
sustainability

Article

An Empirical Study of the Impact of Urbanization on
Industry Water Footprint in China

Daxue Kan 1,* and Weichiao Huang 2,3

1 School of Economics and Trade, Nanchang Institute of Technology, No.289 Tianxiang Road,
Nanchang 330099, China

2 Department of Economics, Western Michigan University, 1903 W. Michigan Ave., Kalamazoo, MI 49008-5330,
USA; huang@wmich.edu

3 Specially appointed professor, City College, Wuhan University of Science and Technology, No.947 Heping
Avenue, Wuhan 430081, China

* Correspondence: kdx1983@126.com

Received: 1 February 2020; Accepted: 12 March 2020; Published: 13 March 2020
����������
�������

Abstract: How to advance new urbanization initiatives and reduce the water footprint of industries is
one urgent issue about urbanization that needs to be resolved. Based on spatial dynamic panel data,
we used the system GMM (Generalized Method of Moments) to study the impact of urbanization on
the industrial water footprint. The results show that, overall, urbanization increases the industrial
water footprint, industrial virtual water footprint, and industrial gray water footprint in China. There
are sectoral and regional differences in the impact of urbanization. Specifically, urbanization reduces
the agricultural water footprint and agricultural virtual water footprint but raises the agricultural
gray water footprint. Urbanization increases the manufacturing water footprint, manufacturing
virtual water footprint, and gray water footprint. Urbanization reduces the virtual water footprint of
the service industry but increases the water footprint and gray water footprint in the service industry.
At the regional level, urbanization increases the industrial water footprint and gray water footprint
across the three major regions. In the eastern region, urbanization has little effect on increasing
the industrial water footprint, and reduces the industrial virtual water footprint, whereas in the
central and western regions urbanization increases the industrial virtual water footprint. In all
three regions, urbanization reduces the agricultural water footprint, increases the manufacturing
and service water footprints, reduces the virtual water footprints of agriculture and services, and
increases the gray water footprint of agriculture, manufacturing, and services. In the eastern region,
the reducing effect of urbanization is the greatest and the increasing effect of urbanization is the
smallest. Additionally, in the eastern region, urbanization has reduced the virtual water footprint of
manufacturing, whereas in the central and western regions urbanization has increased the virtual
water footprint of manufacturing.

Keywords: urbanization; industrial water footprint; virtual water footprint; gray water footprint

1. Introduction

According to the China Statistical Yearbook, the urbanization rate of China accelerated from less
than 18% in 1978 to 59.6% in 2018. At the same time, China’s total water consumption increased
substantially, from 443.7 × 109 m3 in 1978 to 601.6 × 109 m3 in 2018, with per capita water consumption
reaching 431.9 m3 in 2018. At present, the amount of water resources that can be developed and
utilized in China accounts for less than 40% of the total water resources, and the per capita water
resources are only 25% of the world average. In China, only seven provinces (such as Jiangxi and
Fujian) do not have water shortage problem, while the other 24 provinces (such as Beijing and Tianjin)
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are facing worrisome shortages. In addition to water shortage, China has a rather serious water
pollution problem, accentuating the contradiction between water supply and demand in the process
of urbanization. Indeed, water shortage and pollution have emerged as major bottlenecks impeding
sustainable development and the promotion of a new round of urbanization. In 2018, China’s Class
IV, Class V, and inferior Class V water bodies that did not meet the drinking water source standards
accounted for 25.8%, 33.3%, and 30.1% of rivers, lakes, and provincial waters, respectively. Among
the 1935 national surface water monitoring sections, 29% registered water quality readings of Class
IV, Class V, and inferior Class V (not meeting the drinking water source standards). Among the
10,168 national groundwater-quality monitoring sites, 86.2% are classified as IV-V. The water quality
of 2833 shallow groundwater monitoring wells in China is generally poor, and 76.1% are classified
as IV-V. On top of that, acid rain causes further damage to water quality. In 2018, acid rain affected
an area totaling 530,000 km2, accounting for 5.5% of the land area (data source: Bulletin on China’s
Ecological Environment). China’s urban water supply is mainly made of surface water or groundwater
or a mixture of these two water sources. Water pollution causes further deterioration of the water
quality, harming water ecological environments. This is detrimental to implementing a new round of
urbanization and water ecological civilization. Despite these problems, China’s present urbanization
rate is still lagging behind developed countries by nearly 20 percentage points, and it is expected
that the urbanization process will continue to advance rapidly. Thus, it is important to understand
the linkages between urbanization and water resources and formulate strategies to reconcile the
contradiction between water supply and demand and to reduce the water footprint (the water footprint
refers to the water resources needed in the production process) in the process of urbanization. To that
end, this paper will empirically study the impact of urbanization on the water footprint of industries.

