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Abstract: Climate change and rapid urbanization have severe impacts on urban flood regulation
ecosystem services (UFRES). Quantifying the UFRES has attracted increasing attention for urban
sustainable development. However, few studies have focused on how to identify urban flood
regulation priority areas. In this study, we simulated urban surface runoff by using the soil
conservation services-curve number model, and quantified UFRES supply and demand by using
relative indicators (i.e., runoff reduction ratio and urban vulnerability) at the subdistrict scale in
Beijing, China. Then, an urban flood regulation priority index was developed by integrating UFRES
demand and supply, and further used to identify priority areas. The results show that the mean
runoff reduction ratio in Beijing decreased from 38.70% (for a 1-year rainfall return period) to 24.74%
(for a 100-year rainfall return period). Subdistricts with low UFRES supply were mainly located in
the urban central area and the southeastern zone, while subdistricts with high UFRES demand were
mainly located in the urban central region. Meanwhile, places with high priority for flood regulation
were mainly located in the inner city, and low priority areas were mainly located in northwestern,
southwestern, and northeastern Beijing. Our results also imply that the urban flood regulation
priority index is an effective indicator to identify urban flood regulation priority areas. These findings
could provide urban planners with a comprehensive understanding of UFRES and scientific guidance
to improve them.
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1. Introduction

Climate change will increase global exposure to flooding [1,2]. Urban flooding has become one of
the most severe natural hazards around the world, especially in coastal cities due to the increase of
extreme precipitation events and the rise of sea level [3–5], and more than 600 cities worldwide face
serious flood risks [6]. Specifically, the land surface in cities is continuously modified with impervious
surfaces that do not allow water to permeate, and result in excessive flooding [7–10]. The flood
regulation capability of river systems is also degraded in the urbanization process [11]. Therefore,
there is an urgent need to improve urban flood regulation capacity so cities can adapt to climate change
during the process of rapid urbanization [12–14].

Ecosystem services refer to the benefits that humans freely gain from natural ecosystems, which
include four different types: Provisioning, regulating, cultural and supporting services [15]. Urban
flood regulation ecosystem services (UFRES) refer to the capacity of cities to retain storm water and
reduce surface runoff as determined by soil, land use, and topography, which can reduce the negative
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impacts of storm water on human safety, infrastructure, and living environment quality in urban
ecosystems, such as canopy interception by vegetation, soil water storage, and water storage capacity
of wetlands and rivers [16–20]. Studies have reported that urban green spaces (e.g., urban parks and
gardens, roads, residential green spaces) can provide flood regulation ecosystem services. For example,
it was estimated that urban green space could store 88% of rainfall in Yixing, China, and vegetation
types influenced the runoff regulation capacity of the city [20]. Due to the loss of urban green spaces
during the urbanization process in Beijing, urban surface runoff regulation capacity decreased by 6%
from 2000 to 2010 [21]. All these evidences indicate urban green spaces play an important role in
enhancing the flood regulation services and improving urban resilience. UFRES is not only related to
the integration of urban green-blue infrastructure, but is also affected by urban population density and
the pattern of functional zones in the city [22,23].

The ecosystem services-based approach is currently an important way to optimize and manage
land to achieve sustainable development goals, especially in urban areas [24–26]. Spatial decision
support tools integrating urban ecosystem services were developed to assist urban spatial planning
practices [27]. The tradeoffs and synergies among different ecosystem services due to various
stakeholders’ preferences are also important for urban spatial planning to maximize the benefits of
urban green spaces [28]. For example, by integrating the tradeoff and synergies of ecosystem services
and GIS, an urban green infrastructure (e.g., rain gardens, bioswales, green roofs) spatial planning
model was developed and applied in Detroit [29]. Identifying the priority areas of urban ecosystem
services management can provide constructive guidance to enhance the green foundation of cities, thus
improve urban ecosystem services and sustainability [30–32]. However, few efforts have attempted
to identify urban flood regulation priority areas at the subdistrict scale in urban areas by using an
ecosystem services-based approach.

