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Abstract: China’s transportation industry has become one of the major industries with rapid growth in
CO2 emissions, which has a significant impact in controlling the increase of CO2 emissions. Therefore,
it is extremely necessary to use a hybrid trend extrapolation model to project the future carbon dioxide
emissions of China. On account of the Intergovernmental Panel on Climate Change (IPCC) inventory
method of carbon accounting, this paper applied the Logarithmic Mean Divisia Index (LMDI) model
to study the factors affected by CO2 emissions. The affected factors are further subdivided into the
scale of employees, per capita carrying capacity, transport intensity, average transportation distance,
energy input and output structure, energy intensity and industrial structure. The results are as
follows: (1) Per capita carrying capacity is the most important factor to promote the growth of CO2

emissions, while industrial structure is the main reason to inhibit the growth of CO2 emissions; (2) the
expansion of the number of employees has played a positive role in the growth of CO2 emissions and
the organization and technology management of the transportation industry should be strengthened;
(3) comprehensive transportation development strategy can make the transportation intensity effect
effectively reduce CO2 emissions; (4) the CO2 emissions of the transportation industry will continue
to increase during 2018–2025, with a cumulative value of about 336.11 million tons. The purpose of
this study is to provide scientific guidance for the government’s emission reduction measures in the
transportation industry. In addition, there are still some deficiencies in the study of its influencing
factors in this paper and further improvements are necessary for the subsequent research expansion.

Keywords: CO2 emissions; LMDI model; decomposition analysis; hybrid trend extrapolation model

1. Introduction

At present, the intensification of the greenhouse effect and its derivative effects is an important
issue of common concern to governments of all countries [1,2]. Studies show that the CO2 emissions
from fossil fuels are the most significant reason for the exacerbated greenhouse effect [3–5]. As a
country with high production efficiency, China consumes a large amount of fossil energy and emits a lot
of CO2 emissions. For the sake of restraining the growth of CO2 emissions from fossil energy, the Paris
Agreement was convened at the end of 2015. In the Intended Nationally Determined Contributions
(INDCs) submitted to the Paris Agreement, it was pointed out that China’s CO2 emissions shall get to
the crest value around 2030 and strive to reach the peak with the fastest speed and shortest time [6].
The Chinese government promised that by 2030, the CO2 emission per unit of GDP shall be 60% to 65%
less than in 2005 [7].

The industrial sector is the traditional subject of CO2 emissions in China. However, since China’s
economy entered the ‘new normal’ [8], the impact of the tertiary industry sector, especially the
transportation industry, on China’s CO2 emissions has become increasingly important. China’s
transportation industry is characterized by high energy consumption [9]. Through calculation of
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the data in the Energy Statistical Yearbook [10], energy consumption increased at an average annual
ascending rate of 8.17% from 2001 to 2017 and reached 357.10 million tons in 2017 [10]. With the
rapid increase of the transportation scale, its effect on China’s CO2 emissions is expected to continue
to expand. Therefore, for the sake of cutting down CO2 emissions effectively, it is significant to
determine the factors that cause the increase of CO2 emissions. Based on this, this article proposed
policy recommendations for reducing CO2 emissions of the transportation industry. Achieving the
goal of energy conservation and emission reduction is significant to China [11].

Generally, decomposition analysis is extensively applied for studying the affected elements of CO2

emission [12]. It quantitatively measures the contribution value of each factor in a given process by
decomposing the comprehensive or relative index into several driving elements. There are mainly two
decomposition methods: Structural Decomposition Analysis (SDA) and Index Decomposition Analysis
(IDA) [13]. In contrast to SDA, IDA has the strong points of simple structure, low data demand and
fewer restricted conditions [14]. LMDI is the best developed model in the IDA method [15], which is
not subject to zero value or residual value, and directly calculates the logarithmic weighting factor [16].
Ang proposed eight LMDI models, summarizing their origins, decomposition formulas, strengths and
weaknesses to help users choose which model to use to provide a selection guide [17].

Compared with other decomposition methods, the LMDI model is considered to be the most
effective tool to study the decomposition analysis of influencing factors, and its results are more
applicable and explanatory [18,19]. The LMDI method has experienced a period of rapid growth and
has made a great dedication to the analysis of CO2 emissions in the states, regions and provinces [20].
Meanwhile, it is also increasingly used to research the affected factors of CO2 emissions in various
industries [21–23]. With the ongoing improvement of academics, the LMDI method has become
a mainstream application in the factor analysis of the transportation industry. The following are
examples of many scholars applying LMDI to decompose CO2 emissions from the transportation
industry. Zhang et al. established a regional elastic decoupling model and LMDI model for the
transportation industry to analyze the factors affecting CO2 emissions [24]. Zhang and Yao established
the LMDI to analyze the contribution of earnings, energy strength and transport structure factors to
CO2 emissions of China’s transportation industry [7]. Liang et al. made use of the LMDI to study
the restraining effect of energy structure, energy efficiency and population scale on CO2 emissions in
the transportation industry [11]. A study by Timilsina and Shrestha studied the contribution of per
capita GDP, population increase and energy intensity to the growth of CO2 emissions in the transport
sector [25]. Fan and Lei measured the impact of energy structure, energy intensity, unit traffic turnover
rate and traffic intensity on CO2 emissions of Beijing’s transportation industry [26]. This article mainly
used the LMDI to decompose the elements that affected the CO2 emissions of China’s transportation
industry in order to find the driving factors for reducing CO2 emissions.

