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Abstract: Sustainability is a multidisciplinary discipline posing a difficult problem as a result of its 
integrated assessment. From a broad perspective, it considers the impact of human activities (using 
different resources) and natural conditions on local environments. Urban development has been 
identified as one of the most important reasons for environmental and social degradation. To address the 
complexity of sustainability and its impact, policymakers need to be equipped with the right toolkit to 
foresee the integrated effect of projects and plans on urban sustainability more effectively in their policy 
design. In this paper, we propose a tool to assess the sustainable performance of urban areas through a 
common framework of indicators which provides an integrated measurement based on the relative 
efficiency of key input variables on desirable and undesirable outputs. Using Data Envelopment Analysis 
(DEA), we propose a procedure for determining the relative efficiency of relevant urban areas, proposing 
this method as a candidate for integrated sustainability measurement. The selection of variables is based 
on dimensions which can be addressed from a political perspective for achieving more desirable outputs, 
or reducing the undesirable ones, controlling for key resources as much as possible. Our analysis takes a 
comprehensive scope including an environmental and socioeconomic perspective. This will be useful to 
identify weaknesses and strengths to improve the integrated performance of cities. Our array of 
indicators, based on standardized key performance indicators (KPIs) will enable policymakers to gather 
an insightful impact of their proposals in urban sustainability carrying out a global sustainability impact 
assessment through DEA. The main goal is to gather the urban experience of transforming cities into 
smarter cities and putting technological progress at the service of their societies. 

Keywords: cities; efficiency; DEA; slack-based inefficiency model; available resources; undesirable 
output; sociology; environment 
 

1. Introduction 

The expansion of urban environments is linked to global challenges of sustainability, particularly in 
regions where the process of urbanization is still unfolding, or the urban metabolism is undergoing a 
thorough regeneration [1]. In urbanized regions such as Europe, where more than 70% of people are urban 
dwellers, sustainability is one of the most important challenges, especially concerning the use of energy, 
economic performance, de-carbonization of infrastructure, wastewater management, and other ecosystems 
from cities and urban communities [2]. The consumption of these resources can play a crucial role in the 
development of the UN sustainability goals [3]. 

Existing building certifications provide the most widely accepted means for correlating sustainability 
to greenhouse gases emissions from a life cycle assessment perspective. Examples of these are BREEAM 
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(Building Research Establishment Environmental Assessment Method), LEED (Leadership in Energy and 
Environmental Design), SBTool (Sustainable Building tool) [4], Green Star, and CASBEE (Comprehensive 
Assessment System for Built Environment Efficiency) [5]. Such certifications significantly contribute to 
understanding the environmental effects of buildings through examination of life cycle assessment 
methodologies. They could drive consumers’ will when buying building stock, and act as important 
references for decision makers in both developed and developing countries. 

While cities are prized for being drivers of innovation, social experimentation, and economic growth, 
they are complex systems by nature with an inherent ability to self-adapt to external, and internal, drivers 
turning them into ever changing “organisms” following their own adapting metabolism in order to face 
major social and environmental challenges due to uncontrolled urbanization [6]. The ability of cities to self-
organize under continuous change can be explained by an assessment of the “selective and decentralized 
flow of matter, energy and information among its parts”. The continuous self-organization of all city 
elements (energy generation and distribution systems, transportation, consumption of food, goods, 
services, waste handling, supply of fresh water, and other ecosystem services) within a city’s metabolism 
can be assessed as a complex system to evaluate sustainability [7]. 

Therefore, each investigation or plan for a city must consider the network connecting all the parts and 
their links with the surrounding environments. The dynamics of the networks (flows of energy, matter, 
people, goods, information, and resources) are fundamental for understanding the evolving nature of cities. 
Network efficiency evaluation has been used for assessing sustainable performance in urban systems [8]. 

However, the Slack-Based Inefficiency (SBI) Urban Sustainability evaluation proposes a more realistic 
impact assessment technique when cities’ metrics are available and comparable (through ISO 37120 and its 
wide range of key performance indicators, aka key performance indicators). Big data-based techniques can 
also be standardized through ISO 37120 to provide finely distributed evidence that will allow future 
evolution of the proposed technique. Then, this efficiency outputs need to be evaluated not only from 
control variables but also their historical interaction that statistically incorporate the myriad effects from 
all players through a basic set of key performance indicators (KPIs) [9]. Moreover, urban city planners have 
no guidance for accommodating conflicting objectives with their limited available resources. A tool for 
envisioning efficient alternatives is performing a Data Envelopment Analysis (DEA) of the relevant KPIs 
validated from past factual data to assess future simulated performance obtained from different policy 
scenarios. 

