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Abstract: Landscape patterns are significantly affected during the urbanization process. Identifying
the spatiotemporal impacts of urbanization’s socio-economic factors on landscape patterns is very
important and can provide scientific evidence to support urban ecological management and guide
managers to establish appropriate sustainability policies. This article applies multiscale geographically
weighted regression (MGWR) to reveal the relationships between landscape patterns and the
socio-economic factors of urbanization in Shenzhen, China, from 2000 to 2015, in five-year intervals.
MGWR is a powerful extension of geographically weighted regression (GWR) that can not only reveal
spatial heterogeneity patterns but also measure the operational scale of covariates. The empirical
results indicate that MGWR is superior to GWR. Furthermore, the changes in operational scale
represented by the spatial bandwidth of MGWR in different years reflect temporal changes in the
spatial relationships of given factors, which is significant information for urban studies. These
multiscale relationships between landscape patterns and the socio-economic factors of urbanization,
revealed via MGWR, are useful for strategic planning around urban dynamic development and
land resource and ecological landscape management. The results can provide additional insight
into landscape and urbanization studies from a multiscale perspective, which is important for local,
regional, and global urban planning.
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1. Introduction

The development of urbanization has always been an important issue in both ecological and
socio-economic research [1–6]. The process of urbanization, which is intertwined with land cover
transformation, has a direct and profound impact on changes in land use. The most obvious expression
is the transformation from non-construction land to construction land. Meanwhile, with urbanization,
there will be urban and rural migration, an urban population increase, economic development,
and frequent human activity [7]. Urbanization can improve the quality of life for residents [8] and
stimulate rapid economic development. However, irrational urbanization also wcauses environmental
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and ecological problems, including excessive carbon emissions, habitat loss, urban heat island effects,
and heavy metal pollution of the soil [9–15], as well as the decreases in the quality of life for residents
(e.g., slumification) [16]. In extreme circumstances, rapid urbanization can destroy the original
landscape patterns and result in a fragile region and the loss of permanent cropland [17,18]. In this
context, capturing the spatiotemporal characteristics of land use change and exploring determinants
can provide crucial information to help city planners and managers design a sustainable urban growth
policy, optimize landscape patterns, and conserve the ecological environment.

Landscape pattern mainly refers to the spatial pattern of landscape, including the type, number,
spatial distribution, and configuration of landscape units [19]. Landscape patterns can be applied to
represent land use changes. They also have strong spatial properties, with spatial heterogeneity being
the most common spatial property of the relationships between urbanization factors and landscape
patterns [20–22]. Geographically weighted regression (GWR) is a promising model for addressing
spatial heterogeneity compared with the ordinary linear regression (OLR) model [23]. To date, GWR
has been widely applied to explore landscape–urbanization relationships [24–26]. Additionally, from
a spatial perspective, the heterogeneous relationships between urbanization and landscape patterns
vary at the local, regional, and global scales [24,27,28], and many scholars have suggested that the
scale-dependent characteristics of landscape research and multiscale information are important for
understanding landscape patterns [29–32]. Notably, Su et al. [24] discussed scale effects considering
three aspects: bandwidths, block scales, and window sizes. Similarly, Xiao et al. [33] concluded that
scale is an important element that influences the relationships between land use type and water quality
parameters. These previous studies have highlighted the importance of multiscale effects in studying
landscape patterns [34,35].

The various urbanization processes within a city generally lead to heterogeneity in how and to what
extent urbanization factors affect landscape patterns. Although existing studies have focused on spatial
heterogeneity and spatial scale effects, the operational scale of the relationships between landscape and
the drivers of urbanization have received insufficient attention. The operational scale, which reflects
the spatial scope of the operating environment of geographical processes, has not been sufficiently
considered in common methods such as OLR and GWR. In a regression model, the operational scale is
generally reflected by various levels of heterogeneity in relationships. Specifically, the spatially varying
processes associated with the modeled relationships between the landscape and various driving factors
often occur at different spatial scales. The degree or level of spatial heterogeneity may vary given
different relationships between the landscape and urbanization factors [36,37]. For example, an increase
in landscape sensitivity might be a function of both global climate change and inappropriate local land
reclamation [38]. Similarly, the impact of population density on landscape patterns may be influenced
not only by national and provincial movement patterns but also by local population mobility [39].
Therefore, the operational scale of the factors that influence landscape patterns can be divided into
global, regional, and local scales.

