 Rice - field 10 G10 Other perennials

2 G2 Vegetable - field 11 G11 Upland rice

3 G3 Annual plant 12 G12 Meadow

4 G4 Coffee plant 13 G13 Specialized land

5 G5 Rubber plant 14 G14 Unused land

6 G6 Cashew plant 15 G15 Production forests

7 G7 Pepper plant 16 G16 Protection Forest

8 G8 Tea plant 17 G17 Special use forest

9 G9 Cocoa plant 18 G18 Residential
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5. Methodological Flow Chart

The methodology of the present groundwater potential model study is divided into four main
stages: (1) GIS data collection and preparation, (2) correlation-based feature selection and generation
of datasets, (3) hybrid model construction, and (4) performance assessment and final trained hybrid
models (Figure 3). More specifically, (1) groundwater inventory map and conditioning factor maps
were prepared and analyzed to develop groundwater potential map. As the original data of these
maps were on different scales (units), they were normalized to values from 0 to 1 for the use as model
input data [92]; (2) correlation-based feature selection was used to validate and select the suitable
conditioning input factors for groundwater potential assessment, and then inventory data was split into
two parts: the first part was used to build the model with 70% of the data (training data), and another
30% (testing data) were used to validate the model; (3) various hybrid ensemble framework-based
models in the combination of single models, namely single CDT, BCDT, Dagging-CDT, Decorate-CDT,
MBCDT, and RSSCDT, were constructed using training datasets. A list of the model parameters utilized
for training the models is presented in Table 3; (4) groundwater potential models were validated using
various statistical measures: SST, SPF, ACC, K, PPV, NPV, RMSE and AUC. After the validation of the
models, groundwater potential maps were constructed using the studied models. These maps were
classified into five classes: very high, high, moderate, low and very low based on the natural break
classification method [93] in GIS application.

Table 3. List of the parameters used in different models.

No Parameter
Models

CDT BCDT Dagging-CDT Decorate-CDT MBCDT RSSCDT

1 KTH Root Attribute 1 - - - - -

2 S Value 1.0 - - - - -

3 Initial class value count 0 - - - - -

4 Maximum tree depth −1 - - - - -

5 Minimum total weight
of instances in a leaf 2.0 - - - - -

6 Minimum proportion of
the variance 0.001 - - - - -

7 Number of Decimal
Places 2 2 2 2 2 2

8 Number of Folds 3 - 9 - - -

9 Seed 1 1 1 1 1 1

10 Size of each bag - 100 - - - -

11 Batch Size - 100 100 100 100 100

12 Number of Execution
Slots - 1 - - - 1

13 Number of Interations - 17 - 4 7 6

14 Artificial Size - - - 1.0 - -

15 Desired Size - - - 15 - -

16 Number of
Subcommittees - - - - 3 -

17 Weight threshold - - - - 100 -

18 Size of each SubSpace - - - - - 0.5
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6. Results and Analysis

6.1. Analysis of Feature Selection of Groundwater Potential Influencing Factors

Groundwater potential influencing factors are selected based on the field knowledge of the area,
including geology, topography, geomorphology, meteorology, land use pattern and anthropogenic
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activities [48,94,95]. At present, there is currently no known best method which can help in selecting
the appropriate influencing factors for the groundwater potential assessment universally for all the
areas [54,96,97]. However, to accomplish this task, at present correlation based feature selection method
is considered to be one of the most popular methods due to its ability to take into account the impacts
of each variable [49]. Therefore, in this study, this method was applied to 12 initially considered
factors: land use, slope, elevation, river density, STI, curvature, TWI, flow direction, aspect, soil,
geology, and rain fall. The results show that all these factors (variables) contributed to the groundwater
potential model, but among these, land use and rainfall are the most important factors in the study
area (Figure 4).
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6.2. Evaluation of Models Performance Using Statistical Methods

Groundwater potential models were constructed using training data and validated by testing
data [98,99]. Weka software was used for the modeling. For training data, the results indicate that the
MBCDT model is better in terms of PPV and SPF, whereas, in terms of NPV value, the Dagging-CDT
model is better in comparison to other models. However, the RSSCDT model is more efficient than
the other models for SST Kappa and ACC values (Figures 5 and 6). The results of the validation data
suggest that the RSSCDT model is more efficient than other models in terms of NPV, SST, ACC and
Kappa values (Figures 5 and 6).

Analysis of the model’s performance was also done using RMSE values. The results indicate that
the BCDT model is the best in terms of training data (Figure 7), whereas the RSSCDT model is more
efficient for the validation data in comparison to other models (Figure 8).
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Comparative analysis of models’ performance using AUC values indicated that the BCDT model is
better with AUC: 0.933, followed by the RSSCDT model (0.909), Decorate-CDT model (0.901), MBCDT
(0.899), Dagging-CDT (0.856) and CDT (0.819), respectively, in terms of training data (Figure 9). In
terms of validation data, the MBCDT model showed better predictive performance with AUC: 0.77,
followed by RSSCDT (0.766), Dagging-CDT (0.763), Decorate-CDT (0.75), BCDT (0.731), and CDT
(0.722), respectively. In general, the results of the model study show that all the models have AUC >

0.7, thus they are all efficient in building the groundwater potential maps.Sustainability 2019, 11, x FOR PEER REVIEW 20 of 32 
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6.3. Evaluation and Validation of Groundwater Potential Maps