In the literature, Data Envelopment Analysis (DEA) is used to evaluate the efficiency of different 
entities called Decision Making Units (DMUs). DEA is a non-parametric technique that relies on linear 
programming and benefits from this approach to assess the relative efficiency of DMUs comparing their 
production of outputs based on their consumption of inputs. DEA was developed by Charnes et al. [10] to 
measure the performance of an educational program in the USA, defining efficiency as a ratio of outputs 
to inputs. 

The use of DEA in the assessment of efficiency is wide and includes banks, ports, universities, or 
hospitals thanks to the flexibility of this novel data method. In the context of energy efficiency, Mardani et 
al. [11] review the used DEA model in energy efficiency between 2006 and 2015 in 45 high-ranking journals. 
In total, they classified 144 articles on different areas like energy saving, water efficiency, renewable and 
sustainable energy, and others providing different DEA models to evaluate energy efficiency and 
identifying relevant attributes to improve the energy service.  

In addition, Sueyoshi et al. [12] review DEA applications on energy, the environment, and other areas 
to improve the degree of efficiency on operations at the industry level and the environment at the company, 
region and country level, since energy efficiency is one of the most cost effective ways to combat global 
warming and climate change. Some of these applications consider unavoidable undesirable outputs such 
as carbon dioxide (CO2), particulate matter 2.5 (PM2.5), solid waste, sulfur dioxide, and wastewater that 
are associated with desirable production and whose reductions are made possible by effective operational 
management [13]. However, there are other applications that do not consider undesirable outputs [14]. 

Used carefully, DEA potentially can facilitate analysis of the main policy issues and improve business 
strategies to enhance the sustainability of cities. Yang et al. [15] evaluate regional environmental efficiency 
in China over 10 years based on the super-efficiency DEA model to observe regional disparities. Those 
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super-efficiency models are also useful to assess benchmark performances. Recently, Zhao et al. [16] link 
the socio-economic and environmental perspective in the evaluation of cities with a linked parallel system 
of two subsystems to understand the operational process of the sustainable development system. 

We study how efficient cities use their inputs to produce desirable outputs. Our main purpose is to 
evaluate whether cities are using efficiently their available inputs from an environmental perspective. 
Then, we can deduce some sociological consequences without causal endorsement. Amongst all the 
alternatives available, we opt for the Slack-Based Inefficiency (SBI) model because it relies on slacks. This 
enables us to determine the percentages that cities should reduce their inputs in order to reach total 
efficiency. Efficiency is obtained by subtracting the quantity of SBI against 1, so the best performers (in the 
benchmark) have an efficiency score equal to 100%. Decisions on what is efficient or what is not depend on 
the outputs expected to achieve using available inputs from the territory to address local goals. As 
Gottdiener and Hutchinson [17] conclude, the human ecosystem framework may look like a shopping list 
of system components. However, it is crucial to realize that the most significant feature of the framework 
is the fact that it points out the interactions among specific natural, social, and cultural components of the 
metropolis. This recognition prompts ecologists to be concerned with how people use and behave in the 
metropolitan ecosystem in a spatially explicit way. 

Therefore, further to political decisions on efficiency, we emphasize that the human ecosystem is the 
result of a complex interaction in which social issues such as poverty, inequality, environmental justice, 
and public participation in decision-making and space production, in sum equities, must be taken into 
account. Ahern [18] addresses the dynamic interactions between nature and society, how social change 
influences the environment and how environmental change shapes society. 

We control for only three inputs to simplify the analysis: population, water, and energy consumption. 
Potentially, this could be helpful for policymakers to tackle social problems and increase awareness within 
the inhabitants of the metropolitan ecosystem [19]. Population is important for several reasons. Firstly, as 
mentioned earlier, the growing urban population puts pressure on land and services. Secondly, climate 
risks and hazards are unevenly distributed and socially differentiated especially in cities where there are 
diverse populations, with different languages, culture background, age, sex, etc. [20]. Climate change 
injustice happens along ethnic, gender, class, and racial lines [21,22]. Thirdly, people must participate 
actively in reducing the impact of the ecological crisis in cities. They are fundamental stakeholders in front 
of risks of natural hazards in cities and special attention should be given to vulnerable population. 
Furthermore, it is important that people are properly sensitized, informed, and warned about risks and 
hazards. Finally, inequality leads to greater environmental degradation, and a more equitable distribution 
of power and resources would result in improved environmental quality [23,24]. 

