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Abstract: Based on the prices selected from European Energy Exchange (EEX) from 2013 to 2018, we
investigate the inter-correlation of carbon spot and futures markets. Specifically, we adopt the widely
used DCC-GARCH model and VAR-BEKK-GARCH model to conduct a comprehensive analysis on
the carbon market, i.e., the dynamic correlation and volatility spillover between carbon spot and
carbon futures. Moreover, we develop a hedge strategy based on the VAR-BEKK-GARCH model and
calculate the hedging effectiveness (HE) value to evaluate the strategy performance. The empirical
results show that (i) during our sample period, carbon spot and futures markets are highly correlated,
(ii) carbon spot overflows to the futures market and vice versa, and (iii) the HE value is equal to
0.9370, indicating a good performance for the hedging strategy. Then, we provide further discussion
on the relationship between carbon spot and futures markets by replacing our dataset with the data of
phase II. The results do not change our conclusions on the dynamic correlation and volatility spillover.
However, the HE value of phase III is higher than that of phase II, which indicates that the carbon
futures market of phase III is not only an available market to hedge risk from the contemporaneous
carbon spot market but also has a better hedge effectiveness than phase II.
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1. Introduction

Currently, one of the most thought-provoking issues globally is global warming, given its potential
damage to agricultural production, industrial manufacture and human sustainable development [1,2].
Thus, the Kyoto Protocol established three mechanisms for climate change mitigation. Among all of
the three mechanisms, emission trading is a unique way for carbon reduction, as it reduces carbon
emissions through a market-based mechanism, which makes carbon reduction a market activity [3].
Based on the Kyoto Protocol, the European Union established the famous European Union Emission
Trading Scheme (EU-ETS) in 2005. To date, the EU-ETS has been operating successfully for three
phases. The first phase was from 2005 to 2007, the subsequent phase was from 2008 to 2012, and the
third phase began in 2013 and will end in late 2020. Furthermore, the fourth phase of the scheme will
launch in 2021, lasting for 10 years until late 2030 [4]. Due to the vast trading volume and drastic
price changes, the EU-ETS has become the largest carbon trading market and is viewed as a common
financial market for analyzing financial characteristics and portfolio management [5].

The carbon product traded in the EU-ETS is named the European Union allowance (EUA).
Although the EU-ETS is a professional market for carbon trading, spot and futures trading are already
proceeding as a common financial market. Accordingly, EUA carbon spot and futures prices should be
correlated. The existing literature shows that the spot price can be forecasted without bias according
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to the corresponding futures price. A widely known reality in financial markets is that futures price
reflects information of the spot price at the time when the futures contract has matured [6]. Thus,
understanding the spot–futures price relationship helps market participants who are not fully hedged.
Additionally, achieving a better understanding of the spot–futures relationship helps companies
who are involved in the carbon market to manage their carbon assets and control risk. Moreover,
the knowledge of interconnection and spillover are crucial issues to measure systemic risk across
various markets [7]. To summarize, an in-depth study of the EU-ETS carbon spot and futures market
is desirable.

This paper combines the study of energy economics and traditional finance, as we focus on
a carbon trading market, analyzing the financial characteristics and their usefulness in portfolio
management, i.e., dynamic correlation, volatility spillover and hedge strategy. The international
EU-ETS has already continued for 14 years; however, little work has examined the spot-futures
correlation inside the market, i.e., Arouri [6], Rittler [8], etc. Meanwhile, the previous literature mainly
investigated the first two phases of the scheme, and only a few studies have centered on the current
operating phase III [2]. Compared with the first two phases, however, the global emission reduction
environment has changed considerably in phase III. For example, with ongoing development, China
became the largest supplier [9] of Certified Emission Reduction (CER); meanwhile, both the EU-ETS
and the carbon pilots of mainland China approved completing the compliance by partial CERs [10,11].
Thus, the cap-and-trade programs in China have affected EUA prices in the EU-ETS by the price of
CERs, and Canada exited the Kyoto Protocol. Thus, phase III of the EU-ETS needs to be researched
comprehensively to identify whether carbon strategies used in phase II are still suitable. In this paper,
we further extend the current research by employing trading data in Phase III of the EU-ETS to fill the
gap to some extent.