To the best of our knowledge, UFRES has been examined in Beijing [21,33], but previous studies
identifying urban flood regulation priority areas have not integrated UFRES supply and demand
information at the subdistrict scale. The objectives of this study are to (1) evaluate UFRES supply under
different rainfall return periods and UFRES demand in Beijing, and (2) identify urban flood regulation
priority areas (UFRPAs) by integrating UFRES supply and demand information. By quantifying UFRES
supply and demand, this study addresses the knowledge gap in identifying priority areas for urban
flood regulation at the subdistrict scale. The results can provide urban planners scientific guidance to
improve UFRES and sustainability.

2. Study Area

The study area is located in the Beijing metropolitan area at 39◦26′ N to 41◦03′ N, 115◦25′ E
to 117◦30′ E. It occupies a total area of 1369 km2 and includes six districts—Dongcheng, Xicheng,
Chaoyang, Fengtai, Shijingshan and Haidian—and 135 subdistricts or towns (Figure 1). The total
population in 2018 was approximately 12.09 million, and more than 99% lived in urban areas [34].
Since the implementation of China’s reform and opening-up policies, Beijing has experienced a rapid
urbanization process and the urbanization rate reached 86.5% in 2018. The total built-up land and
impervious surface areas have increased by more than 1100 and 700 km2, respectively, in the past 40
years [35–37]. Dramatic increase in impervious surface and decrease of green space have intensified
the urban flood risk and amount of water-logging. The climate of Beijing is temperate and monsoonal
and is characterized by hot summers and cold winters. The mean annual temperature is 12 ◦C and
the mean annual precipitation varies from 400–800 mm yr−1, of which nearly 80% occurs between
June and September [21,38]. Previous studies have shown that both precipitation and annual days of
rainstorms in Beijing have decreased gradually in the past 50 years [39]. However, heavy rainstorms
occurred more than 20 times in the urban areas of Beijing in the past 10 years, which resulted in serious
waterlogging disasters. More specifically, rainstorms occurred on 21 July 2012 and 20 July 2016, both
resulting in severe water-logging and socioeconomic loss [40,41]. In 2016, Beijing was chosen as an
example city to implement an idea called “Sponge City” to improve urban flood mitigation capacity
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and realize the goal of “no ponding under light rain and no water-logging under heavy rain.” Under
these circumstances, it is necessary to evaluate UFRES to support urban green infrastructure and
low-impact development planning.Sustainability 2020, 12, x FOR PEER REVIEW 3 of 18 
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Figure 1. Location and urban land cover of the study area.

3. Data and Methods

The flow chart in Figure 2 shows the procedures adopted in this study to identify urban flood
regulation priority areas in Beijing. First, we collected the datasets used in this study. Second, we
processed the Landsat image, land use and population data to evaluate UFRES. Third, we evaluated
UFRES supply and demand by using indicators of runoff reduction ratio and urban vulnerability.
Then, we calculated an urban flood regulation priority index to identified priority areas and analyzed
the spatial pattern of urban flood regulation priority areas. Finally, we discussed the efficiency of the
priority index and the role of urban green space in urban flood regulation.
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Figure 2. Flow chart to identify urban flood regulation priority areas (NDVI, normalized difference
vegetation index; SCS-CN, soil conservation service-curve number).

3.1. Data Sources and Pre-Processing

In this study, Landsat 8 OLI imagery, China land use/cover datasets (CLUDs) of 2015, and other
auxiliary data were used to evaluate UFRES supply and demand.

(1) Landsat imagery processing and urban land cover extraction
Landsat 8 OLI imagery covering Beijing (Path/Row: 123/032, 14 September 2017) was used to

extract the urban land cover fractions data. In this study, urban land cover was classified into four
types: Impervious surface area (ISA), green space (GS), bare soil, and water body. First, radiometric
calibration and FLAASH atmosphere calibration were conducted for the Landsat 8 OLI image in the
environment for visualizing images (ENVI, Version 5.3) software. Then, a linear spectral unmixing
method [42,43] was used to extract high/low albedo fractions, GS fraction, and soil fraction in ENVI 5.3.
A modified normalized difference water index [44] was calculated to extract water bodies. We further
processed the data by building a decision tree to extract land cover, detailed information about the
method can be found in [43,45].