Although GWR can address spatial heterogeneity, it only uses a single kernel bandwidth for
model calibration and cannot measure the various geographic processes at different operational scales.
GWR finds the “best average” scale of a non-stationary relationship and thus may exaggerate or
underestimate the actual operational relationship [40,41]. Recently, Yang [42] designed a GWR method
with a flexible bandwidth, called FBGWR, to measure the various scales of operational processes.
Subsequently, Lu et al. [43] proposed a GWR approach with parameter-specific distance metrics and
bandwidths to increase the flexibility of FBGWR. Fotheringham et al. [40] further emphasized the
multiscale concept, proposing the multiscale GWR (MGWR) model, which allows the relationship
between the response and the corresponding covariate to vary locally or regionally or to be stationary.
MGWR can be applied to investigate the various influential factors and the corresponding processes
by considering spatial heterogeneity and the operational scale.

In this article, Shenzhen was selected as the study area, and two research questions were proposed.
What are the spatiotemporal varying relationships between landscape patterns and socio-economic
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factors of urbanization? What are the operational scales of the diverse urbanization socio-economic
factors that influence landscape patterns? Specifically, landscape metrics were adopted to quantify the
landscape patterns and reflect the structure or spatial configuration of the landscape [44–49]. Variables
of the gross domestic product (GDP), population distribution (POP), human activity intensity (HAI)
represented by night-time light data, distance to downtown area (DDA), and road density (RD) were
selected as the socio-economic factors of urbanization. The selected four socio-economic factors of
urbanization can reflect the degree of ecological impacts from human activities and have been widely
used to indicate the process and intensity of urbanization [24,26,50].

The MGWR model was used to explore the relationships between landscape patterns and urbanization
by considering spatial heterogeneity and multiscale effects in the operational processes [36,40,42,43].
The results, especially for various bandwidths, provide guidance from a new perspective for reasonable
city development and planning, sustainable development, and the establishment of urban growth policies.

2. Materials and Methods

2.1. Study Area

Shenzhen (22◦26′–22◦51′ N and 113◦45′–114◦37′ E) is located in the southeastern coastal area of
Guangdong Province, China (Figure 1). Due to its important position in China’s reform and opening
up, the urbanization process of Shenzhen has attracted much attention. In recent decades, the land
use patterns in Shenzhen have undergone rapid changes along with the expansion of construction
land [51]. Correspondingly, the ecological environment has rapidly deteriorated. The prominent
manifestations of this deterioration include the replacement of ecological areas by construction land
and frequent land reclamation near the sea. Many studies have noted that Shenzhen has suffered from
a series of increasingly serious environmental problems, including mangrove degradation, heavy metal
pollution in the soil, and a marine environment destroyed by rapid urbanization [52–54]. In response,
the government adopted a series of policies and measures from 2000 to 2015.

Figure 1. Study area: Shenzhen city.

2.2. Data Collection and Pre-Processing

High-quality land use and land cover (LULC) data (overall accuracy >90%) were acquired from
survey data on land use change provided by the Shenzhen Municipal Bureau of Planning and Natural
Resources (http://pnr.sz.gov.cn/). Compared with the land use data interpreted by high-resolution
remote sensing images, the survey change data used in this paper are much more accurate, adaptive,
and flexible, although they are farther from being real-time data. The LULC data from 2000, 2005, 2010,
and 2015 were classified based on different standards. To analyze the spatiotemporal changes in the
landscape pattern, it is necessary to unify the land use classification standards. Based on the Chinese
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“Current Land Utilization Classification” (Standardization Administration of the People’s Republic of
China, 2007), the land use datasets were classified into eight types: farmland, garden land, forest land,
grassland, residential and industrial land, roads, water, and “other”.