Meanwhile, this study also predicted future CO2 emissions. Some scholars have made many
explorations in predicting CO2 emissions. Feng’s study used system dynamics to predict the trend
of CO2 emissions in Beijing from 2005 to 2030 [27]. Decai et al. established a GM (1, 1) grey model
and multinomial regression hybrid model to forecast CO2 emissions based on Jiangsu’s gross national
product and energy consumption statistics [28]. Because the curve of the sample data to be predicted
in this study is between linear and exponential trends, the above methods are not suitable. The Meng
scholar added a linear equation based on the gray prediction to the hybrid trend model, which could
use a small number of specimens for fitting and predict the above two tendencies simultaneously.
These tests’ results had proved that the hybrid trend extrapolation model had better adaptability and
prediction results than the single trend extrapolation method [29,30]. It can be seen that this article
is suitable for applying the hybrid trend extrapolation method to predict CO2 emissions in the next
few years.

Therefore, this article applied the LMDI and hybrid trend extrapolation model in the transportation
industry to decompose the elements that affect CO2 emissions in 2001–2017 and forecast CO2 emissions
in 2018–2025. The factors influencing CO2 emission studied in this paper are: Energy input–output
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structure, energy intensity, industrial structure, average distance, transportation intensity, per capita
carrying capacity and the size of employees of the industry. The decomposition results can also supply
a benchmark for government policies on how to cut down carbon dioxide emissions. This article
consists of the following parts: Section 2 contains methods and data processing. Section 3 gives the
contribution value of factors, CO2 emissions results and predicted values. Section 4 gives the analysis
of these factors; Section 5 gives the conclusion and political opinions. Finally, Section 6 gives the
limitation and prospect of the article.

2. Methodology and Data

2.1. Extended LMDI

The transportation industry refers to the business activities that transport goods or passengers
to their destinations by means of transportation so as to transfer their spatial positions. This article
divided the elements affecting CO2 emissions into seven: Energy input–output structure, energy
intensity, industrial structure, average transportation distance, transportation intensity, per capita
carrying capacity and the scale of employees in the industry. There are eight typical types of fuel
consumed by China’s transportation industry: Coal, coke, crude oil, gasoline, kerosene, diesel, fuel oil
and natural gas.

In this article, the Intergovernmental Panel on Climate Change’s (IPCC) checklist [31] method was
applied to calculate CO2 emissions. CO2 emissions are derived from energy consumption multiplied
by its corresponding emission coefficient. Specifically, SCCi and Mi data are derived from the general
principle of total calculation, the production energy consumption [32]. The key to the calculation is the
CO2 emission factor. IPCC default values for international standards are usually used as emission
factors to compute CO2 emissions. On the basis of the assumption of a carbon emission factor, the
IPCC calculates that CO2 emissions remain unchanged as shown in Equation (1):

C =
8∑

i=1

Ki × SCCi ×Mi ×Ni (1)

where C is the overall CO2 emissions of China’s transportation industry; Ki is the i-th energy use of the
transportation industry (suit: kgce/m3; kgce/kg); SCCi is the standard coal coefficient of the i-th fuel
(suit: kgce/m3; kgce/kg); Mi is the average low calorific value of different fuels; Ni is the CO2 emissions
factor of various fuels; i is the i-th energy source.

For the sake of studying the potential impact elements on CO2 emissions, according to the classic
Kaya identity [33], the LMDI is applied to establish the decomposition model of impact elements on
CO2 emissions, as shown in Equation (2):

C =
8∑

i=1
Cit

=
8∑

i=1

Cit
Et
×

Et
Vt
×

Vt
Gt
×

Qt
Wt
×

1
Qt
Gt

×
Wt
Pt
× Pt

(2)

where Cit is the consumption of CO2 in the t-year of the i-th fuel; Et is the energy use of the t-year; Gt is
the GDP of the t-year; Vt represents the added value of the transportation industry in the t-year; Qt is
the turnover volume of the t-year (passenger traffic plus freight volume); Wt is the t-year shipment
(passenger traffic plus freight volume); Pt is the employees of transportation industry in the t-year.
Among them, the selection of GDP, P, energy use and turnover indicators came from [7,34], and the rest



Sustainability 2020, 12, 2596 4 of 20

of the indicators were selected according to the relevant indicators in the China Statistical Yearbook [10].
Furthermore, Equation (2) is expressed as follows:

C =
8∑

i=1
Cit

=
8∑

i=1
KSit × EIt × ISt × Lt ×QIt ×Yt × Pt

(3)

where KSit = Cit/Et represents the energy input and output structure of the i-th energy; EIt = Et/Vt

means the energy intensity of the t-year; ISt = Vt/Gt means the industrial structure of the t-year;
Lt = Qt/Wt means the average transportation distance of the t-year; QIt = 1/Qt/Gt represents the
reciprocal of transport intensity in the t-year; Yt = Wt/Pt represents the per capita carrying capacity of
the transportation industry in the t-year; Pt is the scale of employees of the transportation industry in
the t-year.