The paper is organized as follows. In Section 1, we expose the main concepts and objectives of this 
work, which are framed within the 2030 UN goals. In Section 2, we explain our model and carry out a 
statistical analysis of data. Section 3 describes the main results we got from the analysis. In Section 4, we 
discuss results with the existing literature. Finally, we set out our main conclusions. 

2. Materials and Methods  

DEA is a non-parametric technique that evaluates the efficiency of each operational unit—called 
Decision Making Units (DMUs)—in the model and defines the operational targets or benchmarks of the 
inefficient ones. The concept of efficiency assesses the production capacity of the DMUs based on their 
available resources. The observed data defines the Production Possibility Set (PPS), known as technology, 
under different assumptions. There are three types of technology: Free Disposal Hull (FDH) considers free 
disposal of inputs and outputs; Variable Return of Scale (VRS) considers also lineal convexity of the 
observed DMUs; and Constant Return of Scale (CRS) comprises VRS technology and assumes that any 
observed operational unit can be scaled [25]. Then, the efficient frontier (EF) is a result of the subset of 
DMUs that performs best in the PPS. This subset dominates since no one can produce more outputs with a 
smaller amount of inputs. Each inefficient DMU is projected over the EF, thereby defining its benchmark. 
In each dimension, the distance of an inefficient DMU to the efficient frontier is called a slack (𝑠). Those 
DMUs on the EF are efficient and, therefore, their slacks are zero.  
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Inefficient DMUs have different benchmarks depending on the DEA model specification used 
defining as benchmarks, the most efficient operational units. The choice of DEA specification depends on 
the goal that the decision maker wants to analyze. For example, input-oriented models focus on reducing 
the amount of inputs, output-oriented models prioritize the increase the production, and non-oriented 
models reduce the inputs at the same time that increase the outputs. Alternatively, the benchmarks depend 
on the metric used (radial, directional distance function, slack-based, etc.). The first class of DEA models 
are radial models, like CCR [10]. These models project the DMUs over the EF, measuring the technical 
efficiency of each units. However, they overestimate the technical efficiency when the nonzero slacks are 
present. Charnes et al. [26] propose an additive model to curb this overestimation while maximizing the 
slacks of inputs and outputs at the same time. 

In DEA, multiple models can be used to measure the performance of the evaluated units. The additive 
model proposed by Charnes et al. [26] is able to discriminate between efficient and inefficient DMUs. 
However, the different properties between this model and the CCR model are explained by the different 
units that the sum of slacks of inputs and outputs follow. This could justify the use of other slack-based 
models like the Range Adjusted Model (RAM) developed by Cooper et al. [27], which normalize the slacks 
of inputs and outputs, and the Slack Based Measure (SBM) model which satisfies monotonicity and unit 
invariance with respect to slacks developed by Tone [28]. Later, Fukuyama and Weber [29] defined the 
Slack Based Inefficient (SBI) model to measure the technical inefficiency while considering all slack in the 
input and output constraint. The SBI model we use is related to the directional technology distance function 
[30,31] that seeks a maximum non-radial increment in outputs while reducing inputs for a given directional 
vector. 

Our model estimates data from 45 cities and controls for three inputs (population, water, and energy) 
to produce outputs (desirable and non-desirable). Figure 1 illustrates the control variables we incorporate 
in our model to evaluate the efficiency of the cities. Our inputs are population (number of people living in 
the city), water consumption (m3), and energy consumption (MWh). The desirable output is gross domestic 
product (GDP) (measured in US Dollars), and the undesirable outputs are PM2.5 (measured in average 
level in µg/m3 experienced by the population), CO2 (thousands of equivalent CO2 Tons), and wastewater 
(%).  

 
Figure 1. Scheme of variables used in the efficiency analysis. Being decision making units (DMU), gross 
domestic product (GDP), particulate matter 2.5 (PM2.5), carbon dioxide (CO2). 

We propose the utilization of the SBI Model to evaluate the efficiency of cities. SBI models are non-
oriented. This demands that the normalization of the slacks is performed with the observed values of 
evaluated DMUs [32]. Indeed, this is what we analyze from an empirical approach. The non-oriented 
feature of the SBI models reduces inputs and maximizes outputs at the same time. As SBI model assesses 
the inefficiency, efficiency is obtained by subtracting the coefficient from SBI against 1. We apply this model 
over each DMU, thereby maximizing the mean of their normalized slacks (1). 