Variables of GDP, POP, HAI, DDA, and RD were selected as the socio-economic factors of
urbanization. Specifically, GDP is used to represent the local economic development; POP is the
population distribution indicated by population density; HAI measured by night-time light data is the
proxy of human activity intensity; DDA is the distance to downtown area; and RD is the road density
in a given scale (i.e., 1 km). Considering that Shenzhen follows a polycentric model, the Futian Central
Business District (Futian CBD)—the downtown center of Shenzhen—was selected for detailed analysis.
The road network data was obtained from the Shenzhen Municipal Bureau of Planning and Natural
Resources. The other socio-economic factors of urbanization data, including GDP, POP, and night-time
light data from 2015, were downloaded for free from the Data Center for Resources and Environmental
Sciences, Chinese Academy of Sciences, at a resolution of 1 km (http://www.resdc.cn). Night-time light
data from 2000, 2005, and 2010 were acquired from the National Centers for Environmental Information
(https://ngdc.noaa.gov/eog/dmsp.html). To compare each of the bandwidths obtained from the MGWR
models, all the dependent and independent variables were standardized to the same range of variation.
This article used a 1 km × 1 km grid as the basic analysis unit to measure the landscape metrics and
driving factors, as this scale can reflect the distinctive spatial signatures of landscape patterns without
information redundancy or loss [28]. To maintain the continuity of data, this study did not include
island areas.

2.3. Measurements of Landscape Patterns

Based on the selection criteria used in existing studies [4,24,26], we chose four landscape metrics
to describe the landscape patterns—the aggregation index (AI), edge density (ED), patch density (PD)
and Shannon diversity index (SHDI)—as these capture the perspectives of aggregation, fragmentation,
and diversity, which can be associated with the sustainability of land use. The redundancy among the
selected indexes is low; they are complementary and together can encompass sufficient information [3,26].
The four metrics also support comparison with existing studies and are able to reflect the characteristics
of landscape patterns for Shenzhen. All landscape metrics at the landscape level were measured using
Fragstats 4.2 [55,56].

The AI refers to the aggregation degree of the landscape, which is important in landscape ecological
studies as a step in relating patterns to ecological processes [57].

AI =
[

gi

max→ gi

]
× 100 (1)

where gi represents the number of like adjacencies (joins) among pixels of patch type (class) i based on
the single count method.

The ED denotes the stability and complexity of the landscape. The larger the value of the ED,
the more easily the land use type changes.

ED = E/A (2)

where E is the total length of the patch boundary, and A is the total area of the landscape.
The PD is used to represent the density of the land use type and the fragmentation degree.

PD = N/A (3)

where N is the total number of patches, and A is the total area of the landscape.
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The SHDI is applied to reflect the heterogeneity and uncertainty of the landscape.

SHDI = −
∑s

i=1[pi × ln(pi)]

ln(s)
(4)

where s is the total number of landscape classes and pi is the areal proportion of the ith landscape class.
If pi = 0, pi × ln(pi) = 0.

2.4. Multiscale GWR

GWR is a type of local regression technique that can effectively address and explain spatial
heterogeneity [23,58]. GWR is implemented as follows in this study:

log(yi) = β0(ui, vi) +

p∑
k=1

βk(ui, vi) log(xik) + εi, i = 1, 2, . . . , n (5)

where (ui, vi) are the spatial coordinates of the ith sample; p is the number of urbanization driving
factors; xk represents the independent variables, including the GDP, POP, HAI, DDA, and RD; βk(ui, vi)

is the estimated coefficient of the ith sample for the kth variable; β0(ui, vi) is the intercept term; εi is the
error term; and y is the dependent variable, representing the landscape metrics.