LMDI is able to partition into two classifications: Multiplication decomposition and addition
decomposition. Some absolute indicators (such as total energy consumption, indirect CO2 emissions of
residents, etc.) are usually decomposed by addition. At present, due to the problem of the development
of method model, the application of addition decomposition is more common than multiplication
decomposition, and the following are examples of using addition decomposition analysis to solve the
problem of CO2 emission. Lin and Xie used the method of addition structure decomposition to sum
up the changes of CO2 emissions in China’s food industry from 1992 to 2010 into four aspects [35].
Wang and Yang’s indirect CO2 emissions to urban and rural residents in Beijing from 2000 to 2010 were
decomposed into eight influencing factors by adding an LMDI structure [36]. Therefore, this article
used addition decomposition to study CO2 emissions from the transportation industry. The sum of the
contribution of the seven impacts is the total growth of CO2 emissions from year t1 to year t. The Kaya
identity is improved as follows:

∆C = CT
−CT−1 = ∆CKS + ∆CEI + ∆CIS + ∆CL + ∆CQI + ∆CY + ∆CP (4)

where ∆C represents the increase in total CO2 emissions from the t-1 year to the target year t; where
∆CKS, ∆CEI, ∆CIS, ∆CL, ∆CQI, ∆CY and ∆CP reflect the degree of the elements’ impact. The contribution
of the seven variables to CO2 emissions can be based on the LMDI method decomposition equation.
The specific decomposition formula is as follows, in Table 1, where KS , 0, EI , 0, IS , 0, L , 0, QI ,
0, Y , 0, P , 0.

Table 1. The Logarithmic Mean Divisia Index (LMDI) formula.

Change Scheme LMDI Equation

∆C = Ct
−Ct−1 =

∆CKS + ∆CEI + ∆CIS + ∆CL + ∆CQI + ∆CY + ∆CP

∆CKS =
8∑

i=1

Ct
i−Ct−1

i
ln Ct

i−ln Ct−1
i
× ln KSt

KSt−1

∆CIS =
8∑

i=1

Ct
i−Ct−1

i
ln Ct

i−ln Ct−1
i
× ln ISt

ISt−1

∆CL =
8∑

i=1

Ct
i−Ct−1

i
ln Ct

i−ln Ct−1
i
× ln Lt

Lt−1

∆CKI =
8∑

i=1

Ct
i−Ct−1

i
ln Ct

i−ln Ct−1
i
× ln KIt

KIt−1

∆CY =
8∑

i=1

Ct
i−Ct−1

i
ln Ct

i−ln Ct−1
i
× ln Yt

Yt−1

∆CQI =
8∑

i=1

Ct
i−Ct−1

i
ln Ct

i−ln Ct−1
i
× ln QIt

QIt−1

∆CP =
8∑

i=1

Ct
i−Ct−1

i
ln Ct

i−ln Ct−1
i
× ln Pt

Pt−1
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2.2. Hybrid Trend Extrapolation Model

Combining the GM (1, 1) prediction equation with the linear model, a mixed equation is established.
When it is used for prediction, iteration is carried out on the premise of determining the starting point
of iteration and a given time series x(0)(k). From this, the hybrid trend extrapolation equation is written
by Meng et al. [29]: {

x̂(0)(k + 1) = λ1x̂(0)(k) + λ2k + λ3

x̂(0)(1) = x̂(0)(1) + λ4
(5)

where λ1–λ4 are the equation parameters of the mixed trend extrapolation equation.
Equation (5) is a combination of an unconstrained optimization equation and a linear equation

that can effectively enhance the usability of the hybrid model in simulating the above two trends and
any trends between them. By changing the parameters of the equation, the corresponding tracking
fit/prediction result is obtained.

When determining the parameters of the equation, n observations can be utilized to first estimate
the values of three parameters in two steps. Estimation of λ1, λ2 and λ3 are calculated by Liu et al. [37]:

λ̂ = (B
′

B)
−1

B
′

Y,

where :

λ̂ =


λ̂1

λ̂2

λ̂3

, B =


x(0)(1) 1 1
x(0)(2) 2 1
· · · · · · · · ·

x(0)(n− 1) n− 1 1

 and Y =


x(0)(2)
x(0)(3)
· · ·

x(0)(n)

.
(6)

The estimation of λ4 is calculated based on the aforementioned results by minimizing the fitting
errors. That is,

min
β̂4

n∑
k=1

[
x̂(1)(k) − x(1)(k)

]2
(7)

The results of the above unconstrained optimization equation is given by Zeng and Meng [38]:

λ̂4 =

n−1∑
k=1

x(1)(k + 1) − λ̂k
1x(1)(1) − λ̂2

k∑
j=1

jλ̂k−1
1 −

1−λ̂k
1

1−λ̂1
λ̂3

λ̂k
1

1 +
n−1∑
k=1

λ̂2k
1

(8)

where x(1) is the cumulative generation time series of x(0), which is achieved by

x(1)(k) =
k∑

i=1

x(0)(i)bt =
2

n− 1

(
M(1)

t −M(2)
t

)
(9)

After obtaining the estimations of λ1–λ4, let k = 1, 2, 3, . . . , in Equation (9), the suiting and
prediction results to x(0)(k) are then achieved.