The analysis of efficiency assumes a set of 𝑛 observed DMUs {𝐷𝑀𝑈௝: 𝑗 = 1, . . ,𝑛}, where each DMU 
needs 𝑚 inputs (𝑥) to produce 𝑠 desirable outputs (𝑦). However, the production of these desirable outputs 
creates 𝑤 undesirable outputs (𝑦௕), which are linked to the process. These undesirable outputs can be 
modeled under the assumption of weak disposability, implying that undesirable outputs can be reduced, 
but at a cost which will require the reduction of the production of desirable outputs [33]. The left part of 
constraints (2-4) define the efficient frontier based on DMUs, while the right part shows the slacks of the 
evaluated DMU (𝑥଴,𝑦଴,𝑦଴௕). The variables 𝜆௝ , 𝜇௝ represent the weak disposability assumption proposed by 
Kuosmanen [33]; and constraint (5) specifies that technology under Variable Returns to Scale (VRS). Thus, 
the EF is a lineal convexity of the observed DMUs. The reason why we set VRS is attributed to the higher 
discrimination assumed among DMUs than under CRS [15]. Therefore, not comparing the DMUs with 
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other scaled DMUs offers a more realistic comparison. As a consequence, the EF under VRS technology has 
a higher number of DMUs than under CRS technology. 

𝑆𝐵𝐼 = 𝑀𝑎𝑥 1𝑚∑ 𝑠௜ି𝑔௜௠௜ୀଵ + 1𝑠 ∑ 𝑠௞ା𝑔௞௦௞ୀଵ + 1𝑤∑ 𝑠௥ି𝑔௥௪௥ୀଵ3  (1) 

s.t. 

෍𝑥௜௝(𝜆௝ + 𝜇௝)௠
௜ୀଵ = 𝑥௜଴ − 𝑠௜ି 𝑖 = 1, . . ,𝑚 (2) 

∑ 𝑦௞௝𝜆௝௦௞ୀଵ = 𝑦௞଴ + 𝑠௞ା 𝑘 = 1, . . , 𝑠 (3) 

෍𝑦௥௝௕ 𝜆௝௪
௥ୀଵ = 𝑦௥଴௕ − 𝑠௥ି 𝑟 = 1, . . ,𝑤 (4) 

෍𝜆௝ + 𝜇௝ =௡
௝ୀଵ 1 (5) 𝜆௝ ,𝜇௝ ≥ 0. (6) 

In this model, all efficient DMUs have zero SBI value. Then, they are on the EF. Earlier, we emphasized 
that SBI model measures the inefficiency of DMUs. This inefficiency is defined as the average of the mean 
normalized slacks of the DMU grouped by inputs, undesirable outputs, and desirable outputs. Therefore, 
the efficiency of a DMU is determined by the parameter theta, which is calculated as follows: 𝜃 = 1 − 𝑆𝐵𝐼.  

A further insight can be taken from Equations (7-9) which measures the normalized slack of inputs, 
desirable outputs, and undesirable outputs, respectively. 

𝑆𝐵𝐼𝑋 = 1𝑚෍𝑠௜ି𝑔௜௠
௜ୀଵ  (7) 

𝑆𝐵𝐼𝑌 = 1𝑠෍𝑠௞ା𝑔௞௦
௞ୀଵ  (8) 

𝑆𝐵𝐼𝑌𝐵 = 1𝑤෍𝑠௥ି𝑔௥௪
௥ୀଵ  (9) 

3. Result 

3.1. Descriptive Analysis 

In our analysis, we identify similar cities around the world with similar sizes. Indeed, DEA and the 
SBI model provide a neutral background to measure efficiency as the common goal and offer an excellent 
tool for a comprehensive evaluation of sustainability regardless of the different realities, climate, societies, 
and interactions amongst cities. This is our main hypothesis. 

We selected data from the OECD data repositories with additions from the World Council from City 
Data. This includes 45 cities, mostly from Europe but also covers the US, Chile, and Japan. We gathered 
information related to population, real GDP, air pollution measured in PM2.5, CO2 footprint, energy and 
water consumption for each city. Table 1 summarizes the main descriptive statistics from the data source.  

In Table 1, Manchester has the largest number of inhabitants and Trondheim has the lowest number 
of inhabitants. Lyon consumes the highest volume of fresh water and Belfast consumes the lowest volume. 
Porto consumes the highest total energy in 2018 and Cartagena consumes the lowest. Portland is the richest 
city in terms of real GDP and Cartagena is the poorest. Cracow is the most polluted city (in PM2.5) in the 
sample and Portland is the least. San Antonio is the highest CO2 emitter and Debrecen is the city with the 
lowest level of CO2 emissions. Finally, Concepcion processes the highest level of urban wastewater and 
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Cartagena possesses the lowest. We measure which dimensions each inefficient city should improve on to 
reach an efficient frontier based on available data.  