Some scholars have noted that the bandwidth directly influences the scale variations of the
estimated parameters [36,37,58,59]. GWR uses a uniform bandwidth for all independent variables
to control the effects of the distance decay rate, but as a result, it is difficult to capture the different
levels of spatial heterogeneity. MGWR is an extension of GWR that specifies an exclusive bandwidth
for each variable to measure multiscale effects in the process of model calibration. The multiscale
effects measured by MGWR mean that the effects of independent variables on dependent variables
have differences in spatial variation [40]. The logarithmic form of MGWR is fitted based on the
following structure:

log(yi) = βbw0(ui, vi) +

p∑
k=1

βbwk(ui, vi) log(xik) + εi (6)

where βbwk(ui, vi) is a new conceptual function denoting that each independent variable has a specific
bandwidth; that is, considering the relationships between independent variables and the dependent
variable, different spatial bandwidths are used for local parameter estimation. GWR is a special case of
MGWR in which the parameters of all independent variables vary at the same spatial scale.

The distinct difference between GWR and MGWR is that MGWR assumes that all the modeled
relationships have a specific bandwidth representing the operational scale. Referencing the methods of
Yang [42], Lu et al. [43], and Fotheringham et al. [40], a backfitting algorithm is suitable and applicable
for MGWR calibration. The process of calibrating MGWR based on the backfitting algorithm is given
as follows.

Step 1. All the adaptive terms on the right side of Equation (6) are denoted as as f̂
(0)
0 ,f̂

(0)
1 ,f̂

(0)
2 , . . .

and f̂
(0)
p . Initial guess values are assigned for f̂

(0)
0 ,f̂

(0)
1 ,f̂

(0)
2 , . . . and f̂

(0)
p . Therefore, the initial error is

ε(0) = y− f̂ (0)0 − f̂
(0)
1 − f̂

(0)
2 − · · · − f̂

(0)
p . The initial guesses for the estimated coefficients can be determined

according to the results of OLR or GWR.
Step 2. The criteria for terminating the backfitting algorithm are specified based on the maximum

number of iterations Φ and the convergence threshold δ. q is the index of the current iteration, and the
initial q value is set to zero. The change of score (COS) is calculated after each iteration based on the
residual sum of squares (RSS) as follows.

COS(q+1)
RSS =

∣∣∣RSS(q+1) −RSS(q)
∣∣∣

RSS(q+1)
(7)
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Step 3. Each additive term f̂
(q)
k is updated using the error term and then regressed with the

corresponding independent variable xk. When q > Φ or COS < δ, the backfitting procedure is
terminated. Otherwise, the backfitting algorithm continues to iterate. The estimation coefficients in the
final iteration are the final estimated coefficients. Therefore, the final fitting values for y are as follows.

ŷ(q+1) = f̂
(q+1)
0 + f̂

(q+1)
1 + f̂

(q+1)
2 + . . .+ f̂

(q+1)
p (8)

In this article, all calibrations of the MGWR models were undertaken by MGWR2.0 software
(https://sgsup.asu.edu/sparc/mgwr) [60].

3. Results

3.1. Dynamics of Land Use and Landscape Patterns

To obtain a better understanding of the quantitative results, we mapped the changes in metrics
between 2000 and 2015 based on Equation (9), as proposed by Su et al. (2012).

C =
R2015 −R2000

R2000
(9)

According to Figure 2, the major trends in landscape patterns can be summarized as less isolated
with a decline in the AI; more unstable, fragmented, and broken with increases in the ED and PD; and
more homogeneous with an increasing SHDI. Obviously, all landscape metrics represent characteristics
of spatial heterogeneity in that the changes in different landscape indicators are non-stationary in space.
In brief, Shenzhen experienced rapid urbanization and development from 2000 to 2015, and given
notable increases in construction land area, urban landscape patterns changed considerably. The most
significant changes occurred in the west of Shenzhen, indicating that the western region of Shenzhen
has a higher urbanization rate than the eastern region.