2. Literature Review

2.1. The Influencing Factors on Water Footprint

There have been several studies concerning the influencing factors on water footprints. Scholars
have studied the impact of climate change (Bocchiola et al., 2013) [1], policy change (Fulton et al.,
2014) [2], human capital (Ali et al., 2016) [3], gross national income (Miglietta et al., 2017) [4], water
harvesting technology (Mohammad et al., 2018) [5], agricultural expansion (Nouri et al., 2019) [6], and
trade openness (Mourad et al., 2019) [7] on a country’s water footprint. In the context of the Chinese
economy, scholars have found that population factors (Wang et al., 2014) [8], economic development
levels (Zhao et al., 2014) [9], water-conservation technology (Zhi et al., 2014) [10], international trade
(Yang et al., 2015) [11], inward and outward foreign direct investment (Zhang et al., 2015; Kan and
Huang, 2019) [12,13], climatic conditions (Yang et al., 2016) [14], consumption levels (Wang et al.,
2019) [15], industrial structure (Xie et al., 2019) [16], water-use efficiency (Kan and Lv, 2019) [17],
geographical location (Zhang et al., 2019) [18], and shale-gas development (Xu et al., 2019) [19]
are important influencing factors on the water footprint. The studies have not explicitly examined
urbanization as an influencing factor on the water footprint.

2.2. The Impact of Urbanization on Water Use

There have been several studies concerning the impact of urbanization on water quality. Most
studies show that urbanization has a negative effect on water quality (Cerqueira et al., 2019; Freeman
et al., 2019) [20,21]. Scholars have explored three aspects of the impact of urbanization on water
resources utilization. The first aspect is the impact of urbanization on the amount of water resources
utilization. Some studies found that urbanization led to the increase of total water use, and the impact
was linear (Yang and Ding, 2014; Ma, 2014) [22,23]. However, some other studies found that the impact
of urbanization on water resources utilization had a threshold effect, which was non-linear (Kan and
Lv, 2017) [24]. In addition, urbanization’s impacts vary by different types of water consumption and
by different levels of water consumption (Jin et al., 2018; Zhang et al., 2019) [25,26]. The second aspect
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is the impact of urbanization on the efficiency of water resources utilization. While some studies found
that urbanization improves water-use efficiency (Bao and Chen, 2017; Wang, 2020) [27,28], Ding et
al. (2019) found that both population urbanization and land urbanization have a negative impact
on industrial water-utilization efficiency [29], some others have found that the relationship between
urbanization and water-use efficiency is inverted N-shaped (Cao, 2017) [30]. The third aspect is the
impact of urbanization on the structure of water use. Most studies show that urbanization decreases
the proportion of agricultural water use and increases the proportion of industrial water use and
household water use (Lu et al., 2016; Cao, 2017) [31,32].

The above brief review reveals some gaps in the current literature. First, studies concerning the
influencing factors on water footprints have not explicitly examined urbanization as an influencing
factor. Second, studies concerning the impact of urbanization on water use have not examined its
impact in the perspective of water footprints per se. Although some studies include population as an
influencing factor on water footprints, it is only one aspect of urbanization and cannot be equated with
the entire extent of urbanization. Three recent papers attempted to address these gaps in the literature.
Yu (2014) studied the impact of urbanization on the water footprint in China’s Hebei Province [33]
and Kan and Lv (2017) analyzed the impact of urbanization on the water footprint and its benefits
based on city-level data [34]. However, they only analyzed the issue at the macro level, and they
did not explore the issue from an industrial perspective. Our paper intends to enrich the existing
literature by doing the following: (1) constructing a spatial dynamic panel model based on provincial
industry data from 1997 to 2015, using the system Generalized Method of Moments (GMM) method to
examine the overall impact of urbanization on the industrial water footprint in China; (2) further testing
the separate impacts of urbanization on the water footprint in the agricultural, manufacturing, and
service industries. The objective of this study is to help understand the linkages between urbanization
and water resources and formulate countermeasures to reduce the industrial water footprint and to
reconcile the contradiction between the water supply and demand in China and its three regions under
the process of urbanization, and also provide a reference for other similar countries.

3. Study Area

The study covers 31 provinces in China (Figure 1), including 11 provinces (Beijing, Tianjin, Hebei,
Liaoning, Shanghai, Jiangsu, Zhejiang, Fujian, Shandong, Guangdong, and Hainan) in the eastern
region, 8 provinces (Shanxi, Jilin, Heilongjiang, Anhui, Jiangxi, Henan, Hubei, and Hunan) in the
central region, and 12 provinces (Sichuan, Chongqing, Guizhou, Yunnan, Tibet, Shaanxi, Gansu,
Qinghai, Ningxia, Xinjiang, Inner Mongolia, and Guangxi) in the western region. In the following we
provide a brief description of the urbanization rate and water resources in the study area.