Table 1. Summary statistics. 

Variables Description Max Min Mean Median S.d. 
Population Number of inhabitants 3,377,602 281,586 1,329,494.77 1,221,513 651,664.53 

Water consumption 103 m3  3228.9  85,826.9   841,671.1 60,260.9 687,605.6 
Energy consumption MWh 23,811.61 145.81 5180.03 3010.77 5008.36 

GDP US dollars 159,682 5,321 54,573.49 47,158 34,770.68 
PM2.5 Average level in µg/m3  30.50 5.50 12.08 10.90 4.66 

CO2 
Thousands of equivalent 

CO2 Tons 
81,287.54 3499.10 21,743.08 14,567.56 18,612.75 

Wastewater (%) 99.90 54.80 87.54 83.00 12.06 

3.2. Regression Results 

Table 2 details our estimates from the SBI model. Coefficients report normalized slacks of each city for 
inputs (SBI X), desirable outputs (SBI Y), and undesirable outputs (SBI YB) and the overall efficiency 
indicator (𝜃) is shown in the last column. Almost half of the cities are efficient (20 cities). The remaining 25 
cities are considered to be inefficient and only six of them (Hiroshima, Antwerp, The Hague, Nice, Lille 
and Bordeaux) have benchmarks that are able to produce more GDP than their current level. This means 
that the remaining inefficient cities could improve their performance by better managing their resources 
and reducing their undesirable outputs. Moreover, 56% of the inefficient DMUs have a higher normalized 
slack for the undesirable outputs than for the inputs. 

Table 2. Estimates from the Slack Based Inefficiency (SBI) efficiency model. Being: SBI Inputs (X), SBI 
Desirable Outputs (Y), SBI Undesirable Outputs (YB). 

CITIES SBI SBI X SBI Y SBI YB EFFICIENCY (𝜽) 
Liverpool (ENG) 0.08 0.13 - 0.08 92% 
Sheffield (ENG) 0.12 0.18 - 0.13 88% 

Gothenburg (SWE) 0.14 0.16 - 0.19 86% 
Thessaloniki (GRE) 0.14 0.18 - 0.19 86% 

Valencia (ESP) 0.15 0.27 - 0.12 85% 
Concepcion (CHI) 0.15 0.19 - 0.19 85% 
Vancouver (CAN) 0.18 0.21 - 0.25 82% 
San Antonio (USA) 0.19 0.24 - 0.25 81% 

Malaga (ESP) 0.19 0.16 - 0.32 81% 
Seville (ESP) 0.20 0.27 - 0.24 80% 

Helsinki (FIN) 0.20 0.41 - 0.15 80% 
Rotterdam (HOL) 0.22 0.38 - 0.22 78% 
Pittsburgh (USA) 0.24 0.44 - 0.21 76% 
Toulouse (FRA) 0.25 0.42 - 0.25 75% 
Hanover (GER) 0.26 0.25 - 0.39 74% 
Utrecht (HOL) 0.26 0.26 - 0.40 74% 

Bordeaux (FRA) 0.27 0.21 0.26 0.24 73% 
Linz (AUS) 0.28 0.23 - 0.45 72% 

Hiroshima (JPN) 0.29 0.28 0.16 0.31 71% 
Tampa-Pinellas (USA) 0.29 0.52 - 0.26 71% 

The Hague (HOL) 0.29 0.27 0.19 0.30 71% 
Antwerp (BEL) 0.29 0.30 0.19 0.29 71% 

Nice (FRA) 0.32 0.33 - 0.48 68% 
Tallinn (EST) 0.33 0.25 0.20 0.40 67% 
Lille (FRA) 0.35 0.38 0.26 0.30 65% 

Note: Benchmarks were identified in Aarhus (DEN), Belfast (NI), Bilbao (ESP), Bologna (IT), Cartagena 
(ESP), Copenhagen (DEN), Cork (IRE), Cracow (POL), Debrecen (HUN), Florence (IT), Glasgow (SCO), Lyon 
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(FRA), Manchester (ENG), Marbella (ESP), Portland (USA), Porto (POR), Trondheim (NOR), Turin (ITA), 
Turku (FIN), Zurich (SWI). 

For the inefficient units, we computed the slacks to identify the inputs each inefficient city should 
change to be more efficient in the management of their available resources (Table 3). Overall, inefficient 
cities have margin of improvement if they reduce their water consumption since the mean and the median 
of this slack is 54.92% and 55.64%, respectively. For population and energy, the medians are 8.96% and 
11.16%, respectively and the means are 11.76% and 16.56%, respectively.  