Figure 2. The changes in landscape metrics from 2000 to 2015 in Shenzhen. AI—aggregation index,
ED—edge density, PD—patch density, and SHDI—Shannon diversity index.
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Specifically:

1. The AI decreased in most parts of Shenzhen, indicating that the landscape became increasingly
fragmented and the influence of human activity on the landscape increased. The AI in
highly urbanized areas displayed positive growth, indicating a concentrated landscape pattern,
and construction land largely replaced the original cultivated land and grassland areas.

2. The ED increased near the coastline of Shenzhen, indicating that the landscape use types changed,
mainly due to land reclamation in Shenzhen. Most areas experienced ED increases, and the
distribution of these changes was consistent with that of the AI.

3. The PD significantly increased in most areas, especially in the center and sub-centers of Shenzhen.
In the Futian, Luohu, and Longgang districts, increases in PD resulted from increases in green
space. Additionally, growth in the number of urban roads disrupted the original single residential
and industrial land patterns and divided the landscape into smaller patches. In other areas with
an increasing PD, many of the cultivated land, forest, garden, and water areas were transformed
into residential and transportation land areas, thereby dividing the natural landscape, resulting
in an increase in PD.

4. There was an increase in the SHDI near the coastline and in some ecologically controlled areas.
Considering the rational allocation of urban resources, other landscape types, such as grasslands
and woodlands, should be appropriately added in these areas to optimize and balance the urban
environment. Some areas had reduced SHDI values that resulted from gardens and woodlands
being replaced by residential land and transportation land. When multiple landscape types are
reduced to a small number of single types of land, the diversity of the landscape is reduced.

3.2. Performance of Models

We first implemented an inspection method for identifying collinearity between the five driving
factors to avoid mutual influence among variables. The variance inflation factor values of GDP
were found to be greater than 10, indicating that GDP had apparent collinearity with the other four
factors. Therefore, this study selected the DDA, HAI, POP, and RD as the driving factors to model the
relationships between landscape patterns and the socio-economic factors of urbanization. Although
the fitting degree of OLR models is relatively low, both the models and the selected variables were all
statistically significant at the 1% level, as in previous studies, which showed that the selected variables
could explain the changes in landscape patterns. In the GWR and MGWR methods, a Gaussian kernel
function and a fixed bandwidth were chosen without loss of generality. Table 1 lists the results of GWR
and MGWR, and they suggest that MGWR achieves the best performance.

Table 1. Diagnostic information of the ordinary linear regression (OLR), geographically weighted
regression (GWR), and multiscale geographically weighted regression (MGWR) models.

METRIC MODEL 2000 2005 2010 2015

Aggregation index
(AI)

R2
OLR 0.205 0.140 0.116 0.110

R2
GWR 0.674 0.536 0.639 0.641

R2
MGWR 0.710 0.628 0.698 0.698

Edge density
(ED)

R2
OLR 0.221 0.200 0.151 0.175

R2
GWR 0.695 0.589 0.615 0.630

R2
MGWR 0.775 0.722 0.734 0.708

Patch density
(PD)

R2
OLR 0.281 0.194 0.144 0.146

R2
GWR 0.782 0.657 0.700 0.717

R2
MGWR 0.834 0.772 0.771 0.778

Shannon diversity index
(SHDI)

R2
OLR 0.252 0.181 0.169 0.156

R2
GWR 0.719 0.637 0.637 0.654

R2
MGWR 0.784 0.749 0.747 0.729



Sustainability 2020, 12, 2543 8 of 15

4. Discussion

4.1. Changes in the Spatial Relationships and Operational Scales

MGWR was applied to assess the operational scales of the process and to capture the differences
in the spatial heterogeneity levels of various driving factors. Table 2 lists the bandwidths of GWR
and MGWR and indicates that the GWR models all have a single bandwidth and can be explained
as a weighted average of multiscale effects [40]. The MGWR with diverse bandwidths allowed
the relationships between independent and dependent variables to vary at different scales [42].
The bandwidths could be distinguished for relationships varying at the local, regional and global
scales. A small bandwidth means that the relationship varies at a relatively local scale, while a higher
bandwidth indicates a larger scale.