This paper makes the following contributions to the existing literature. We first adopt the dynamic
correlation coefficient (DCC)-generalized autoregressive conditional heteroscedasticity (GARCH)
model for summarizing the dynamics between carbon spot and futures in phase III of the EU-ETS,
which is a reasonable extension of existing studies on the carbon allowance market for the first two
phases. The empirical results remind the investors in the carbon market to avoid potential risk as
carbon spot and futures are highly correlated. We then apply the vector autoregression (VAR)-Baba,
Engle, Kraft, and Kroner, namely, the synthesized of acronym of four authors (BEKK) [12]-GARCH
(VAR-BEKK-GARCH) model to study the volatility spillover between carbon spot and futures. To
the best of our knowledge, it is the first application of the VAR-BEKK-GARCH model in the study of
carbon spot–futures correlation during phase III of the EU-ETS. The empirical results show that carbon
spot market overflows to carbon futures market, and vice versa, which deepens the understating of
information spillover between carbon spot and futures prices and further benefits those investors who
invest in both carbon spot and futures markets to hedge risk. Third, we develop a hedge strategy
between carbon spot and futures, namely, a long position in the carbon spot and a short position of a
certain hedge ratio in carbon futures, and we then calculate the HE value based on the results of the
VAR-BEKK-GARCH model to illustrate our point on hedging risk. The result shows that the HE value
is equal to 0.9370, which indicates that the hedged portfolio consisting of the carbon spot and carbon
futures performs well. Finally, we conduct a further discussion on the linkage of the carbon spot and
carbon futures by testing the trading data in phase II of the EU-ETS with the same methods. The
results do not change our conclusions on the dynamic correlation and volatility spillover. However,
the HE value calculated in phase II is equal to 0.8938, smaller than that in phase III. This interesting
result for the HE value indicates that the carbon futures market in phase III of the EU-ETS can better
hedge the risk from the carbon spot market when compared with phase II.

The remainder of this paper is organized as follows. Section 2 presents the literature review.
Section 3 briefly introduces the Kyoto Protocol and the EU-ETS. Section 4 presents the methodologies
used in this paper. Section 5 reports the empirical results. In Section 6, we provide further discussion
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on the linkage of carbon spot and futures in phase II and conduct a brief comparison with phase III.
Section 7 concludes the paper.

2. Literature Review

Regarding the emerging carbon allowance markets, numerous studies have investigated the
financial performance of carbon prices. For example, the empirical research of Paolella and Taschini [13]
discovered the characteristic of asymmetries in the spot carbon price. A subsequent study performed
by Benz and Trück [14] analyzed the dynamics of spot carbon prices. These researchers found strong
evidence of nonlinear dynamics of spot carbon prices. In addition, the researchers also argued that the
prices can be perfectly modeled by Markov-switching models. Benz and Hengelbrock [15] further
demonstrated the price discovery process in the carbon market by selecting intraday price data from
the ECX and Nord Pool exchange. These researchers argued that a more liquid market, i.e., the ECX
exchange, is a leader to the less liquid market, i.e., the Nord Pool exchange. Based on an efficient
market hypothesis, Daskalakis and Markellos [16] found that the three predominant EUA exchanges,
i.e., ECX, Nord Pool, and Powernext, were not efficient during the initial phase of the EU-ETS from
2005 to 2007, which may be attributed to such factors as immaturity, banking and short-selling. Wei
and Zhang [17,18] investigated the carbon price volatility in EU-ETS and China, respectively; the
empirical results of both studies indicated the long-term memory in the carbon market. Based on the
characteristics of carbon spot and futures, the research on the correlation between the two markets
became a new research hotspot, as it is in the traditional financial markets, i.e., the oil market [19–21].
Milunovich and Joyeux [22] adopted novel econometric methods to investigate the efficiency of the
EU-ETS and price discovery inside the scheme. The findings of these researchers indicate that there
exists a bidirectional information transmission between carbon spot and futures markets in Phase
I. Meanwhile, the empirical results further showed that over a long period of time, from December
2006 to December 2007, futures contract prices and the carbon spot were related. Moreover, the
results also showed that the carbon futures market was a perfect market for risk mitigation from
2005 to 2007. An in-depth study still found evidence of the above standpoint [23]. However, Joyeux
and Milunovich [24], as well as Chevalier’ [25] hold a different opinion; the two studies rejected the
long-run relationship between carbon spot and futures prices in the first phase and the second phase
of the EU-ETS, respectively. Furthermore, Chevalier [25] denied the bidirectional correlation between
carbon spot and futures prices. Specifically, Chevalier [25] argued that the carbon spot price did not
contribute to the price discovery in carbon futures market. Another in-depth study with intraday
data conducted by Rittler [8] also supported the results that the relationship is not bidirectional.
Joyeux and Milunovich [24] also focused on the issue of volatility transmission between carbon spot
and futures markets. These researchers adopted a widely used BEKK-GARCH (1,1) model, and the
result indicated the opposite position to that of Rittler [8]. Niblock and Harrison [26] selected several
methods, e.g., unit root test and generalized impulse response functions, to analyze the correlation
between carbon spot and futures markets during the first two phases. These researchers suggested that
there existed dynamic linkages in the EUA carbon markets during the sample period. Based on the
VAR and STR-EGARCH (Switching Transition Regression-Exponential GARCH) model, Mohamed,
Fredj, and Duc [6] argued that the two markets are asymmetrically and nonlinearly linked. Stefan [3]
comprehensively investigated the EUA spot and futures prices and pointed out that the carbon market
changed from initial backwardation to contango. Gorenflo [27] used impulse response analysis and
found that the EUA carbon futures market led the EUA carbon spot market in pricing discovery. In
addition, Gorenflo [27] strongly argued that carbon futures contribute more to price discovery when
compared with carbon spot. Meanwhile, he verified the cost-of-carry hypothesis that the futures price
equals the spot price plus carrying cost in the carbon market for the first two phases of the EU-ETS.
More recently, Balcilar [28] adopted an MS (Markov switching) -DCC-GARCH model for analyzing
the potential linkages inside the carbon market, and the results strongly supported the time-varying
cross-correlations and volatility spillover effects.
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It is essential to note that existing studies mainly focused on the first two phases. Few studies
paid attention to the operating third phase. Thus, there is a vacuum of current studies for the third
phase regarding the linkages between carbon spot and futures. In this paper, we focus on the linkages
during the third period to fill the gap.