Table 3. Summary statistics of the normalized slacks of the variables for inefficient DMUs. 

 Variable Max Min Mean Median Sd 

INPUTS 
Population 29.50% 0.00% 11.76% 8.96% 11.24% 

Water consumption 88.15% 1.69% 54.92% 55.64% 22.14% 
Energy consumption 55.23% 0.00% 16.56% 11.16% 19.27% 

DESIRABLE OUTPUTS GDP 26.48% 0.00% 5.07% 0.00% 9.39% 

UNDESIRABLE OUTPUTS 
PM2.5 65.66% 0.20% 35.35% 36.00% 18.78% 

CO2 79.61% 22.95% 43.04% 41.76% 15.74% 
Waterwaste 63.97% 0.00% 27.69% 25.52% 18.02% 

Vancouver, Hanover Linz, The Hague, Toulouse, Gothenburg, Tallinn, Utrecht, Antwerp, Rotterdam, 
Helsinki, Tampa-Pinellas, and Pittsburgh are the only inefficient cities that can reduce their energy 
consumption after comparing their performance with their benchmarks. The mean of their Energy 
Consumption Slacks is 0.17. In this subset of cities, only six of them (Gothenburg, Hanover, Helsinki, 
Vancouver, Toulouse, and Tampa-Pinellas) have as a benchmark a city with a lower population (Table 4). 
These six cities are the only ones that have input slacks for the three inputs. Regarding the undesirable 
outputs, wastewater is the variable with the lowest values of slacks (0.26 as the median and 0.28 as the 
mean), while C02 is the variable with the highest slacks of all the undesirable outputs (0.42 as the median 
and 0.43 as the mean).  

Table 4. Normalized slacks by inefficient city. 

  Inputs Desirable 
Output Undesirable Outputs 

City Population Water 
Consumption 

Energy 
Consumption GDP PM2.5 CO2  Wastewater  

Antwerp - 0.56 0.33 0.19 0.43 0.52 0.23 
Bordeaux 0.16 0.48 - 0.26 0.40 0.38 0.19 

Concepcion 0.09 0.48 - - 0.27 0.24 0.26 
Gothenburg 0.14 0.02 0.34 - 0.17 0.23 0.38 

Hanover 0.07 0.47 0.22 - 0.54 0.50 0.51 
Helsinki 0.02 0.68 0.53 - 0.00 0.30 0.28 

Hiroshima 0.08 0.76 - 0.16 0.44 0.47 0.34 
Lille 0.28 0.86 - 0.26 0.54 0.48 0.19 
Linz - 0.52 0.17 - 0.65 0.55 0.60 

Liverpool 0.24 0.16 - - 0.08 0.23 0.00 
Malaga - 0.48 - - 0.60 0.24 0.43 

Nice 0.08 0.68 - 0.20 0.66 0.43 0.50 
Pittsburgh - 0.78 0.55 - 0.18 0.67 - 
Rotterdam - 0.78 0.35 - 0.27 0.42 0.19  

San Antonio 0.29 0.42 - - 0.48 0.33 0.21 
Seville 0.26 0.56 - - 0.40 0.39 0.19 

Sheffield 0.30 0.25 - - 0.20 0.29 0.04 
Tallinn - 0.74 0.25  - 0.50 0.80 0.64 

Tampa-Pinellas 0.12  0.88 0.55 - 0.03 0.71 0.30 
The Hague - 0.61 0.21  0.19 0.36 0.57 0.28 

Thessaloniki 0.09 0.45 - - 0.34 0.37 0.05 
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Toulouse 0.24 0.82 0.21 - 0.34 0.44 0.21 
Utrecht - 0.45 0.32 - 0.53 0.62 0.45 
Valencia 0.22 0.60 - - 0.14 0.32 0.04 

Vancouver 0.28 0.25 0.11 - 0.32 0.28 0.40 
Mean 0.12 0.55 0.17 0.05 0.35 0.43 0.28 

Median 0.09 0.56 0.11 0.00 0.36 0.42 0.26 

DEA allows observing which are the benchmarks for any inefficient unit and the observed efficient 
cities that define those benchmarks. There are 10 cities (Bilbao, Bologna, Cracow, Florence, Glasgow, Lyon, 
Manchester, Trondheim, Turin, and Turku) that are efficient but do not act as a benchmark for any 
inefficient unit, since they are outliers. On the contrary, Aarhus, Belfast, Cartagena, Copenhagen, Cork, 
Debrecen, Marbella, Portland, Porto, and Zurich are peers, efficient cities that define the benchmarks for 
those inefficient units. Copenhagen, Debrecen, and Zurich are the most used efficient cities to define the 
targets of the database. 