First, it can be seen from Table 1 that China’s urbanization rate was 59.6% in 2018, and the
urbanization rates in the eastern, central, and western regions were 70.7%, 56.9%, and 52.3%, respectively.
The urbanization rates in the central and western regions were lower than the national average. At the
provincial level, Shanghai had the highest urbanization rate and Tibet the lowest. The urbanization rate
of 13 provinces was higher than the national average. Second, Table 1 shows that China’s total water
resources were 2746.3 × 109 m3 in 2018, with per capita water resources reaching 1971.9 m3, which
was only 25% of the world average per capita water resources. China’s total water consumption was
601.6 × 109 m3, with per capita water consumption reaching 431.9 m3, of which the total agricultural
water consumption was the largest, accounting for 61.4%; total manufacturing water consumption
the second largest, accounting for 21.0%; and the total service water consumption was the smallest,
accounting for 17.6%. In the three regions, the total water resources, per capita water resources, and
per capita water consumption in the eastern region were the smallest, at 517.1 × 109 m3, 1062.7 m3,

and 356.4 m3, respectively. The total water resources, per capita water resources, and per capita water
consumption in the central region were the second largest, at 613.9 × 109 m3, 1543.0 m3, and 472.9 m3,
respectively. The total water resources, per capita water resources, and per capita water consumption
in the western region were the largest, at 1615.3 × 109 m3, 3310.1 m3, and 646.3 m3, respectively. The
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per capita water resources and water consumption in the eastern region were lower than the national
average. The per capita water resources in the central region were lower than the national average,
but the per capita water consumption in this region was higher than the national average. The per
capita water resources and water consumption in the western region were higher than the national
average. In addition, the total water consumption in the eastern region was the largest, at 211.5 × 109

m3, followed by that in the western region, at 195.8 × 109 m3, and that in the central region was the
smallest, at 194.3 × 109 m3. Among the regions, the eastern region and the central region had the largest
total agricultural water consumption, the second largest total manufacturing water consumption, and
the least total service water consumption. The western region had the largest total agricultural water
consumption, the second largest total service water consumption, and the least total manufacturing
water consumption. At the provincial level, Tibet had the largest total water resources, Ningxia had
the least total water resources, and the total water resources of 10 provinces were higher than the
national average level. Tibet had the largest per capita water resources, Tianjin had the least per
capita water resources, and the total water consumption of 12 provinces was higher than the national
average. Xinjiang had the largest per capita water consumption, Beijing had the least per capita water
consumption, and the per capita water consumption of 15 provinces was higher than the national
average. In terms of sectors, Xinjiang had the largest total agricultural water consumption, Beijing
had the least total agricultural water consumption, and the total agricultural water consumption of 14
provinces was higher than the national average level. Jiangsu had the largest total manufacturing water
consumption, Tibet had the least total manufacturing water consumption, and the total manufacturing
water consumption of 12 provinces was higher than the national average level. Guangdong had the
largest total service water consumption, Tibet had the least total service water consumption, and the
total service water consumption of 14 provinces was higher than the national average.
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Table 1. Urbanization rate and water resources in China.

Regions Urbanization
Rate (%)

Total Water
Resources (m3)

Total Water
Consumption

(m3)

Total Agricultural
Water

Consumption (m3)

Total
Manufacturing

Water
Consumption (m3)

Total Service
Water

Consumption
(m3)

Per Capita
Water

Resources (m3)

Per Capita
Water

Consumption
(m3)

Beijing 86.5 3.6 × 109 3.9 × 109 0.4 × 109 0.3 × 109 3.2 × 109 164.2 181.8
Tianjing 83.1 1.8 × 109 2.8 × 109 1.0 × 109 0.5 × 109 1.3 × 109 112.9 182.2
Hebei 56.4 16.4 × 109 18.2 × 109 12.1 × 109 1.9 × 109 4.2 × 109 217.7 242.0
Shanxi 58.4 12.2 × 109 7.4 × 109 4.3 × 109 1.4 × 109 1.7 × 109 328.6 200.3

Inner Mongolia 62.7 46.2 × 109 19.2 × 109 14.0 × 109 1.6 × 109 3.6 × 109 1823.0 758.8
Liaoning 68.1 23.5 × 109 13.0 × 109 8.1 × 109 1.9 × 109 3.1 × 109 539.4 298.6

Jilin 57.5 48.1 × 109 12.0 × 109 8.4 × 109 1.7 × 109 1.8 × 109 1775.3 440.9
Heilongjiang 60.1 101.1 × 109 34.4 × 109 30.5 × 109 2.0 × 109 1.9 × 109 2675.1 909.6

Shanghai 88.1 3.9 × 109 10.3 × 109 1.7 × 109 6.2 × 109 2.5 × 109 159.9 427.1
Jiangsu 69.6 37.8 × 109 59.2 × 109 27.3 × 109 25.5 × 109 6.4 × 109 470.6 736.3