Table 2. The spatial bandwidths of the GWR and MGWR models (unit: km).

Metric Model Variable 2000 2005 2010 2015

AI

GWR \ 1.682 2.009 1.680 1.642

DDA 97.015 97.015 97.015 97.015
HAI 97.015 97.015 97.015 97.015

POP 17.508 8.609 97.015 34.234

RD 3.254 6.221 6.638 5.377

ED

GWR \ 1.715 1.960 1.695 1.766

DDA 14.180 97.015 97.015 97.015
HAI 9.086 97.015 14.441 97.015

POP 14.345 6.718 1.052 8.156

RD 1.273 1.058 1.021 1.028

PD

GWR \ 1.498 1.801 1.620 1.611

DDA 14.308 1.013 97.015 97.015
HAI 17.930 97.015 97.015 97.015

POP 15.711 7.446 5.528 16.684

RD 1.394 1.321 6.528 2.295

SHDI

GWR \ 1.630 1.792 1.724 1.639

DDA 14.583 1.047 97.015 97.015
HAI 10.591 37.615 97.015 97.015

POP 17.976 6.593 20.237 16.684

RD 1.938 1.014 1.137 2.295

Note: The bandwidths in bold indicate that the estimated coefficients of the corresponding variables are significant.

Some bandwidths of MGWR were approximately 97 km, and this value is close to the maximum
distance between any two samples. This finding indicated that these relationships between landscape
patterns and urbanization factors tended to be global. Other bandwidths were limited to the range
of 1.013–37.615 km, reflecting low, medium, and high levels of spatial heterogeneity in relationships.
The distinctions among the optimal bandwidths of different covariates may have arisen from differences
in the statistical and measurement units and operational functions. The time-varying bandwidths of
individual variables were important for capturing the effects of the corresponding variables, which are
significant for urban planning from the perspective of global or local planning. In almost all years,
POP and RD had local effects on the four types of landscape metrics. The bandwidths of RD were
smaller and more stable than those of POP, which suggested that the relationships between landscape
patterns and RD had a higher level of spatial heterogeneity. The effects of the DDA and HAI on the
AI exhibit global characteristics. For ED, PD, and the SHDI, the effects of the DDA and HAI yielded
significant transformations. These results showed that Shenzhen is developing towards a polycentric
urban pattern and that the role of the downtown area is diminishing. Human activity no longer
depends solely on the downtown center of the city. Therefore, the effects of the DDA tend to be global.
Many districts have distinct sub-centers with improved infrastructure, and the Futian CBD is not the
only center in Shenzhen.
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4.2. Impact of Socio-Economic Factors on Landscape Patterns

The AI refers to the aggregation degree of the landscape, and Figure 3 shows the effects of driving
factors on the AI represented by the estimated coefficients with statistical significance. Although
the effects of the DDA on the AI were global, the estimated coefficients were not significant, which
illustrated that the DDA factor is negligible for AI changes in Shenzhen. In 2000 and 2015, the HAI
had a positive global effect on changes in Shenzhen. Some studies have shown that there is a strong
correlation between the HAI and GDP [61], suggesting that the AI changes in Shenzhen were affected
by the economic level in 2000 and 2015. Temporal variations in the effects of POP are apparent.
In 2000, those effects of POP on the AI with statistical significance were negative. This result can be
explained by a low POP resulting in a high AI. In 2015, the relationship between POP and the AI
was statistically positive, and the effects increased from east to west. Although the eastern region
of Shenzhen is not part of the core area of the city, the population density is low (Figure 1). With
the recent increased urbanization, construction in areas surrounding the nature reserve accelerated,
corresponding to a decrease in the AI. Finally, RD was observed to have negative effects on the AI.
Specifically, the coefficients indicated that the closer to the main road an area is, the lower the AI.
A previous study indicated that roads can separate adjacent lands on both sides and result in a decline
in agglomeration [62].