(2) High-resolution images
To validate the accuracy of urban land cover fraction data, 100 random points in the study area

were generated using a spatial analyzing approach in ArcGIS 10.3 software, and each site was processed
as a square with an area of 90 m × 90 m. For each sample site, the ISA, GS, bare soil, and water bodies
from 2017 were visually interpreted by using GaoFen-2 images (0.8 m resolution, acquired 9 June 2017).
The accuracy assessment results showed that the root mean square errors of ISA and GS were lower
than 10%, which indicated that the data were appropriate for further analysis.

(3) China land use/cover datasets for Beijing
CLUDs in 2015 were developed by utilizing remote sensing satellite imagery data, such as Landsat

8 OLI images and GaoFen-2. The datasets include six classes—cropland, forest, grassland, water body,
built-up land, and unused land—and 25 subclasses. The accuracies of the six classes of CLUDs were
higher than 90%, which meets the requirement of the user mapping accuracy at 1:1,000,000 scale [46,47].
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(4) Other datasets
Soil data were obtained from the Resource and Environment Data Cloud Platform, with a scale of

1:1,000,000 [48], and used to obtain the hydrological properties of soil. The population data at subdistrict
scale, including total population, child population (ages 0 to 14 years old) and elder population (ages
over 60 years old) were downloaded from the Beijing Municipal Bureau of Statistics [49].

3.2. Urban Runoff Simulation

In this study, we used the soil conservation service curve number (SCS-CN) model to simulate
urban runoff under different scenarios, and previous research demonstrates that this model is easy to
implement and accurately simulates urban runoff [20,50–52]. The runoff coefficient and runoff depth
were calculated using the following equations:

RC = Q/P (1) Q =
(P−Ia)

2

P−Ia+S (P ≥ Ia)

Q = 0 (P < Ia)
(2)

S =
25400

CN
− 254 (3)

Ia = λ× S (4)

where RC refers to runoff coefficient, Q is the direct surface runoff depth (mm), P is the precipitation
(mm), S is the potential maximum water storage in soil (mm), CN is the curve number ranging from 0
to 100, Ia is the soil abstraction (mm), and λ is the initial abstraction coefficient set as 0.2 [50].

The CN value is a key parameter of the SCS-CN model, which directly reflects the condition of
soil. It is determined by soil moisture and soil type. In this study, we calculated the direct runoff under
moderate antecedent moisture conditions (AMC-II). The CN values were generated using the method
proposed in [42], which can be expressed as the following equation:

CN = aisa ×CNisa + aveg ×CNveg + asoil ×CNsoil, (5)

where CN refers to the composite CN value; aisa, aveg and asoil are the fractions of impervious surface,
vegetation, and soil, respectively; and CNisa, CNveg, and CNsoil are the CN values of impervious surface,
vegetation, and soil, respectively. In addition, the CN values of water, impervious surface, and soil were
set as 0, 98, and 91, respectively [50,53]. The CN values use in this study for different land uses/covers
are shown in Table 1.

Table 1. Curve number (CN) values of different land covers.

Land Cover CN Value

Impervious surface 98

Green space

NDVI > 0.65
aveg ≤ 50% 66

50% < aveg ≤ 75% 60
aveg > 75% 55

0.57 < NDVI ≤ 0.65
aveg ≤ 50% 73

50% < aveg ≤ 75% 65
aveg > 75% 58

0.40 < NDVI ≤ 0.57
aveg ≤ 50% 81
aveg > 50% 78

NDVI ≤ 0.4 74
Soil 91

Water 0

Note: NDVI, normalized difference vegetation index.
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3.3. Evaluating the Supply for Urban Flood Regulation Ecosystem Services

Previous studies have created difference indicators (i.e., runoff reduction capacity, absorption ratio,
runoff reduction volume [21,33,54,55]) to characterize UFRES supply (UFRESS). Following previous
studies, urban runoff reduction capacity was used to represent UFRESS [21,50,55]. To estimate the
surface runoff reduction capacity of urban green space in each subdistrict, we calculated two indicators:
Runoff volume reduced by urban green space (∆v) and the runoff reduction ratio. The UFRES indicator
can be expressed with the following equation:

UFRESS = ∆v× (0.001× P×A)−1
× 100% (6)

where UFRESS refers to the surface runoff reduction ratio of each subdistrict (the value range is from 0%
to 100%), ∆v refers to the surface runoff reduction volume (m3) of each subdistrict, P is the precipitation
(mm) of different rainfall scenarios, and A refers to the area (m2) of each subdistrict.