2.3. Data Source

In this article, data are obtained from the use of coal, coke, crude oil, gasoline, kerosene, diesel,
fuel oil and natural gas in “transportation, storage and postal industries” of the China Energy Statistics
Yearbook [10]. Energy use data need to be changed into standard quantity according to the standard
coal coefficient. Specifically, SCCi,Mi and CO2 emissions coefficient data are derived from the general
principle of total calculation, production energy consumption of 2008 [32], as shown in Table 2 below.



Sustainability 2020, 12, 2596 6 of 20

Table 2. The correlation coefficient of fuel.

Fuels Factors
(kgCO2/TJ)

Average Low Calorific Value
(KJ/kg)

Standard Coal Coefficient
(kgce/m3; kgce/kg)

Coal 94,600 20,908 0.7143
Coke 107,000 28,435 0.9714

Crude oil 73,300 41,816 1.4286
Gasoline 70,000 43,070 1.4714
Kerosene 71,900 43,070 1.4714
Diesel oil 74,100 42,652 1.4571
Fuel oil 77,400 41,816 1.4286

Natural gas 56,100 35,544 1.2143

In order to eliminate the impact of inflation, on the premise of knowing the GDP index and the
transportation industry index in 2001–2017, the constant price GDP and the transportation industry
added value in 2017 are, respectively, multiplied by the respective ratio between the index in 2001–2016
and the index in 2017 to obtain the constant price GDP and the transportation industry added value
for 2001–2016. The calculation results are shown in Table 3.

Table 3. The data of GDP and industry added value.

Year GDP (106 Yuan)
Industry Added
Value (106 Yuan) GDP Index Transportation

Industry Index

2001 197,334.21 10,662.93 851.90 823.60
2002 215,352.10 11,422.69 912.60 898.80
2003 236,963.98 12,122.37 968.50 989.00
2004 260,923.94 13,878.46 1108.80 1089.00
2005 290,658.25 15,433.03 1233.00 1213.10
2006 327,628.46 16,971.32 1355.90 1367.40
2007 374,254.54 18,975.24 1516.00 1562.00
2008 410,386.16 20,364.59 1627.00 1712.80
2009 448,961.69 21,051.75 1681.90 1873.80
2010 496,713.88 23,044.40 1841.10 2073.10
2011 544,082.72 25,271.11 2019.00 2270.80
2012 586,827.28 26,809.41 2141.90 2449.20
2013 632,351.20 28,578.01 2283.20 2639.20
2014 678,498.08 30,434.23 2431.50 2831.80
2015 725,315.84 31,668.37 2530.10 3027.20
2016 774,050.39 33,722.35 2694.20 3230.60
2017 827,121.70 36,802.70 2940.30 3452.10

Note: The GDP index and transportation industry index in 2001–2017 as well as the GDP and transportation industry
added value in 2017 are derived from the China Statistical Yearbook [10].

Conversion turnover is a comprehensive indicator reflecting the total turnover of passenger and
cargo transportation in the transportation sector. It is calculated by converting the passenger turnover
into a ton-kilometer (ton of nautical miles) using the conversion factor, and then adding it to the cargo
turnover. It is expressed as “converted ton-kilometer” (for shipping companies as “converted ton of
nautical miles”). On the basis of the transfer coefficient of the mode of transportation, the conversion
between passenger and cargo is completed. Of course, turnover should be converted into flow that can
be compared or added according to specific conditions. In Houda and Mounir’s research, the turnover
is measured by ton-km. Therefore, the passenger turnover calculated by people per kilometer must be
converted into tons per kilometer by the conversion factor. Among them, 1 passenger-km for railway
transportation is converted into 1 ton-km, and 13.8 passenger-km for air transportation is converted
into 1 ton-km [39].
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3. Results

3.1. CO2 Emission Results

As shown in Figure 1 below, the current situation and trend of CO2 emissions in the transportation
industry can be analyzed clearly and intuitively to understand the progress of emission reduction.
CO2 emissions generated by eight energy sources consumed by the transportation industry gradually
increased from 2001 to 2017, with an average ascending rate of 7.97%, from 314.35 million tons in
2001 to 1.07 billion tons in 2017. During 2001–2004, the CO2 emissions were in a fast growth period.
China’s opening to the outside world had been further strengthened, which required the support
of the transportation industry, leading to the fast increase of CO2 emissions. In 2005–2008, it was
in a period of slow growth, and the growth rate gradually decreased due to the implementation of
the Kyoto Protocol [40]. The Olympic Games in Beijing organized in 2008 had also played a greater
role in driving transportation, post and telecommunications, communications and other industries.
First, the scale of infrastructure expansion was shown by a large increase in public transport vehicles,
a large increase in passenger and freight traffic by air and the expansion of expressways. Secondly,
in terms of freight transportation, there was a lot of equipment transportation before and after the
competition and people’s travel and transportation needs [41]. In 2009, the U.S. sub-prime crisis broke
out, and China’s transportation industry was also greatly affected. Later, in response to the crisis,
China introduced a national policy to expand domestic demand and strengthened the construction
of an integrated transportation system, which had promoted the development of the transportation
industry. In 2012, the State Department released the 12th Five-Year project [42], which set stricter
emission reduction targets for the transportation industry. Until 2017, the ascending rate of CO2

emissions fluctuated slightly.