3. Kyoto Protocol and EU-ETS

In December 1997, the Kyoto Protocol reached an agreement in Kyoto [2,29]. The Kyoto Protocol
is an additional term of the United Nations Framework Convention on Climate Change (UNFCCC).
The Kyoto Protocol is an international guideline of greenhouse gas emissions reduction for coping
with the inevitable global warming after industrialization. However, the Kyoto Protocol is more
binding compared with the UNFCCC. According to the protocol, the involved countries should
control emissions of several greenhouse gases, e.g., carbon dioxide and sulfur hexafluoride [4]. As
abatement technology varies across countries, not all countries can complete the tasks regulated by the
protocol. Therefore, the protocol allows the related countries to conduct emission trading. Specifically,
countries with excess emission allowances can sell their allowances to the countries with insufficient
allowances [30]. According to mechanisms regulated by the Kyoto Protocol, i.e., emission trading,
the European Union (EU) in 2005 made a far-reaching attempt to lead global emission reduction by
establishing the well-known European Union Emission Trading Scheme (EU-ETS). Currently, the
EU-ETS accounts for over seventy-five percent of carbon trading volume globally [6]. As the leader of
global carbon reduction, the EU also approves the scheme to be linked with other countries’ carbon
trading markets [31].

One of the foundations of the EU-ETS is called “cap-and-trade.” The total amount of greenhouse
gases that can be emitted under the EU-ETS is called the “cap,” while “trade” means that the emitters
can trade their allowances. The cap reduces year by year in order to meet the requirements of carbon
reduction [32]. Within the cap, participants can trade their allowances with others if necessary. After
one company obtains the allowances, the company should hold enough allowances to cover its
emissions during the year [33]. Otherwise, the company will be fined heavily by the government. If
one company has additional allowances, it can store them for the futures or sell them to the companies
without sufficient allowances for profits. Thus, emission trading accomplishes maximized emission
reduction with minimized cost.

4. Data and Methodology

4.1. Data

In this paper, we collect our dataset for EUA carbon spot and futures prices from the European
Energy Exchange (EEX) during the period from 1 January 2013 to 26 December 2018. As there are several
futures contracts traded in the time period, we select the continuous monthly contracts composed of
the contracts of the largest open interest in each month to represent the carbon futures price in phase III
of the EU-ETS. The price trend of the EEX EUA spot and futures is depicted in the following Figure 1.

As described in Figure 1, the prices of EEX EUA spot and futures are generally increasing during
the whole sample period, despite a decreasing period in the first half of 2016. The increasing may be
mainly attributed to the emphasis on carbon reduction of the EU. Intuitively, the EUA spot price is less
than €10 per ton in almost all of the sample period. Meanwhile, the EUA futures price is generally
under €20 per ton before 2018. From Figure 1, it is obvious that the futures price is higher than the
spot price as the yellow line representing the futures price is above the blue line representing the spot
price, which may be mainly due to the more active transactions of the futures market than that of the
spot market. Moreover, we can also find that the two prices change almost synchronously. For an
in-depth comparative analysis of the two prices, we further calculate the correlation coefficient and the
log returns of the prices by rt = log(pt/pt−1), and display the results in the following Table 1, Figures 2
and 3, respectively.
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The results in Table 1 show that the magnitude of the two correlation coefficients, i.e., the correlation
of the two price series, and the correlation of the two return series, is close to one, which indicates
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that the price series and the return series of carbon spot and futures have a very close connection.
Then, we can observe the two return series have almost the same tendency based on Figures 2 and 3.
For example, the two series were maximized at almost the same time during 2013. Furthermore, the
returns fluctuate around zero. The return series changed seriously at the beginning of 2013, which may
have been caused by the inconclusive policy orientation as the global carbon reduction environment
changed in phase III. Moreover, some basic descriptive statistics of the two return series are shown in
the following Table 2.

Table 2. Descriptive statistics of the EEX EUA spot and futures returns.

EEX EUA Return Max Min Mean Std Skewness Kurtosis

EEX EUA spot return 0.0915 −0.1939 0.0004 0.0148 −1.4460 22.7711
EEX EUA futures return 0.1019 −0.1834 0.0004 0.0148 −1.1943 19.5809

As summarized in the above Table 2, the maximum value of the EEX carbon spot and futures
returns are 0.0915 and 0.1019, respectively. Meanwhile, the minimum values of the two returns are
−0.1939 and−0.1834. The average returns of the two series are all approximately 0.0004. The magnitude
of standard deviations is close to zero and the mean values are even smaller. Therefore, it is high for the
volatilities of the two return series of carbon spot and futures. The kurtosis of carbon spot and futures
returns exceeds three, and the skewness of these returns is not equal to zero. Such characteristics
indicate that carbon spot and futures returns series have the characteristics of most financial time
series [2,5]—namely, the series are not normally distributed and have heavy tails [5].