In the present study, groundwater potential maps were developed using six models: CDT, BCDT,
Dagging-CDT, Decorate-CDT, MBCDT, and RSSCDT. These maps were constructed in five groups
(very low, low, moderate, high and very high) of groundwater potential zones (Figure 10). Analysis of
groundwater potential maps suggested that in case of CDT model; about 80% of the area is located in
very low, 5% in low, and 15% in very high potential zones. For the BCDT model, 50% of the area is in
very low, 20% in low, 10% in moderate, 7% in high and 13% in the very high potential zones. In the
case of the Dagging-CDT model, about 35% is located in very low, 25% in low, 10% in moderate, 7% in
high and 13% in the very high zones. For the Decorate-CDT model, 35% of the area is located in very
low, 26% in low, 20% in moderate, 8% in high and 11% in the very high zone. In case of MBCDT model,
70% of the study area is located in very low, 7% in low zones, 3% in moderate, 2% in high and 13%
in very high zones. Groundwater potential map in case of RSSCDT model showed that 10% of the
area is in very low zones, 40% in low zones, 20% in moderate zones, 25% in the high zone and 15% in
the very high zone (Figure 11). All the generated maps showed that high to very high groundwater
potential areas are located in the central part of the study area. Thus, these groundwater potential
maps can be used as scientific documents to assist decision-makers in land use planning and water
resource management.
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7. Discussion

Groundwater resources are an important source for potable water, which is also used for
agriculture and industry [100–103]. The mapping of groundwater potential is an essential task to
assess groundwater potential of the area for better groundwater resource management. Even though
many studies have been carried out to map the groundwater potential in various regions of the words
using different approaches [54,104], but more efforts are needed to improve the quality of these maps
for predicting accurate groundwater potential zones [16]. Nowadays, advanced ML techniques are
being used for this purpose [25,105]. In this study, different ensemble ML techniques, namely Bagging,
Dagging, MultiBoost, Random SubSpace, and Decorate, were used to improve the performance of a
single ML model, namely CDT, to develop various hybrid models (BCDT, Dagging-CDT, Decorate-CDT,
MBCDT and RSSCDT) for the improvement of the performance of groundwater potential mapping in
the DakLak province, Vietnam.
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Based on the results of model validation, it can be stated that the proposed ensemble frameworks
improved the performance of a single the CDT base classifier model for better groundwater potential
mapping. This may be due to the fact that in CDT algorithm, the sub-dataset formed is different from a
given problem domain which produces quite different trees [106,107]. This feature is very necessary to
build the appropriate classification to increase the classification capacity of Random SubSpace, Bagging
and Multiboost models [106–108]. Bagging is considered to be an important algorithm for improving
the accuracy of individual classification prediction by creating different classifications together. In the
present study, Bagging used the Radial Basis Function (RBF) kernel function to improve the stability
capacity of CDT model. In addition, in Bagging algorithm, the Bootstrap sampling method was used
to decrease the sensitivity of an individual classification for noise problem in training data [33]. In the
Bagging model, the base classification generation errors are moved to the generation errors, which are
calculated on the smaller training data and this model is useful for low classification [62,109]. The
Dagging method has the advantage of reducing noise. Although Decorate is not known as the Bagging
or Multiboost algorithm, it is the efficient algorithm as it enhances the original training data by creating
artificial data and then producing various classifications on artificial samples. Therefore, this algorithm
is presenting an advantage for small scale training datasets [41]. Literature survey indicated that
Multiboost can reduce the average errors in terms of bias. In this method, the original training dataset
is divided into several sub-datasets, which can be treated at the same time [42,43,57]. The findings of
this study are also in line with the other studies [106,107].

In the present study, various validation criteria, namely SST, SPF, ACC, K, PPV, NPV, RMSE and
AUC, were selected and used for validation and comparison of the models. It can be seen that the
comparative performance of the models is different with different statistical criteria. For example,
RSSCDT is better than other models in term of NPV, SST, ACC and Kappa (Figures 5 and 6), but
MBCDT is better than other models in term of AUC (Figure 9). Thus, in this study, it can be stated
that ensemble frameworks improved the performance of the single CDT base classifier but it is very
difficult to assess which ensemble method is the best from the applied validation criteria.

8. Conclusions

In this study, various ensemble techniques, namely Bagging, Dagging, Decorate, MultiBoost,
and Random SubSpace, were used to the improve performance of a single CDT base classifier for the
generation of accurate groundwater potential maps. The performance of five developed hybrid models,
namely BCDT, Dagging-CDT, Decorate-CDT, MBCDT, and RSSCDT, was evaluated and compared
with the single CDT model.

Validation results show that although all the models are efficient in groundwater potential
mapping in the study area (AUC > 0.70), the performance of the ensemble models MBCDT (AUC =

0.770), BCDT (AUC = 0.731), Dagging-CDT (AUC = 0.763), Decorate-CDT (AUC = 0.750), and RSSCDT
(AUC = 0.766) improved significantly in comparison to single CDT model (AUC = 0.722). Thus, these
developed hybrid models can be applied for better ground water resources management of the study
area as well as other regions of the world.

Groundwater potential zones identified through mapping using developed hybrid (ensemble)
models would help managers in prioritizing the area for future development of groundwater resources
and their systematic exploitation, considering annual needs and recharge of the area by maintaining
water balance. All the stakeholders, including government and non-government agencies and
individuals, can use these maps for the sustainable development of the area. Based on these maps,
local inhabitants can also be provided with technical help and monetary support in drought affected
areas for the construction and maintenance of recharge structures at suitable locations.

The results of this study would be helpful not only in the proper management of the DakLak
province of the Vietnam but also for the ground water potential mapping and assessment of other
drought prone areas of the world.
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