Figure 1. CO2 emissions and growth rate of China’s transportation industry.

3.2. Forecasting Results

In view of the above, this article substituted the relevant data into the hybrid trend extrapolation
model to predict the CO2 contribution of the seven influencing factors in 2018–2025. Table 4 shows that
during this forecast period, the total contribution of influencing factors to CO2 emissions will increase
year by year. Among the influencing elements, except for the scale of employees and the per capita
carrying capacity, the contribution of other factors to carbon dioxide emissions is negative growth.
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Table 4. Prediction results of CO2 emissions decomposition (unit: ten thousand tons).

Year ∆QI ∆L ∆P ∆EI ∆IS ∆Y ∆KS Total

2018 3786.25 −1369.13 1958.62 −2255.84 −455.99 3003.01 −266.67 4400.26
2019 4174.60 −1614.12 1997.63 −2490.97 −418.12 2982.95 −288.43 4343.54
2020 4562.96 −1859.11 2036.46 −2726.09 −380.26 2962.89 −310.19 4286.65
2021 4951.31 −2104.10 2075.39 −2961.22 −342.39 2942.82 −331.95 4229.85
2022 5339.66 −2349.09 2114.26 −3196.35 −304.53 2922.76 −353.72 4173.00
2023 5728.01 −2594.08 2153.16 −3431.47 −266.66 2902.70 −375.48 4116.17
2024 6116.36 −2839.07 2192.05 −3666.60 −228.80 2882.64 −397.24 4059.34
2025 6504.71 −3084.06 2230.94 −3901.73 −190.93 2862.58 −419.00 4002.51
Total 41,163.86 −17,812.77 16,758.51 −24,630.27 −2587.70 23,462.35 −2742.68 33,611.31

Note: QI—reciprocal of transportation intensity; L—average transportation distance; P—size of employees;
EI—energy intensity; IS—industrial structure; Y—per capita carrying capacity; KS—energy input–output structure.

The predicted CO2 emissions of China’s transportation industry from 2018 to 2025 can be obtained
by adding the predicted contribution of the influencing factors in Table 4 to the total CO2 emissions of
the previous year. The detailed forecast values can be seen in Table 5. It indicates that CO2 emissions
from the transportation industry may still be on an upward trend during 2018–2025.

Table 5. Prediction results of CO2 emissions from 2018 to 2025 (unit: ten thousand tons).

Year Predicted Value

2018 111,602.2983
2019 115,945.8432
2020 120,232.4907
2021 124,462.3395
2022 128,635.3375
2023 132,751.5123
2024 136,810.8492
2025 140,813.3560

3.3. Decomposition Results of the LMDI Model

According to Equations (1)–(4), the analysis is based on the data from 2001 to 2017. Based on the
LMDI, we are able to determine the influence of these factors on the overall CO2 emissions. The CO2

emission decomposition results are shown in Table 6: uring 2001−2017, the combined impact of CO2

emissions was about 757.67 million tons. Among them, transportation intensity, average transportation
distance, transportation industry employees, energy intensity, industrial structure, per capita carrying
capacity and energy input–output structure contributed to −100.83 million tons, 90.96 million tons,
236.58 million tons, −53.49 million tons, −123.15 million tons, 518.93 million tons and −67.36 million
tons of CO2 emissions. A negative value indicates a reduction in CO2 emissions compared to the
previous year.



Sustainability 2020, 12, 2596 9 of 20

Table 6. Contribution value of CO2 emissions from 2001 to 2017 (unit: ten thousand tons).

Year ∆QI ∆L ∆P ∆EI ∆IS ∆Y ∆KS Total

2002 925.87 213.58 −939.17 260.79 −610.52 2651.21 47.16 2548.92
2003 1613.29 415.04 4568.99 2708.67 −1282.67 −3116.14 −738.78 4168.39
2004 −6430.78 6647.07 −224.08 2255.95 1664.58 4121.92 −2936.68 5097.99
2005 −1462.36 2802.73 −527.96 −574.78 −83.56 4513.30 −755.41 3911.97
2006 1036.10 592.89 578.91 −220.23 −1342.64 4271.06 −194.36 4721.73
2007 221.56 1270.35 699.23 −2624.72 −1261.33 5634.70 −722.64 3217.14
2008 565.95 −3299.02 10.02 −308.81 −1347.50 8489.67 −872.06 3238.26
2009 −415.01 940.13 6513.45 −1394.90 −3668.96 −1216.71 −521.03 236.96
2010 −3119.33 1034.22 −156.93 721.85 −734.45 9174.77 −280.21 6639.92
2011 −1780.04 −797.99 5253.14 −678.55 96.85 4148.00 −793.56 5447.86
2012 −643.05 −1175.68 −12,697.03 2992.10 −1350.38 20,699.01 −211.92 7613.05
2013 9362.11 174.23 20,992.37 −97.92 −973.81 −23,909.88 2787.00 8334.11
2014 −562.80 5510.02 1655.23 −1986.22 −680.79 −69.75 −748.21 3117.49
2015 7760.77 −1716.96 −797.01 1255.75 −2633.21 1232.31 −253.75 4847.90
2016 1976.59 −365.28 −577.77 −3784.06 −208.07 5529.40 −335.96 2234.85
2017 1034.48 −3149.34 −693.72 −3873.47 2101.43 9739.94 −206.51 4952.81
Total 10,083.34 9096.00 23,657.69 −5348.54 −12,315.00 51,892.81 −6736.93 70,329.34