Runoff reduction volume (∆v) can be expressed as the following equation:

∆v =
n∑

i=1

0.001× (Qisa −Qi) ×Ai (7)

where ∆v refers to the surface runoff reduction volume of each subdistrict, Qisa is the surface runoff

depth generated by 100% of the impervious surface, Qi is the surface runoff depth of each pixel, and Ai
is the area of each pixel (30 m × 30 m).

A high UFRESS value means that the existing green space in the subdistrict provides more
potential UFRES. Here, UFRES supply runoff reduction capacity was evaluated under different rainfall
scenarios. We used the storm intensity formula for Beijing [56] to calculate the rainfall depths of four
scenarios: 39.7 mm (1-year rainfall return period), 62.4 mm (10-year rainfall return period), 72.1 mm
(25-year rainfall return period), and 104.4 mm (100-year rainfall return period), and the rainfall duration
was set as 120 min [50,56].

3.4. Evaluating the Demand for Urban Flood Regulation Ecosystem Services

Generally, UFRES demand is evaluated using flood risk level or vulnerability level [54,55,57].
In this study, we used a simplified urban vulnerability index to quantify UFRES, which was calculated
by combining the population vulnerability and economic vulnerability indexes. Then it was used to
represent the demand (UFRESD). The UFRESD index can be expressed with the following equation:

UFRESDi = a∗PVIi + b ∗ EVIi (8)

where UFRESDi is the UFRES demand in subdistrict i; PVIi and EVIi are the area population vulnerability
and economic vulnerability of subdistrict i, respectively; a and b refer to the weights of the population
vulnerability and economic vulnerability, respectively, which we set as equal for the two variables.

Following previous studies, we used mean population density, elder population density, and
child population density to calculate population vulnerability [58]. It can be expressed with the
following equation:

PVIi = α ∗ Popd + β ∗Oldd + γ ∗Childd (9)

where Popd, Oldd, and Childd are the mean, elder, and child population densities, respectively, which
were evaluated based on the population conditions of each subdistrict. α, β, and γ refer to the
weights of the mean, elder, and child population densities, respectively, which we set as equal for the
three variables.

Detailed digital economic data at high resolution (subdistrict scale) were unavailable to evaluate
economic vulnerability in our study area. However, economic vulnerability was mainly based
on publicly available land use/cover data [59]. Here, we used land use/cover data with different
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economic scores to evaluate economic vulnerability. Economic vulnerability can be expressed with the
following equation:

EVIi =
n∑

j=1

EconomicScore j (10)

where EVIi is the economic vulnerability of subdistrict i and EconomicScore j is the economic
vulnerability score of j pixel in subdistrict i. We assume that undeveloped land (forest, grass,
and pasture) and cropland have relatively low vulnerability to flooding (score 1–3), whereas land
with low-density (20%–50%) ISA, medium-density (50%–80%) ISA, and high-density (>80%) ISA have
higher vulnerabilities (score 5–8) (Table A1). Detailed information about vulnerability levels can be
found in [59].

3.5. Identifying Urban Flood Regulation Priority Areas

To identify the priority areas of urban flood regulation, an urban flood regulation priority index
(UFRPI) was calculated by integrating the supply of and demand for UFRES. To support the “sponge
city” construction, the urban drainage system in Beijing was reconstructed so it could still work
effectively during a 10-year rainfall return period. Therefore, in this study, the UFRES supply for a
10-year rainfall return period was used to calculate the priority index. It can be expressed with the
following equation:

UFPRIi =
√

UFRESDi/UFRESSi (11)

where UFPRIi refers to the priority index of urban flood regulation in subdistrict i and UFRESDi and
UFRESSi are the demand and supply indices of UFRES, respectively.