Figure 3. Spatiotemporal distribution of the coefficients obtained by MGWR representing the
relationships between the AI and the socio-economic factors of urbanization.

ED and PD can effectively indicate the degree of landscape fragmentation. Figures 4 and 5 show
the estimated coefficients for ED and PD, respectively. ED denotes the stability of the landscape.
The rate of change in ED in Shenzhen indicated that the degree of landscape fragmentation increased,
and the shape of the landscape became more complex [63]. According to the Figure 4, the effects
of the DDA on ED are relatively stable over time, only in 2000 did the DDA have a positive effect
on ED in eastern Shenzhen. The closer to the downtown center an area is, the lower the ED, which
reflected an unstable landscape. The effects of the HAI on ED were complicated, especially in 2000,
which showed significant east–west differences. In 2015, the overall relationship between the HAI
and ED was negative, which suggested that the index of ED in developed regions is affected in a
manner similar to that in undeveloped regions. The temporally varying effects of HAI on ED were
clearly changing from local to global, which can illustrate that the level of urbanization changes the
landscape pattern in time and space. In 2015, the relationships between POP and ED became negative
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in Nanshan and Futian, which indicated that urbanization mainly occurred in suburban areas and
sparsely populated areas. RD had distinct effects on ED that vary in time and space. From 2000 to
2015, the effects of RD on ED were clearly positive. In the eastern mountainous areas, in particular, ED
was positively impacted by RD because the influence of roads was restricted by terrain factors [24,64].
The changes in coefficients are consistent with the planning and development of roads in Shenzhen.

Figure 4. Spatiotemporal distribution of the coefficients obtained by MGWR representing the
relationships between the ED and the socio-economic factors of urbanization.

Figure 5. Spatiotemporal distribution of the coefficients obtained by MGWR representing the
relationships between the PD and the socio-economic factors of urbanization.

PD is used to represent fragmentation, and the estimated coefficients of urbanization factors
on PD can be seen in Figure 5. Similar to ED, the effects of the DDA on PD experienced a great
transformation. In 2000, the positive effects were concentrated in eastern areas far from the downtown
center, but since 2005, the effects of the DDA were positive in most significant areas. The reason for
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this change is that Shenzhen has multiple sub-centers with group developments, and the uniqueness
and specificity of the original downtown area diminished. Moreover, the urbanization processes
spread to some undeveloped suburbs. The effects of POP on PD also underwent a notable change
in which local positive effects transformed into local negative effects. The positive effects of POP
on PD indicated that a high intensity of human activity can result in a high degree of landscape
fragmentation. The effects of RD on PD showed local variation in all years, and a positive effect was
the main characteristic. This result suggested that roads are an important factor related to urbanization
and that when choosing potential construction areas, the convenience of transportation should be
considered. The construction of roads has gradually occupied urban green space resources, resulting
in significant landscape heterogeneity and a high segmentation degree of various types of patches [65].

In Figure 6, in the early urbanization processes, the downtown center had different degrees of
influence on the landscape diversity in different areas. Similar to PD, the effects of the DDA on the SHDI
were significant in 2000 and 2005. The variations in changes in the HAI represented different changes
in the eastern and western areas and were only significant in 2000 and 2015. This pattern was directly
related to the planning policy and urban development model in Shenzhen. The relationship between
POP and the SHDI shifted from positive to negative: the denser the population was, the greater the
impact of human activities. Urbanization led to the expansion of construction land, increasing the
complexity of the landscape. The effects of RD on the SHDI were positive. Notably, the influence of
RD on the SHDI varied widely, particularly for areas in different stages of urbanization.

Figure 6. Spatiotemporal distribution of the coefficients obtained by MGWR representing the
relationships between the SHDI and the socio-economic factors of urbanization.