Note: QI—reciprocal of transportation intensity; L—average transportation distance; P—size of employees;
EI—energy intensity; IS—industrial structure; Y—per capita carrying capacity; KS—energy input–output structure.

4. Discussion

4.1. Transport Intensity Factor Analysis

Transport intensity is a common analysis index reflecting the relationship between traffic volume
and economic aggregate. As can be seen from Table 6, the reciprocal curve of transport intensity
effect from 2002 to 2017 increased CO2 emissions by 100.83 million tons, taking up 14.34% of the
overall contribution value of carbon dioxide emissions in the transportation industry. Figure 2 reveals
that, except for the period 2002–2005, the reciprocal curve of transportation intensity is roughly
the same as the tendency of CO2 emissions. Overall, the cumulative transport intensity effectively
reduced carbon dioxide emissions, which is identical with Wang et al. [43]. The improvement of
transportation technology, organization and management of the transportation industry and the
restriction of high energy consuming industries by the state [26] can achieve the purpose of reducing
transportation intensity, so unit transportation volume can create more GDP value. The increase in the
intensity of transportation in some years may be due to the increase in transportation activities and the
implementation of the national demand expansion policy, which make the growth rate of traffic flow
exceed GDP, thus increasing energy consumption and CO2 emissions.
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Figure 2. CO2 emissions contribution effects of QI factor from 2002 to 2017.

4.2. Average Transportation Distance Factor Analysis

The average transportation distance refers to the average transportation distance of goods or
passengers transported by the transportation industry in a certain period of time. It is an index
reflecting the working intensity of transportation. It can be seen from Table 6, the cumulative increase
of CO2 emissions from the average distance effect was 90.96 million tons in 2001–2017, taking up
12.93% of the overall contribution value of CO2 emissions in the transportation industry. Figure 3
reveals that the trend of average transportation distance effect and CO2 emissions of the transportation
industry in 2002–2009 is almost the same; the change trend of average transportation distance effect
and CO2 emissions of the transportation industry in 2010–2017 is almost the opposite. The length of the
average transportation distance is closely related to the industrial layout. From 2001 to 2007, China’s
production layout was unreasonable, among which the second and third industries in the middle and
the east accounted for the highest proportion, and the west of the first industry accounted for the
highest proportion [44]. The transportation distance of raw materials and finished products between
industries increased, thus increasing the turnover of goods and CO2 emissions. Due to the launch
of the medium and long-term railway network planning [45] in 2008, the number of short-distance
passenger dedicated lines for intercity railway will be increased. The Ministry of Transport actively
promotes the development of the integration of urban and rural highway passenger transport, adjusts
the line structure, and increases the short-distance passenger transport of highways; in terms of
freight transport, roadway transport accounts for the largest proportion of freight transport, mainly
short-distance transport [46]. This resulted in a significant reduction in the average transportation
distance in 2008 compared to 2007, resulting in a reduction in CO2 emissions. The year 2009–2013 is
still under planning [45], with little change in average transportation distance and stable change in
CO2 emissions. By observing the data in China’s Energy Statistical Yearbook [10], it can be seen that
the demand for coal, metallurgy and other heavy industries is not strong in 2015–2017, resulting in the
continuous decline of railway transportation. The positive development of E-commerce increased the
road freight volume and shortened the average transportation distance.
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Figure 3. CO2 emissions contribution effects of the L factor from 2002–2017.

4.3. Scale of Employees Factor Analysis

As can be seen from Table 6, the scale effect of industry employees in 2001–2017 increased
CO2 emissions by 236.58 million tons, taking up 33.64% of the overall contribution value of CO2

emissions change of the transportation industry. Except for 2012, the CO2 emissions of the whole line
increased year by year. Figure 4 reveals that the tendency of personnel effect and CO2 emissions of the
transportation industry in 2002–2009 is almost the same; the tendency of personnel effect and CO2

emissions of the transportation industry in 2010–2017 is almost the opposite. Li suggested that for
every 2.5 people who moved to Beijing, the number of cars would increase by one. This brought great
pressure to urban traffic and promoted the increase of traffic CO2 emissions [47]. With the development
of the economy, the increase of transportation volume needed to expand the scale of employees and the
number of transportation vehicles to complete the transportation. This increased energy consumption
and CO2 emissions in the transportation industry. However, affected by the economic crisis in 2012,
the domestic express delivery industry was facing a huge reshuffle. The transportation industry’s
population was significantly lower than that of the previous year, so the contribution to CO2 emissions
was negative. Therefore, how to keep the scale of employees unchanged or even reduced while meeting
the transportation activities is a problem to be considered.
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Figure 4. CO2 emissions contribution of the P factor from 2002 to 2017.