To identify the hotspot areas of urban flood regulation priority areas, the quantile method was
mostly used to present the high values or low values of UFRESS and UFRESD [54,57]. For example,
previous studies regarded the top 20% areas of UFRESD or UFRESS as a hotspot or priority area [57].
However, this method only identified the areas where both UFRESD and UFRESS are high. In this
study, spatial clustering analysis—Local Moran’s I index [60], which considers the neighboring
effect—was used to identify urban flood regulation priority areas. The index can be expressed with the
following equation:

Ii =
xi −X

S2
i

n∑
j=1

wi, j
(
x j −X

)
(12)

where Ii is Local Moran’s I statistic for subdistrict i; xi and xj refer to the urban flood regulation priority
index in subdistrict i and j; wi,j is a spatial weight matrix with n dimensions, which represents the
spatial relation between subdistrict i and j; X is the mean priority index of all subdistricts; and S2

i is
the variance. The Local Moran’s I statistics include four categories: high-high (H-H), high-low (H-L),
low-high (L-H), and low-low (L-L). In this study, the subdistricts with H-H values were extracted for
further analysis.

4. Results

4.1. Analysis of Urban Surface Runoff for Different Rainfall Scenarios

Urban surface runoff under four rainfall scenarios was estimated by utilizing the urban land
cover and the SCS-CN model. The spatial distributions of the runoff coefficients under the 1-year,
10-year, 25-year, and 100-year rainfall return periods are shown in Figure 3. In general, urban surface
runoff coefficient increases with the increase of rainfall intensity, and the mean runoff coefficient
ranges from 0.39 to 0.61 under the 1-year and 100-year rainfall return periods, respectively. Spatially,
the urban surface runoff coefficient in the urban center increased significantly with the increase of
rainfall intensity. The results also show that urban runoff coefficient decreases gradually along the
urban-rural gradient (Figure 3).
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Figure 3. Spatial distributions of the urban runoff coefficients for 1-year (a); 10-year (b); 25-year (c);
and 100-year (d) rainfall return periods.

Due to different land cover compositions, the runoff coefficients varied among the six districts. It
is obvious that Dongcheng District, with the highest impervious surface percentage, has the highest
runoff coefficient, while Haidian District, with the highest green space percentage, has the lowest
runoff coefficient (Figure 4). This result indicates that urban impervious surface and green space play
opposite roles in mitigating runoff, and green space plays a positive role in regulating runoff to some
extent. Under the 10-year rainfall return period, the runoff coefficient in Dongcheng District was
0.67, while the runoff coefficient in Haidian District was lower by 0.22. This is mainly because the
impervious surface percentage in Dongcheng was 30.9% higher than that in Haidian (Figure 4).
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Figure 4. The urban runoff reduction ratio of six districts in Beijing for 1-year, 10-year, 25-year, and
100-year rainfall return periods (ISA, impervious surface area; GS, green space).

4.2. Supply for Urban Flood Regulation Ecosystem Services under Different Rainfall Scenarios in Beijing

The UFRES supply capacity is mainly determined by rainfall depths, soil conditions, and land
cover characteristics. The spatial pattern of the UFRES supply capacity under four rainfall scenarios
is shown in Figure 5. The subdistricts with high UFRES supply capacity were mainly located in the
western part of the study area, and subdistricts with low UFRES supply capacity were mainly located
in the central and southeast areas. It should be noted that the UFRES supply in subdistricts located in
the central and southeastern parts of the study area decreased quickly with the increase of rainfall
intensity. Therefore, some stormwater management measures should be implemented to improve the
surface runoff regulation capacity.

As shown in Table 2, mean runoff reduction ratios of different rainfall return periods vary. For the
1-year rainfall return period (39.7 mm), the mean runoff reduction ratio is 38.70%, and the value
decreased by 14% for the 100-year rainfall return period, indicating that the supply capacity of UFRES
decreases with increasing rainfall depth in Beijing, while the standard deviation (STD) of UFRES
supply changes a little, decreasing by 0.6% (Table 2). Meanwhile, the surface runoff reduction ratios in
six districts also vary due to the divergence of land cover percentage and rainfall intensity. Both the
mean runoff reduction ratio and its STD in Shijingshan District are the highest (38.09% and 12.53%,
respectively, for a 10-year rainfall return period), while those in Xicheng District are the lowest (20.89%
and 4.69%, respectively, for a 10-year rainfall return period) due to its high percentage (66.80%) of
impervious surface (Table 2). More specifically, the UFRES supply capacity in Dashilan Subdistrict
(subdistrict highlighted with red bound line in Figure 5) is the lowest with runoff reduction ratio of
11.58% (for 10-year rainfall return period) due to its high impervious surface ratio (84.45%), where
should be regarded as the urban flood regulation priority area.
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Table 2. The urban runoff reduction ratio of six districts in Beijing for 1-year, 10-year, 25-year, and
100-year rainfall return periods.