In most of the cases, the univariate GARCH model is apparently successful in estimating and
forecasting the volatility of the financial time series data by existing literature [34–38]. Besides,
according to previous researches [35,38,39], GARCH (1, 1) is selected as the appropriate model for
the volatility estimating. We assume a generalized error distribution and calculate the conditional
variances of carbon spot and futures and show the results in Figures 4 and 5.
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Intuitively, carbon spot and futures returns were volatile in the first half of 2013, the conditional
variances reached the maximum in the sample period, and the entrance of Phase III may explain
the phenomenon as significant changes occurred in the cap-and-trade system and the prohibition of
banking of residual allowances [40]. Besides, the results in Figures 4 and 5 consist with the finding
of Kim [40] and Zhang [2], whose research sample period covers Phase III. In addition, it can also be
noticed that compared with the variances in each calendar year, the variation at the beginning of each
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year is much more volatile, which may be ascribed to the “yearly complaint event.” From the above
two figures, we may also find that the two conditional volatility series have almost the same tendency
especially when it comes to extreme value.
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4.2. DCC-GARCH Model

We select the DCC-GARCH model to identify the dynamic correlation between carbon spot and
futures. The model has been developed by Engle [41], which is a natural extension of the constant
correlation coefficient (CCC)-GARCH [42] model. There are two advantages of the DCC-GARCH model.
On the one hand, the model detects possible changes in conditional correlations over time [43,44]; on
the other hand, the model accounts the heteroscedasticity as the correlation coefficients of standardized
residuals are estimated [45]. The variances are adjusted depending on the variance equation, and thus,
the DCC estimator is unbiased. Hence, the DCC-GARCH model has become an excellent measure
for correlation [46]. There are two steps of the DCC estimation process; the first step is to estimate a
univariate GARCH model, and the second step refers to the estimation of time-varying conditional
correlations. The model is defined in the following Equations (1)–(5).

Xt = µt + H1/2
t εt (1)

Ht = DtRtDt (2)

Rt = Q∗−1
t QtQ

∗−1
t (3)

Dt = diag
(√

h11,t, . . . ,
√

hNN,t

)
(4)

Qt = (1−α−β)Q + αQt−1 + βδi,t−1δj,t−1 (5)

where Xt and µt represents the past observations and the conditional returns, respectively. Ht is the
time-varying conditional variances, εt is the vector for the standardized residuals, Rt is a symmetric
conditional correlation matrix, Dt is a diagonal matrix containing standard deviations of the returns
estimated by the univariate GARCH model, and hii,t (i = 1, . . . , N) represents the diagonal elements of
Ht. In the above equation, δi,t is calculated as δi,t = εi,t/

√
hi,t, where εi,t is the ith element in εt and

hi,t is the ith element of the vector (hii,1, . . . ,hii,t). Q represents the unconditional correlation matrixes.
Besides, the model requires both α and β in Equation (5) are non-negative, and α + β < 1. Q∗t is a
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diagonal matrix with the square root of the ith diagonal element of Qt on its corresponding location.
For more details, you may refer to Celık [47].

4.3. VAR-BEKK-GARCH Model

According to existing research, the DCC-GARCH model can only capture the inter-relationship
between different financial markets. However, the direction of the relationship estimated by the model,
i.e., volatility spillovers from one market to other markets, cannot be inferred from the DCC-GARCH
model [47]. For an in-depth understanding of the relationship between the carbon spot and futures
market, we adopt a widely used bivariate BEKK-GARCH model [48–52] to test the direction of
the relationship. The BEKK-GARCH model allows the conditional variances and co-variances to
be interacted. Besides, the BEKK-GARCH model does not need to estimate so much parameters.
Furthermore, the co-variance matrix is positive defined in the calculation process. Moreover, the VAR
model is a linear predictability model, which allows the return on assets to be predicted by past values
of predictors. According to previous studies [53–55], the VAR model is widely used in estimating
and predicting asset returns as it can effectively reduce the transaction cost. For the perfect fitness
of the VAR model on asset return, we update the mean equation of the BEKK-GARCH model by
employing the VAR model. In this paper, we select the VAR-BEKK-GARCH model to analyze the
volatility spillovers between carbon spot and futures markets. Specifically, the VAR-BEKK model can
be summarized as follows in Equations (6)–(8).

Rt = c +
p∑

i=1

Rt−i + εt (6)

εt ∼ N(0, Ht) (7)

Ht = CC′ + BHt−1B′ + Aεt−1ε
′

t−1A′ (8)

where Rt represents the return matrix, c is the conditional return, and εt refers to the residual. As for
Ht, it is the conditional-variance-covariance matrix. And the matrix B is the parameter matrix with
conditional variances, representing the relationships of the variances between different assets. The
matrix A captures the ARCH effect, and the matrix D reflects the GARCH effect. For more details, you
may refer to Yu [56].