4.4. Energy Intensity Factor Analysis

Energy intensity reflects the comprehensive utilization efficiency of fuel. As can be seen from
Table 6, the energy intensity effect reduced CO2 emissions by 53.49 million tons in 2001–2007, taking
up −7.61% of the overall contribution value of CO2 emissions. Figure 5 reveals that the energy
intensity effect is almost in accord with the change tendency of CO2 emissions in the transportation
industry. It shows that a prominent progress in energy efficiency helps to decrease CO2 emissions.
In Lakshmanan’s study, it was also pointed out that the reduction of energy intensity of passenger
cars and light trucks was the main factor in reducing CO2 emissions of transportation in the United
States [48].

Figure 5. CO2 emissions contribution effects of the EI factor from 2002 to 2017.
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The rapid development of China’s society and economy has promoted the development of the
transportation industry. Energy intensity is related to factors such as the structure of energy use, energy
efficiency and national policies. Similarly, Huang and Wang pointed out that energy intensity is closely
related to energy structure, energy utilization technology and other factors [49]. At present, the cargo is
still mainly transported by road, and the vehicles are mainly light and heavy trucks. According to the
data in the China Statistical Yearbook [10], the volume of passenger transport by road has declined, but it
still dominates, and air transport is gradually rising. Most of the transportation vehicles consume high
energy-consumption fuels such as diesel and gasoline, which makes the energy intensity contribution
increase. However, the contribution of energy intensity has been negative in some years, because
the Ministry of Transport regards the construction of resource-saving and environmentally friendly
transportation as a major strategy for transportation development in the new period [50], and promotes
the overall upgrade of energy utilization technology and sustainable use of energy. With the promotion
of emission decreased technology and the introduction of emission decreased policies, the energy
intensity will decrease with the continuous increase of energy efficiency. As shown in the forecast data
in Table 6, energy intensity is still the significant factor in restraining the growth of carbon dioxide
emissions. In the future, efforts should be made to enhance energy intensity.

4.5. Industrial Structure Factor Analysis

On the basis of the results in Table 6, industrial structure effect has reduced CO2 emissions by
123.15 million tons, taking up 17.51% of the overall contribution value of CO2 emissions from the
transportation industry in 2001–2017. Similarly, in the research of Tang et al., it was pointed out that
the cumulative industrial structure effect is a negative contribution to the CO2 emission of Jiangsu
Province [28]. Figure 6 reveals that the trend of the industrial structure effect is almost the same as the
change tendency of CO2 emission of the transportation industry. Except for 2004 and 2017, the whole
curve shows a state of CO2 emissions reduction year by year. After the outbreak of the economic crisis,
in order to restore the economy, we should implement the policy of expanding domestic demand,
which requires the rapid development of the transportation industry in order to provide support for the
growth of the national economy. The increasing scale of the heavy chemical industry requires a large
number of raw material transportation activities, which makes the added value of the transportation
industry increase in proportion to the national GDP, and the industrial structure effect increases
CO2 emissions. In addition, the impact of accession to the World Trade Organization (WTO) has
further expanded, which provides support for the stable growth of China’s economy and makes the
GDP grow rapidly, faster than the growth rate of the transportation industry. To a certain extent,
the sustainable development strategy and price changes (including transport price and fuel price) also
caused the growth rate of added value of the transport industry to be lower than the growth rate of
GDP, thus reducing the proportion of the transport industry in GDP, and reducing CO2 emissions due
to the industrial structure effect.



Sustainability 2020, 12, 2596 14 of 20

Figure 6. CO2 emissions contribution effects of the IS factor from 2002 to 2017.

4.6. Per Capita Carrying Capacity Factor Analysis

According to the results in Table 6, the per capita carrying capacity effect increased the total CO2

emissions by 518.93 million tons from 2001 to 2017, taking up 73.79% of the overall contribution value
of CO2 emissions in the transportation industry. Economic development directly drives the increase of
traffic volume. As shown in Figure 7 below, the per capita carrying capacity effect is roughly consistent
with the change trend of CO2 emission of the transportation industry. Along with the popularization
of network technique and the continuous progress of e-commerce business, the number of employees
has been growing steadily. The growth of traffic volume is faster than that of employees, resulting in
the growth of per capita traffic pressure and vehicle energy consumption. However, as the statistical
caliber of road traffic volume changed in 2013 [10], the transport volume dropped sharply, making
CO2 emissions lower than the previous year. From 2014 to 2017, the traffic volumes were in a stable
growth stage, and there was only a little change in the employees. Therefore, the per capita traffic
volume continues to increase, and the CO2 emissions continue to increase.
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Figure 7. CO2 emissions contribution effects of the Y factor from 2002 to 2017.