Table 5 relates the influence of each efficient city (benchmark) over the inefficient cities. We show 
inefficient cities in rows and the efficient cities (benchmarks) that act as peers for any of the inefficient city 
in this dataset in columns. Table 5 shows estimates of 𝜆௝ and 𝜆௝ + 𝜇௝, which define the benchmarks. The 
variable 𝜆௝ searches for the peers in constraints (3-4) for the desirable and undesirable outputs due to weak 
disposability assumption, while the sum 𝜆௝ + 𝜇௝ tracks down the peers in constraint (2) for the inputs. The 
coefficient 𝜆௝ takes zero value for all the inefficient units when they are using Debrecen as peer, except for 
Concepcion which has 𝜇௝ = 0. This means that Concepcion has Debrecen as a peer due to its production 
level of desirable and undesirable outputs for its consumption of inputs, while for the rest of the inefficient 
cities that have Debrecen as a peer, its expertise as resource manager is a reference for them. On the 
contrary, Zurich acts as peer for most of the inefficient units not only for their resource management, but 
for their level of production too.  
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Table 5. Influence of each efficient city (benchmark) over the inefficient cities 𝝀𝒋/𝝀𝒋 + 𝝁𝒋 Aarhus Belfast Cartagena Copenhagen Cork Debrecen Marbella Portland Porto Zurich 
Antwerp ./. ./. ./. ./. ./. ./0.25 ./. ./. ./. 0.75/0.75 
Bordeaux ./. ./. ./. ./. ./. ./0.33 ./. ./. ./. 0.67/0.67 

Concepcion ./. ./. 0.34/0.34 ./. ./. 0.36/0.36 ./. ./. 0.30/0.30 ./. 
Gothenburg ./0.25 ./0.21 ./. ./. ./. ./. ./. ./. ./. 0.54/0.54 

Hanover ./. ./0.24 ./. 0.51/0.51 ./. ./. ./. ./. ./. ./. 
Helsinki ./0.19 ./. ./. 0.65/0.65 ./. ./0.16 ./. ./. ./. ./. 

Hiroshima ./. ./. ./. 0.56/0.56 ./. ./0.44 ./. ./. ./. ./. 
Lille ./. ./. ./. ./. ./. ./0.37 ./. ./. ./. 0.63/0.63 
Linz ./. ./. ./. ./. 0.20/0.20 ./0.53 ./. ./. ./. 0.27/0.27 

Liverpool ./. 0.88/0.88 ./. 0.10/0.10 ./. ./. ./. ./. 0.02/0.02 ./. 
Malaga ./. ./. ./. ./. 0.00/0.00 ./0.43 ./. ./. 0.53/0.53 0.04/0.04 

Nice ./. ./. ./. ./. ./. ./0.59 ./. ./. ./. 0.41/0.41 
Pittsburgh ./. ./. ./. 0.50/0.50 ./. ./0.30 ./. 0.01/0.01 ./. 0.19/0.19 
Rotterdam ./. ./. ./. 0.66/0.66 ./. ./0.15 ./. ./. ./. 0.19/0.19 

San Antonio ./. ./0.27 ./. 0.01/0.01 ./. ./. ./. 0.71/0.71 ./. ./. 
Seville ./. ./. ./. ./. ./. ./0.15 ./. ./. 0.63/0.63 0.22/0.22 

Sheffield ./. 0.95/0.95 ./. 0.04/0.04 ./. ./. ./. ./. 0.01/0.01 ./. 
Tallinn ./. ./. ./. ./. 0.12/0.12 ./0.65 ./. ./. ./. 0.22/0.22 

Tampa-Pinellas ./. ./. ./. 0.57/0.57 ./. ./0.41 ./. ./. ./. ./. 
The Hague ./. ./. ./. ./. ./. ./0.28 ./. ./. ./. 0.72/0.72 

Thessaloniki ./. ./. 0.13/0.19 ./. ./. ./. 0.33/0.33 ./. 0.54/0.54 ./. 
Toulouse ./. ./. ./. ./. ./. ./0.32 ./. ./. ./. 0.68/0.68 
Utrecht ./. ./. ./. ./. 0.00/0.00 ./0.46 ./. ./. ./. 0.54/0.54 
Valencia ./. ./. ./. 0.07/0.07 ./. ./. ./. ./. 0.69/0.69 0.23/0.23 

Vancouver ./. ./0.28 ./. ./. ./. ./. ./. 0.72/0.72 ./. ./. 
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4. Discussion 

In recent years, DEA has been widely used to assess urban sustainability [34–36]. From an empirical 
approach, the use of DEA in urban contexts assesses the performance of the cities comprising all the 
potential dimensions related to sustainability. DEA can be used in benchmarking, target setting, measuring 
returns to scale, measuring congestion, etc. Because of the capabilities of DEA models in evaluating and 
ranking DMUs [37]. Despite DEA being an excellent tool to guide policy makers to improve social and 
urban sustainability [13], it is important to acknowledge that it has to be used carefully and researchers 
must be aware of its limitations and strengths.  