4.3. Implications for Urban Planning

Achieving a win–win relationship between socio-economic development and the sustainable
development of land use should harmonize land use and economic development policies [10]. Important
implications for urban planning and management and the mitigation of excessive urban expansion
were provided by two perspectives: the variations in the bandwidths of the time dimension for each
socio-economic factor of urbanization and the variations in the local estimated coefficients in the spatial
dimension. First, MGWR is a promising model that can quantify and reflect the levels of urbanization
and ecological protection considering both the operational scale and spatial variations, which have
rarely been studied before. The results obtained from MGWR not only identified the various impacts of
urbanization but also reflected the global and local relationships between socio-economic factors and
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different landscape metrics. Although some spatial and temporal variations in estimated coefficients
and operational scales could not be explained well, most of the results could reflect the relationships
between landscape metrics and urbanization’s socio-economic factors.

Second, MGWR can produce specific bandwidths for each driving factor, from which the
operational effects of urbanization variables can be evaluated over time, thereby reflecting the local
urbanization processes. The results regarding bandwidth could help managers to formulate overall
planning policies or provide local guidance that is targeted and practical. The traffic network plays
an important guiding role in the dynamic development of urban land in Shenzhen. The effects
of other urbanization factors also led to land transformations. The main reason for these changes
was that in 2009, Shenzhen transitioned into a period of intense urbanization, mainly through the
secondary development of land to re-create urban areas, optimize the urban land structure, and improve
urban function.

Finally, MGWR yields a set of spatial variation coefficients from which we could determine the
different effects of various urbanization factors on the landscape. The local effects of urbanization
factors on landscape patterns reflected obvious differences between the eastern and western regions,
which indicated that one of the prominent patterns of urban development in Shenzhen is an east–west
pattern. In addition, the effects of POP on landscape patterns manifested as radial ring structures.
The rapid development of these regions is expected to form new urban centers as the integration
process and eastward strategy continue to advance. “Implementation of the strategic action plan for
Shenzhen’s eastward movement (2016-2020)” (http://www.sz.gov.cn/cn/) noted that the unbalanced
patterns in the east and west and in the south and north will be a target of change to break the bottleneck
of urban development and realize the expansion of high-value land.

5. Conclusions

The impacts of rapid urbanization on landscapes are a major concern for local ecological planners
and city managers. This study is the first trial applying MGWR to examining the spatial and temporal
relationships between landscape patterns and the socio-economic factors of urbanization. The results
of this article highlighted that the socio-economic factors of urbanization have profound and significant
effects on the changes of landscape patterns. Therefore, the balance between the urbanization processes
(e.g., economic development, population expansion, and road planning) and rational land use is
particularly important. The results can improve understanding of the spatiotemporal variation in
landscape patterns for managers and urban planners. Compared with previous studies, this article did
only reveal the spatial heterogeneity in relationships but also measured the operational scales of the
spatially varying relationships. The findings highlighted the importance of considering the operational
scale in urbanization and landscape studies; specifically, each urbanization factor has a unique
operational scale that may vary over time. These results can improve our understanding of urbanization
processes and provide guidance for urban management and policymaking in developing cities. More
importantly, the findings also suggested that artificial urbanization factors have significant effects on
landscape patterns. To protect the local ecological environment, the government should significantly
increase efforts towards the supervision and assessment of urbanization processes. In different periods
of urban development, corresponding measures should be taken to prioritize various social and
economic factors that could greatly aggravate the destruction of the landscape patterns.

However, this study still had some limitations. First, limited by data availability, we only set
the study period from 2000 to 2015. It is important to study the relationships between landscape
patterns and urbanization starting with the reform and expansion policies. Second, the urbanization
factors were limited, and some were neglected, including the city sub-centers and the distribution of
facilities. Finally, for the reclassification of land use data, due to the limited socio-economic factors of
urbanization and landscape metrics, some bias and unexplained phenomena remain in the results.
Therefore, in future work, we will try to collect more data, including the socio-economic factors of
urbanization and more comprehensive land use time series data with more detailed classification
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information, to conduct more complete analyses of the landscape patterns and urbanization processes
in Shenzhen.
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