4.7. Energy Input and Output Factor Analysis

In sight of the results in Table 6, the structural effect of energy input–output reduced CO2

emissions by 67.37 million tons, making up 9.58% of the overall contribution value of CO2 emissions
from the transportation industry in 2001–2017. The structural effect of energy input and output has
little impact on CO2 emissions. It can reveal that the structural effect of energy input and output
is basically unanimous with the change tendency of CO2 emissions of the transportation industry
from Figure 8, mainly because of the adjustment of energy use structure. With the rapid growth of
freight turnover light and heavy truck transportation activities increases, and the energy consumption
is mainly diesel. Diesel consumption is related to vehicle control technology, road slope and load
factor [51]. In the GB1589 new national standard, the upper limit of truck weight is large, so the
increase of diesel input–output structure leads to the increase of CO2 emissions. Affected by the oil
crisis, the price of fuel oil rose sharply afterwards, resulting in a significant decrease in fuel oil, but the
total energy consumption increased, which caused the decrease in the input and output structure of
fuel oil and reduced CO2 emissions. In addition, residents are more inclined to take high-speed rail for
long-distance travel [52], thereby reducing CO2 emissions from the transportation industry.
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Figure 8. CO2 emissions contribution effects of the KS factor from 2002 to 2017.

5. Conclusions and Policy Implications

From 2001 to 2017, LMDI factor decomposition of China’s transport sector was carried out,
and additive factorization analysis was given. The results of the study are as follows: The per capita
carrying capacity is the core element to augment CO2 emissions and the scale of employees is the
significant element. Average transportation distance is the indirect element to augment CO2 emissions;
on the contrary, transportation intensity, energy intensity and industry structure are main elements
in inhibiting the increase of CO2 emissions, while the energy input–output structure has a limited
influence on curbing CO2 emissions. Among them, because the transportation volume is constantly
increasing, the per capita carrying capacity will not decrease. As predicted in Table 4, future per capita
carrying capacity will still be the main factor for increasing CO2 emissions, so the government needs to
focus on optimizing the remaining factors to reduce CO2 emissions.

According to the above analysis, we aim to supply recommendations for the administration to
formulate emission control policies to decrease CO2 emissions in the transportation industry.

The government continues to increase energy efficiency to reduce more CO2 emissions.
In particular, the volume of road transport has increased for many years [10], and transportation
vehicles are fueled by diesel and gasoline (carbon emission coefficient and standard coal coefficient
are high). As a result, the price between gasoline and diesel has been reduced through government
tax reforms [32] to reduce the number of diesel-fueled vehicles. A vehicle using a full hybrid drive
system can more than double the fuel economy and reduce greenhouse gas emissions by more than
half [53]. The government should also increase publicity for public transportation or purchase of
clean fuel vehicles, and provide tax incentives for residents who purchase environmentally friendly
vehicles. The Korean government is providing tax incentives and subsidies for environmentally
friendly vehicles [21]. However, coal is still the main energy consumption in most industries in China.
It shows that China’s clean energy initiative has not been fully promoted, so we should also actively
adjust and optimize the energy consumption structure [54].
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The government should reduce the proportion of the primary industry and expand the proportion
of the tertiary industry, especially the modern service industry and clean technology industry in the
tertiary industry to drive the rapid growth of GDP. The Belt and Road Initiative (BRI) countries will
use the high-tech industry as the driving force and develop towards the optimization and upgrading
of the industrial structure of the modern service industry and modern manufacturing industry [55].

The government should also increase financial support for technology. Under the “Internet”
situation, the government uses big data analysis and intelligent transportation technology to improve the
level of traffic policy decision-making and build an energy-saving comprehensive transportation system.

According to the prediction results of this article, the transportation industry’s employees and
per capita capacity will continue to increase CO2 emissions, and energy intensity and transportation
intensity will become the main factors to reduce CO2 emissions. The CO2 emissions of China’s
transportation industry will be about 1.41 billion tons by 2025. It can be seen that China is actively
fulfilling its international responsibilities to attain the goal of saving fuel and reducing emissions.
Since this article does not consider Chinese features and it is general, the methods are able to study the
CO2 emissions of transport sectors in other states. This article takes China’s transportation industry as
the target of study to supply instructions and consultation for analyzing CO2 emissions in other states.

6. Limitations and Prospects of Research

The research is mainly based on the LMDI decomposition model to analyze the influencing
factors of transportation CO2 emissions. The model is almost modeled using traditional econometric
theory. It may lack consideration of spatial factors, so there will be some errors in measuring its
influencing factors. In recent years, although the application of space metrology in the research of
transportation CO2 emissions has been gradually explored by domestic scholars, there are relatively
few related studies.

Therefore, in the subsequent research and development, further improvements are needed:
(1) This paper uses the fossil energy consumption data of China’s transportation, storage and post
industry in the research area to calculate the industry’s CO2 emissions. The calculated results only
consider the direct consumption of fossil energy in the transportation industry; (2) the indirect CO2

emission caused by the consumption of electricity and heat is relatively small, and the data of the
thermal CO2 emission coefficient and grid carbon emission factor are relatively lacking. Therefore,
the indirect energy consumption of electricity and heat is not taken into account in the calculation of
traffic CO2 emissions; (3) there is still a lot of room for development research in the application of space
factors in CO2 emissions, and the unremitting efforts of more researchers are needed.
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