5. Empirical Results

5.1. Dynamic Correlation of the EEX EUA Carbon Spot and Futures

A prerequisite of GARCH modeling is that the series need to be stable. Thus, before establishing
the GARCH models for analyzing the correlation between EUA carbon spot and futures, it is essential
to test the stationarity of the two return series. We exhibit the stationarity results by the augmented
Dickey–Fuller (ADF) test in the following Table 3.

Table 3. ADF test of the returns of carbon spot and futures.

Carbon Return Types t-Statistic p-Value

Carbon spot
Intercept −31.2385 0.0000

Trend and intercept −31.3078 0.0000
none −31.2154 0.0000

Carbon futures
Intercept −30.8312 0.0000

Trend and intercept −30.9040 0.0000
none −30.8095 0.0000

Note: Intercept, trend and intercept, and none mean three types of the augmented Dickey–Fuller (ADF) test with the
intercept, trend and intercept and none, respectively. The null hypothesis of the ADF test assumes that the return
series of carbon spot and futures have a unit root. The P-value represents the significance of the corresponding test.
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As seen in Table 3, the results for the return series of carbon spot and futures prices reject the null
hypothesis of the ADF test as the values of the t-statistic are equal to 0.0000, which means that the two
series are both stationary. Thus, this approach can be further used for GARCH modeling. According to
existing researches [57–59], DCC-GARCH (1, 1) can efficiently capture the dynamic correlation between
assets. Thus, in this paper, we chose the model to summarize the dynamic correlation between carbon
spot and futures and the related result is shown in Figure 6.
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We conduct a T-test to further identify whether the mean value of the correlation series is equal to
a constant, i.e., 0. The results in Table 4 indicate that the two markets are indeed correlated because the
null hypothesis is rejected as the p-value of the t-test is equal to zero.

Table 4. T-test for the dynamic correlation coefficient.

Null Hypothesis t-Statistic p-Value Conclusion

The mean value of the correlation
series is equal to 0 436.9691 0.0000 Refuse

As presented in Figure 6, the EUA carbon spot and EUA futures are highly correlated. The
correlation coefficients are over 0.9 for almost all of the sample period. Evidently, extreme values
appeared in the second half of 2015 and 2016 and the beginning of 2018. The abnormalities may be
attributed to the following reasons. First, the leaders of the G7 countries showed support on carbon
reduction with a clear attitude for the first time in June 2015; they pledged to realize a 40–70% carbon
reduction in 2050 compared with 2010. The announcement may account for the volatility of futures
prices compared with the ordinary moments, as seen in Figure 3 in the time period of June 2015.
Meanwhile, the spot price did not change considerably, as shown in Figure 2, which may be the
reason for the reduced correlation at that time. Second, in December 2016, the European Parliament
Committee on Environment, Public Health and Food Safety reached an agreement on a reform scheme
for the EU-ETS after 2020. As shown in Figures 2 and 3, the agreement caused severe changes in carbon
spot and futures prices, given that the EU approved that the emitters could save allowances for the
next stage, which may account for the abnormal value in the second half of 2016. Third, at the end of
2017, the EU reached an agreement on the regulatory framework of the EU-ETS in Phase IV, and it may
be one of the reasons for the drastic decrease in the correlation.

5.2. Volatility Spillover between the EEX EUA Carbon Spot and Futures

In this section, we first show the lag length selection criteria of the VAR model in the following
Table 5.
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Table 5. Lag length selection of the VAR model.

Lag Order LogL LR FPE AIC SC HQ

0 10,806.10 - 3.02×10−9 −13.9408 −13.9339 −13.9382
1 10,987.22 361.5427 2.41×10−9 −14.1693 −14.1486 −14.1616
2 11,096.97 218.7861 2.10×10−9 −14.3058 −14.2713 −14.2929
3 11,140.88 87.4363 1.99×10−9 −14.3573 −14.3090 −14.3393
4 11,179.71 77.1969 1.91×10−9 −14.4022 −14.3401 −14.3791
5 11,251.37 142.3057 1.75×10−9 −14.4895 −14.4136 * −14.4613 *
6 11,258.04 13.2256 1.74×10−9 −14.4930 −14.4033 −14.4596
7 11,267.27 18.2910 1.73×10−9 −14.4997 −14.3962 −14.4612
8 11,273.44 12.2053 * 1.72×10−9 * −14.5025 * −14.3852 −14.4589

Note: LR, FPE, AIC, SC and HQ indicates the sequential modified LR test statistic, final prediction error, Akaike
information criterion, Schwarz information criterion, and Hannan–Quinn information criterion, respectively. *
denotes lag length selected by the criterion.

According to the information criterion, the lag length selected in the VAR model is 8. As for the
variance equation, we choose the widely used (1, 1) as the lag length for the ARCH and GARCH
term [48–52]. The estimation results of the VAR (8)-BEKK (1, 1)-GARCH model is exhibited in the
following Table 6.

Table 6. Estimation results of the VAR-BEKK-GARCH model.