Districts
1-Year 10-Year 25-Year 100-Year

Mean STD Mean STD Mean STD Mean STD

Dongcheng 31.22 6.27 21.62 5.92 20.01 6.29 17.96 5.29
Xicheng 30.12 4.99 20.89 4.69 19.29 5.29 17.53 4.40

Chaoyang 38.32 7.93 28.69 7.79 26.66 7.93 24.34 7.10
Fengtai 40.03 8.63 29.97 8.46 27.92 8.24 25.34 7.68

Shijinshan 47.53 11.33 38.09 12.53 35.79 12.26 33.10 12.02
Haidian 44.38 13.20 34.71 14.05 32.56 13.87 29.92 13.27

Mean 38.70 10.62 29.07 10.81 27.09 10.70 24.74 10.02

Note: STD, standard deviation.

4.3. Demand for Urban Flood Regulation Ecosystem Services in Beijing

In this study, UFRESD is determined by population vulnerability and economic vulnerability.
Figure 6 shows the spatial pattern of urban population vulnerability, economic vulnerability, and
UFRES demand. The subdistricts with a high UFRESD are mainly located in Dongcheng and Xicheng
Districts. This is mainly because the population in the central city was more concentrated than that in
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suburban areas, especially the proportion of minority groups (such as children and elders) (Figure 6a).
More specifically, the top 10 subdistricts that demand the most UFRES also have a large number of
children and elders, and their occupancies are higher than 15% each. Meanwhile, the subdistricts with
low UFRESD were mainly distributed in the northwestern part of Haidian District and the northeastern
part of Chaoyang District, where population density was low and natural land accounted for over 80%
of the total area. Yongding-Road Subdistrict (Figure 6) had the highest UFRESD value, mainly due to
its high population density (49,346 persons/km2), high proportion of elderly people (15.86%), and high
impervious surface ratio (78.42%).
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4.4. Analysis of Urban Flood Regulation Priority

In this study, we calculated UFRPI by integrating UFRES supply and demand. In general, the mean
UFRPI of the study area was 1.54; Xicheng and Shijingshan had the highest value (1.98) and the lowest
value (1.33), respectively. Spatially, urban flood regulation priority decreased with increasing distance
to the urban center. The subdistricts with high priority values were mainly located in Dongcheng
and Xicheng Districts. While, the subdistricts with low priority values were mainly distributed in
northwestern Haidian District and northeastern Chaoyang District, where urban flood regulation
supply is high and flood regulation demand is low (Figure 7a).
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Results from Local Moran’s I analysis indicate that the high-priority clustering area (H-H) occupied
23 subdistricts, mainly distributed in the inner city, especially in Dongcheng and Xicheng Districts
(Figure 7b). Most subdistricts have relatively high demand and low supply UFRES, which indicates
that some stormwater management measures (e.g., green infrastructure, drainage improvement,
low-impact development techniques) should be implemented here. The low-priority areas (L-L) occupy
17 subdistricts located in the suburban districts and have relatively high proportions of green space
(i.e., trees, grassland, cropland), which should function as key areas for ecosystem services such as
water retention and urban flood regulation to keep the inner city safe (Figure 7b).