From an urban policy perspective that includes the analysis of KPIs, this paper comprehensively 
addresses one of the most important dilemmas in the assessment of urban sustainability. We benefit from 
the SBI model and assumed Variable Returns to Scale (VRS) in the production function (technology). This 
helps us to evaluate the performance of the cities in a more realistic way, contrary to most of existing 
empirical evidence [17]. A similar approach has been applied to the integrated sustainability performance 
assessment of Universities (based on UI GreenMetric ranking) by Puertas and Marti [38]. 

The result is that almost half of the cities of our sample are efficient. Half of the efficient cities perform 
as a benchmark for the inefficient units and the other half are outliers. Therefore, inefficient cities do not 
take any of those outliers as peers (benchmarks). Looking more closely at the information included in Table 
4, any city can observe what are their benchmarks (and so replicate relevant policies) for any inefficient 
unit and the observed efficient cities that define those benchmarks. Overall efficiency is not relevant for 
decision makers if the city does not act as a benchmark for any inefficient unit (when efficient cities are 
outliers). On the other hand, Aarhus, Belfast, Cartagena, Copenhagen, Cork, Debrecen, Marbella, Portland, 
Porto, and Zurich are peers that define the benchmarks for the inefficient cities. Copenhagen, Debrecen 
and Zurich are the most commonly used efficient cities to define the targets for their independent 
benchmarks.  

From a practical point of view, any city incorporated to the database can obtain a diagnosis first on its 
relative efficiency, and then on specific benchmarks from peers for setting their future (optimal) policy 
goals. When a city looks at its relative ranking position from the SBI efficiency model (Table 2). Later, a 
detailed comparison of their relative slacks and corresponding benchmarks provides information what 
policies have to be addressed for an optimal result on the given city. In sum, slacks inform about which 
variables inefficient cities should reduce (in the case of inputs or undesirable outputs) or which variables 
they should increase (GDP) in order to improve their performance and become more efficient cities. Bigger 
slacks mean that the efforts that cities should carry out are bigger in that variable. 

This paper is not exempted from some limitations. First, as the model obtained with the use of DEA 
and SBI is the best among the possible models with the available data, the restricted available data we have 
coped with mean that we still can improve our model a great deal. We are committed to looking for more 
data in order to make a better and more complex model which reflects the reality of cities meaningfully. 
Second, the use of DEA and SBI invariably leads to a specific final model. In our work, SBI model searches 
for the maximum distance of the inefficient cities to the EF, thereby reducing their resources involving 
undesirable outputs whilst increasing their desirable outputs. Other models define a fixed direction of all 
the DMUs to be projected over the EF, while in our model each DMU follows their own direction. Third, 
in this paper we have focused on a concrete period for the assessment of the efficiency of the cities. We 
consider that a multiple period analysis could be an interesting further research area to carry on.  

5. Conclusions 

This paper evaluates the performance of cities utilizing the SBI model to guide that process. While this 
model has been tested in multiple applications, we have found none in the context of sustainability, and 
we are therefore excited to present our results in this forum. Apart from that, the application of this model 
using both desirable and undesirable outputs following the weak disposability assumption represents an 
excellent opportunity to give proper feedback to cities. Cities can benefit from this analysis to enhance their 
performance, even though there are evident limitations due to the DEA methodology, available data, and 
the fact that the goal proposed in the model affects the search of the benchmarks.  
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Looking closely at the influence of each efficient city (benchmark) over the inefficient cities (Table 5) 
specific policies from benchmarked cities can be monitored to ascertain their relevance on the measurement of 
efficiency for each city. Since all the selected cities were gathered in the data under the same standard (ISO 37120) 
and have similar population size, policies can be followed up to improve the decision-making processes. 

The effect of specific urban policies can be explored by simulating the future evolution of inputs and 
outputs on this model, allowing insight into the overall effect of city decisions on the most efficient result 
for cities’ future. Later developments could include exploring simulations on KPI evolution for verifying 
reasonable performance. 
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