Matrix Element Coefficient Std Error t-Statistic p-Value

C (1, 1) 0.0009 0.0002 5.0641 0.0000
C (2, 1) 0.0008 0.0002 3.7163 0.0002
C (2, 2) −0.0002 0.0001 −3.6778 0.0002
A (1, 1) 0.7243 0.0135 53.7392 0.0000
A (1, 2) −0.5333 0.0182 −29.3706 0.0000
A (2, 1) −0.4605 0.0159 −29.0477 0.0000
A (2, 2) 0.7943 0.0155 51.1750 0.0000
B (1, 1) 0.8713 0.0081 107.9406 0.0000
B (1, 2) 0.1545 0.0046 33.2810 0.0000
B (2, 1) 0.0952 0.0091 10.4123 0.0000
B (2, 2) 0.8136 0.0026 307.2635 0.0000

In Table 6, A (i, j), B (i, j) and C (i, j) are the elements of the matrix A, B, and C described in
Equation (9) in Secton 4.3. As for the volatility spillover, the parameters of A (i, j) and B (i, j) are of
interest, as the parameters reflect the ARCH effect and GARCH effect, respectively. According to
the parameters, we can obtain the following conclusions. First, the current conditional variance is
positively affected by its previous ARCH term as the parameters of A (1, 1) and A (2, 2) are statistically
significant at the 1% level. Second, the current conditional variance is closely related to the GARCH
term, i.e., the conditional variance in the last period, as B (1, 1) and B (2, 2) are still significant. Third,
the parameters of A (1, 1), A (2, 2), B (1, 1), and B (2, 2) are all significant, which means that carbon spot
and futures all show volatility clustering.

Investigating the off-diagonal elements of matrix A and B, which capture cross-market effects,
namely shock and volatility spillovers, respectively, we have several interesting discoveries. First,
the ARCH term has a negative impact on other’s conditional variances since A (1, 2) and A (2, 1) are
statistically negative, while the GARCH term has a positive effect as B (1, 2) and B (2, 1) are statistically
significant. Second, there exists a bi-directional volatility spillover between carbon spot and futures
as the parameters of A (1, 2), B (1, 2), A (2, 1) and B (2, 1) are all significant at the level of 1%. It
means that the information embedded in price innovations of carbon spot as well as carbon futures
indeed transmit to volatility. The reason of the volatility spillover is that the micro-foundation, market
investors, and information source are almost the same for carbon spot and futures. These common
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factors will lead to volatility linkages by altering expectations, and thereby affecting asset demand, or
cross-market hedging [60,61]. Moreover, carbon futures exhibits a higher degree of volatility spillover
to carbon spot than reverse spillover mechanism since the values of A (1, 2) and B (1, 2) over that of A
(2, 1) and B (2, 1). It infers that carbon futures have the function of price discovery to some extent. The
existence of volatility spillover helps to construct the optimal hedging ratio, which benefits the carbon
investors in the futures. We elaborate this point in the next section.

To further verify the validity of the volatility spillover exhibited in Table 6, we conduct the Wald
test shown in Table 7. The results of the Wald test support the above conclusions that the volatility of
carbon futures can impact on that of carbon spot, vice versa.

Table 7. Results of the Wald test of volatility spillovers.

Volatility Spillover Null Hypothesis Wald Test p-Value

From Carbon Spot to Carbon Futures a21 = b21 = 0 1593.1152 0.0000
From Carbon Futures to Carbon Spot a12 = b12 = 0 843.9133 0.0000

Between Carbon Spot and Carbon Futures a12 = b12 = a21 = b21 = 0 3478.8831 0.0000

5.3. Hedge Ratios and Hedging Effectiveness

In this section, we examine the implications of the aforementioned results of the
VAR-BEKK-GARCH model for hedging strategy and portfolio management. Based on the modern
portfolio theory, Johnson [62] proposed the well-known minimum variance hedge ratio model for
minimizing the risk associated with a certain portfolio. Assume asset j can be used as a hedge for
another asset i. The return of a hedged portfolio can be written as follows in Equation (9).

RH,t = Rs,t − γf,tRf,t (9)

where RH,t represents the return of the hedged portfolio, γf,t is the hedge ratio, Rs,t and Rf,t represent the
return of spot and futures return respectively. According to Johnson [62], Baillie [63], and Kroner [64],
the optimal holding weight of the carbon spot and futures can be determined by the following equations
in (10), (11) and (12).

wsf,t =
hss

t − hsf
t

hff
t − 2hsf

t + hss
t

(10)

wsf,t =


0, if wsf,t < 0

wsf,t, if 0 < wsf,t < 1

1, if wsf,t > 1

(11)

γ∗f,t =
hsf

t

hff
t

(12)

In the above expressions, wsf,t represents the weight of carbon futures in one unit portfolio including
carbon spot and futures. hsf

t represents the co-variance between carbon spot and futures, which is
estimated by the multivariate GARCH model. hss

t and hff
t denote the variance of carbon spot and

futures, respectively. γ∗f,t is the optimal hedge ratio.
In order to evaluate the effectiveness of the constructed hedging strategy, we further calculate a

hedging effectiveness (HE) value, which is adopted by Ku [65]. The calculation of HE value is shown
as follows.