5. Discussion

5.1. An Effective Approach to Identify Urban Flood Regulation Priority Areas by Integrating UFRES Supply
and Demand

Identifying subdistrict-scale area with priority in urban flood regulation is very important,
especially through a scientific and easily implemented approach. Ecosystem services-based approaches
are also widely applied to achieve land use management by systematically quantifying ecosystem
service supply and demand [24,27,29,31]. In urban areas, the spatial planning of green infrastructure
based on an ecosystem services approach has been developed in recent years, but there are still many
uncertainties. More specifically, it is difficult to calculate the priority index due to the uncertainty
of the weights for ecosystem services supply and demand. Given there is no value judgment about
which one is more important for these two variables in this study, we developed a UFRPI by using
a geometric method, instead of the arithmetic aggregation method, to integrate the UFRES supply
and demand information [29,55]. This method can increase the capability of the approach to identify
critical areas [61]. In addition, previous research mainly used a natural breakpoints method to identify
urban flood regulation hotspot areas [57]. We used spatial clustering analysis to produce a spatially
explicit map of urban flood regulation priority areas (H-H) and L-L, H-L, and L-H areas, which is
helpful to identify the subdistricts for sharing interregional UFRES [54].

We further examined the relationships between UFRES supply/demand and UFRPI. There is a
linear and positive correlation between UFRES demand and UFRPI, which indicates that subdistricts
with high UFRES demand, or urban vulnerability, generally have high UFRPI (Figure 8a). Meanwhile,
the relationship between UFRES supply and UFRPI is non-linear with a negative correlation, which
indicates that the subdistricts with low UFRES supply, or runoff reduction ratio, also have low UFRPI
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(Figure 8b). Our results are consistent with the assumption that an urban flood regulation priority area
should distribute in a high demand and high flood-risk area [33], and this study further demonstrates
UFPRI is an effective indicator to identify urban flood regulation priority areas. Therefore, urban
planners and decision makers could apply this easily implemented approach to search for hotspots
of urban flood regulation and classify the subdistricts or parcels into different priority levels, which
would improve the efficiency of urban sustainable management.
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Figure 8. Scatter plot diagram and linear relationship between UFRPI and UFRESD (a); scatter plot
diagram and non-linear relationship between UFRPI and UFRESS (b).

5.2. The Role of Urban Green Space in Urban Flood Regulation

Urban green space plays an important role in urban flood regulation through its capacity in
runoff reduction, rainfall interception, and soil absorption [20,55]. It has become a vital indicator in
urban spatial planning, especially in ecosystem services-based approaches [32]. Given that urban
green space plays an important role in urban flood mitigation, it is necessary to analyze the role of
green infrastructure in urban flood regulation priority identification [21,54]. Our results show that
the districts with low UFRES supply have high impervious surface percentage and low green space
percentage. Specifically, the urban green space percentage in the top 10 priority subdistricts were
lower than 25% at the subdistrict scale, which is consistent with previous studies that found urban
land patches with high runoff risk, mainly located in the center of Beijing, especially in the industrial
zone or commercial zone where green space percentage is low [33,50]. This indicates that areas with
a low proportion of urban green spaces should be upgraded to priority areas, in which to improve
UFRES by constructing green infrastructure (e.g., rain gardens, green roofs, bioretention).

Moreover, there is a negative relationship between UFRES demand and green space percentage,
which is consistent with previous studies [54,55], indicating that the subdistricts with a low proportion
of green spaces also have high UFRES demand. However, our results also show that green space
percentage in the subdistricts with an UFRES demand value higher than 0.45 is about 30% (Figure 9a),
which indicates that there are spatial mismatches between UFRES supply and demand in the study
area [62]. Additionally, when the green space ratio is lower than 40%, the UFRPI declines quickly with
the increase in green space percentage (Figure 9b). More specifically, when the green space percentage
is higher than 40%, the UFRPI value is close to 0, which indicates that a subdistrict with more than
40% vegetation cover has the potential to adapt to a 10-year rainfall event (Figure 9b). But due to the
influence of population and economic vulnerabilities, some subdistricts with poor green construction
may have low demands for flood regulation services, which leads to the conclusion that there are quite
a few subdistricts with low green space ratio and UFRPI [55]. Therefore, urban planners should pay
more attention to understand the situation of green space in urban communities with different UFRES
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demand levels and their relationships. Maximizing the effect of urban green space will be helpful for
urban planners to improve UFRES.
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Figure 9. The relationship between urban green space percentage and (a) the demand for urban flood
regulation ecosystem services (UFRESD), and (b) the urban flood regulation priority index (UFRPI).