HE =
varunhedged − varhedged

varunhedged
(13)

where the variances of the hedge portfolio, namely varhedged, are obtained from the variance of the
rate of return, RH,t. The variance of the unhedged portfolio is the variance of spot returns (see, for
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example, Ripple and Moosa [66]. The closer the HE tends to one, the higher hedging effectiveness and
better risk reduction. Some basic results of the above-mentioned equations are shown in Table 8.

Table 8. Optimal hedge ratio and hedging effectiveness in phase III of the EU-ETS.

Hedge Characteristic Optimal Hedge Ratio Holding Weight Hedging Effectiveness

Value 0.9468 0.4208 0.9370

As can be seen from Table 8, the optimal hedge ratio for carbon futures is 0.9468. This means that
a unit of long position in carbon spot can be hedged by shorting 0.9468 of carbon futures in average.
Moreover, the weight for carbon futures in the portfolio including carbon spot and futures is 0.4208,
while the weight for carbon spot is 0.5292. Furthermore, the HE value is 0.9370, which indicates that
around 94% of price return variance of the carbon spot can be effectiveness hedged by taking a short
position in carbon futures into the portfolio

6. Further Discussion

In this section, we provide further discussion on the correlation between carbon spot and carbon
futures markets by replacing our dataset with the trading data in phase II of the EU-ETS. Due to the
data availability, the data scope for the prices of carbon spot and futures are from 27 October 2009 to 31
December 2012. Some basic characteristics of the new data in phase II is shown in Table 9.

Table 9. Basic characteristics of carbon spot and futures in phase II of the EU ETS.

Carbon Return Max Min Mean Std Skewness Kurtosis

carbon spot return 0.0812 −0.0501 −0.0004 0.0112 0.2394 5.1083
Carbon futures return 0.0800 −0.0498 −0.0004 0.0111 0.0285 4.9962

Then, we employ the same methods as in Section 5 to further discuss the correlation between
carbon spot and futures, and the detailed results are shown as follows.

The ADF test results of the two return series and the estimation results of the DCC-GARCH model
are exhibited in the following Table 10 and Figure 7. Specifically, the results of the ADF test show that
the returns of carbon spot and futures are still stationary and thus can be used for subsequent GARCH
modeling. The results of dynamic correlation indicate that there exists an obvious dynamic linkage
between carbon spot and futures. Similar to our research for phase III of the EU-ETS, we still conduct a
T-test to further certify whether the two markets are correlated, and the results shows the correlation
between carbon spot and futures to be dynamic.

Table 10. ADF test of carbon spot and futures returns in phase II of the EU ETS.

Carbon Return Types t-Statistic p-Value

Carbon spot
Intercept −27.8640 0.0000

Trend and intercept −27.8610 0.0000
none −27.8451 0.0000

Carbon futures
Intercept −28.0024 0.0000

Trend and intercept −27.9959 0.0000
none −27.9788 0.0000

Note: Intercept, trend and intercept, and none mean that the three types of the ADF test with intercept, trend and
intercept and none, respectively. The null hypothesis of the ADF test assumes that the return series of carbon spot
and futures have a unit root. The P-value represents the significance of the corresponding test.
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We further show the lag length selection process of the VAR model in Table 11.

Table 11. Lag length selection of the vector autoregression (VAR) model in phase II.

Lag Order LogL LR FPE AIC SC HQ

0 5971.355 - 1.66×10−9 −14.54167 −14.53019 −14.53727
1 6035.231 127.2839 1.43×10−9 −14.68753 −14.65310 −14.67432
2 6076.752 82.53701 1.31×10−9 −14.77893 −14.72156 −14.75692
3 6101.587 49.24597 1.24×10−9 −14.82969 −14.74936 * −14.79887
4 6110.103 16.84632 * 1.23×10−9 * −14.84069 * −14.73741 −14.80106 *
5 6110.989 1.747468 1.24×10−9 −14.83310 −14.70688 −14.78467
6 6112.310 2.600740 1.25×10−9 −14.82658 −14.67740 −14.76934
7 6115.464 6.192805 1.25×10−9 −14.82452 −14.65239 −14.75847
8 6118.457 5.861481 1.25×10−9 −14.82206 −14.62699 −14.74722

Note: LR, FPE, AIC, SC and HQ indicates the sequential modified LR test statistic, Final prediction error, Akaike
information criterion, Schwarz information criterion and Hannan-Quinn information criterion, respectively. *
denotes lag length selected by the criterion.

As shown in Table 11, the lag length selected for the VAR model in phase II of the EU ETS is
4. The estimation results for VAR (4)-BEKK (1, 1)-GARCH model is shown in Table 12. The results
exhibit that there exists a volatility spillover from carbon futures to carbon spot in phase II of the EU
ETS as the parameters of A (1, 2) and B (1, 2) are significant at the level of 1%. The reverse volatility
spillover from carbon spot to carbon futures is relatively weaker as the parameters of B (2, 1) is not
significant. Moreover, the results of the Wald test shown in Table 13 further support this conclusion for
the rejection of the null hypothesis of volatility spillover from carbon spot to carbon futures. Thus, the
volatility spillover effect in phase II of the EU ETS is relative weaker than that in phase III. This further
demonstrates the importance of researching the phase III of the EU ETS as the more volatility spillover
between carbon spot and futures.

Similar with the analysis in the above section, we further provide the hedge ratio and HE value to
evaluate the effectiveness of the hedge strategy in phase II of the EU ETS. And the results are shown in
the following Table 14. Here, we can conclude that the hedging effectiveness of phase II is lower than
that of phase III for the HE value is obviously under 0.9370—namely, the HE value in phase III.
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Table 12. Estimation results of the VAR-BEKK-GARCH model in phase II of the EU-ETS.

Matrix Element Coefficient Std Error t-Statistic p-Value

C (1, 1) 0.0007 0.0003 2.7263 0.0064
C (2, 1) 0.0013 0.0004 3.1127 0.0019
C (2, 2) 0.0010 0.0003 2.8221 0.0048
A (1, 1) 0.4396 0.0826 5.3190 0.0000
A (1, 2) −0.2821 0.0854 −3.3044 0.0010
A (2, 1) −0.1606 0.0836 −1.9195 0.0549
A (2, 2) 0.5911 0.0881 6.7063 0.0000
B (1, 1) 0.8805 0.0509 17.2902 0.0000
B (1, 2) 0.2342 0.0579 4.0471 0.0001
B (2, 1) 0.0803 0.0520 1.5427 0.1229
B (2, 2) 0.7132 0.0595 11.9886 0.0000

Table 13. Results of the Wald test of volatility spillovers in phase II of the EU-ETS.

Volatility Spillover Null Hypothesis Wald Test p-Value

From Carbon Spot to Carbon Futures a21 = b21 = 0 3.6926 0.1578
From Carbon Futures to Carbon Spot a12 = b12 = 0 16.4755 0.0003

Between Carbon Spot and Carbon Futures a12 = b12 = a21 = b21 = 0 87.1316 0.0000

Table 14. Optimal hedge ratio and hedging effectiveness in phase II of the EU-ETS.

Hedge Characteristic Optimal Hedge Ratio Holding Weight Hedging Effectiveness

Value 0.9050 0.3917 0.8938

In general, the correlation between carbon spot and futures becomes closer in phase III of the EU
ETS when compared with the phase II, as the mean value of dynamic correlation shown in Figure 6
is relatively higher than the correlation in Figure 7. Moreover, the volatility effect is more intense in
phase III of the EU ETS than that in phase III for the parameters of A (2, 1) is significant at a level of
10% and that of B (2, 1) is not significant. As to the hedging strategy based on the VAR-BEKK-GARCH
model, it is obvious that the hedging strategy performs better in phase III than phase II as the HE value
is relatively higher in phase III. Thus, we can deduce the conclusions that the carbon futures market
in phase III of the EU ETS is a more applicable market to hedge risk from carbon spot market when
compared with the market in phase II.

7. Conclusions

In this paper, we collect our data set of carbon spot and futures market in phase III of the EU-ETS to
analyze the dynamic correlation and volatility spillover of the two markets. The novelty of this paper is
that it extends the time scale of existing research to phase III of the EU-ETS and makes a comprehensive
analysis for the carbon spot-futures linkages. Our empirical results of the DCC-GARCH model show
that carbon spot and carbon futures are highly correlated. Meanwhile, the empirical results of the
VAR-BEKK-GARCH model indicate that there exist significantly bi-directional volatility spillovers
between the two carbon markets. Besides, we construct a hedge strategy based on the results of
VAR-BEKK-GARCH model, and the results denote that the carbon futures market is a good market for
investors who want to hedge risk from carbon spot market. Moreover, we make a further exploration
on the correlation of carbon spot and futures by replacing our data set with the trading data in phase
II of the EU-ETS. The results do not change our conclusions on dynamic correlation and volatility
spillover. But another interesting issue is found that carbon futures market in phase III of the EU ETS
can better hedge the risk from carbon spot market when compared with phase II. Our empirical results
further help to better understand the carbon spot-futures linkages in the EU-ETS. Besides, our results
benefit those investors who invest in both carbon spot and futures market to effectively hedge risk.
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There are indeed alternative methods to estimate dynamic correlation relationship between
carbon spot and futures or even more assets. Such as, Orthogonal GARCH (O-GARCH) model [2,5],
Copula-DCC-GARCH model [67], ADCC-EGARCH model [68], et al. In this paper, we only select
the DCC-GARCH model as the basic estimating method to explore the relationship between carbon
spot and futures. And these alternative methods will be carefully employed in our futures research.
Moreover, in Section 5.3, we construct a portfolio composed of carbon assets without any other assets.
Thus, we try to include more assets, i.e., energy assets, financial assets and commodity assets, into the
portfolios in the futures research, which may be benefit the investors globally.
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