5.3. Limitations of the Approach and Future Perspectives

In this study, we quantified the supply of and demand for UFRES in Beijing by using two widely
used indicators and identified urban flood regulation priority areas. For the runoff simulation, we
only had four rainfall return scenarios; the results showed that UFRESS decreased gradually with the
increase of rainfall depth. However, previous studies found that the urban surface runoff reduction
capacity initially increased and then decreased, and the runoff regulation capacity of urban green
spaces was the strongest when the rainfall depth was 20 mm [32]. Thus, UFRESS needs to be simulated
under more rainfall scenarios and soil moisture scenarios. Furthermore, urban runoff volume was also
influenced by urban drainage systems, studies tend to use drainage data and hydrological models to
simulate urban runoff and waterlogging at parcel scales [41]. However, drainage data was not used
in our study area due to data accessibility at the city scale, which may have affected our simulation
results to some extent.

Meanwhile, urban green spaces not only provide UFRES, but also play a role in air purification,
urban heat island mitigation, carbon fixation, and recreational services [63–66]. However, there are
tradeoffs and synergies between different ecosystem services, e.g., the tradeoff between urban flood
regulation and urban landscape connectivity and the synergies with heat island mitigation and spatial
purification [29]. In addition, the multifunctional spatial planning of urban green infrastructure is also
determined by stakeholders’ preferences, and considering stakeholders’ preferences can maximize the
benefits of ecosystem services provided by urban green infrastructure [5,29]. This study only considers
UFRES while ignoring other types of ecosystem services. Yet it is worth analyzing whether other
types of ecosystem services will be weakened by identifying priority areas of urban flood regulation to
enhance urban flood regulation services.

Due to the complexity of urban land cover, high-resolution remote sensing images are needed to
identify different urban green spaces, such as trees, grasslands, and shrubs, and to achieve accurate
mapping of urban ecosystem services [67,68]. In this study, Landsat images with 30 m resolution were
used to extract urban land cover components and to further evaluate UFRES, which may have resulted
in some bias in the urban flood regulation service qualifications. However, it is difficult to obtain
high-resolution land cover given the large extent of the study area. In the future, high-resolution
remote sensing images and LiDAR data can be used to obtain finer information regarding the urban
green space at small scale to achieve more accurate spatial mapping of ecosystem services [55].
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Even though the traditional environmental engineering works can provide explicit design schemes
for implementing urban green infrastructure, it is limited at local scales. With the approach taken in this
study, a spatially explicit map for urban flood regulation priority at a reasonable scale (e.g., subdistrict
scale, parcel scale) was easily obtained. Researchers could also design different rainfall scenarios
according to their own need to evaluate UFRES supply and demand. Moreover, the approach integrates
the UFRES demand and supply properly, which can avoid the spatial mismatch between UFRES supply
and demand in urban planning, which is helpful to optimize layout of urban green space. In future
urban planning, integrating an ecosystem services-based approach with environmental engineering
works could help urban planners to design sustainable urban environments under multiple scales.

6. Conclusions

In this study, an ecosystem services-based approach was applied to identify urban flood regulation
priority areas in Beijing. The runoff simulation results show that the urban surface runoff coefficient in
Beijing increases with the increase of rainfall intensity. Urban impervious surface and green space
play opposite roles in runoff mitigation. Due to different rainfall depth and land cover characteristics,
UFRESS capacity varies among districts. The spatial divergence of UFRESS and UFRESD both shaped
the urban flood regulation priority ranks. More specifically, urban green infrastructure updates to
improve UFRESS capacity should be considered in the high-priority areas, located in Dongcheng and
Xicheng Districts. Additionally, the UFRPI was an effective indicator to identify urban flood regulation
priority areas, but green space percentage did not determine it directly due to urban population and
economic vulnerabilities. Our study provides urban planners with a scientific basis for developing
efficient flood mitigation strategies in the future.
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Appendix A

Table A1. The economic score for different land use/cover.

Land Use/Cover Type Economic Score

Developed, high density (aISA > 80%) 8
Developed, moderate density (50% < aISA ≤ 80%) 7

Developed, low density (20% < aISA ≤ 50%) 6
Developed, open land (aISA ≤ 20%) 5

Undesignated 4
Cropland 3

Pasture land 2
Other land use (forest, grassland, open water, etc.) 1
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