Zhejiang 68.9 86.6 × 109 17.4 × 109 7.7 × 109 4.4 × 109 5.3 × 109 1520.5 305.1
Anhui 54.7 83.6 × 109 28.6 × 109 15.4 × 109 9.1 × 109 4.1 × 109 1328.9 454.4
Fujian 65.8 77.9 × 109 18.7 × 109 8.8 × 109 6.2 × 109 3.7 × 109 1982.9 476.1
Jiangxi 56.0 114.9 × 109 25.1 × 109 16.1 × 109 5.9 × 109 3.1 × 109 2479.2 541.1

Shandong 61.2 34.3 × 109 21.3 × 109 13.4 × 109 3.3 × 109 4.7 × 109 342.4 212.1
Henan 51.7 34.0 × 109 23.5 × 109 12.0 × 109 5.0 × 109 6.4 × 109 354.6 244.8
Hubei 60.3 85.7 × 109 29.7 × 109 15.4 × 109 8.7 × 109 5.6 × 109 1450.2 502.4
Hunan 56.0 134.3 × 109 33.7 × 109 19.5 × 109 9.3 × 109 4.9 × 109 1952.0 489.9

Guangdong 70.7 189.5 × 109 42.1 × 109 21.4 × 109 9.9 × 109 10.7 × 109 1683.4 373.9
Guangxi 50.2 183.1 × 109 28.8 × 109 19.6 × 109 4.8 × 109 4.4 × 109 3732.6 586.7
Hainan 59.1 41.8 × 109 4.5 × 109 3.3 × 109 0.3 × 109 1.0 × 109 4495.7 485.0

Chongqing 65.5 52.4 × 109 7.7 × 109 2.5 × 109 2.9 × 109 2.3 × 109 1697.2 250.0
Sichuan 52.3 295.3 × 109 25.9 × 109 15.7 × 109 4.3 × 109 6.0 × 109 3548.2 311.4
Guizhou 47.5 97.9 × 109 10.7 × 109 6.1 × 109 2.5 × 109 2.0 × 109 2726.2 297.5
Yunnan 47.8 220.7 × 109 15.6 × 109 10.7 × 109 2.1 × 109 2.8 × 109 4582.3 323.4

Tibet 31.1 465.8 × 109 3.2 × 109 2.7 × 109 0.2 × 109 0.3 × 109 136804.7 931.0
Shaanxi 58.1 37.1 × 109 9.4 × 109 5.7 × 109 1.5 × 109 2.2 × 109 964.8 243.4
Gansu 47.7 33.3 × 109 11.2 × 109 8.9 × 109 0.9 × 109 1.4 × 109 1266.6 426.8

Qinghai 54.4 96.2 × 109 2.6 × 109 1.9 × 109 0.3 × 109 0.4 × 109 16018.3 434.6
Ningxia 58.9 1.5 × 109 6.6 × 109 5.7 × 109 0.4 × 109 0.5 × 109 214.6 966.4
Xinjiang 50.9 85.9 × 109 54.9 × 109 49.1 × 109 1.3 × 109 4.5 × 109 3482.6 2225.5

The Eastern Region 70.7 517.1 × 109 211.5 × 109 105.1 × 109 60.4 × 109 46.1 × 109 1062.7 356.4
The Central Region 56.9 613.9 × 109 194.3 × 109 121.5 × 109 43.1 × 109 29.6 × 109 1543.0 472.9
The Western Region 52.3 1615.3 × 109 195.8 × 109 142.7 × 109 22.6 × 109 30.4 × 109 3310.1 646.3

China 59.6 2746.3 × 109 601.6 × 109 369.3 × 109 126.2 × 109 106.1 × 109 1971.9 431.9

Data source: Authors’ calculations according to the data of the China Statistical Yearbook.
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4. Methods

4.1. Model Construction

Based on the study of Kan and Lv (2018) [35] and the generalized spatial panel specification
(Lesage and Pace, 2009) [36], we constructed the following model specifying the industrial water
footprint (WF) as the dependent variable and urbanization (UR) as the focus independent variable:

WFi jt = C + γ×WFi jt−1 + ρW ×WFi jt + β1 ×URit + λ×Xt + µi + δ j + ϕt + εit (1)

εit = ϕWεit + vit (2)

When ρ , 0, β1 , 0, ϕ = 0 and when ρ = 0, β1 , 0, ϕ , 0, the above model is converted respectively
into a spatial dynamic panel lag model and a spatial dynamic panel error model, the former indicating
that a province’s industrial water footprint was not only related to that province’s urbanization but
also related to the water footprints of adjacent provinces, and the latter indicating that a province’s
industrial water footprint was not only related to that province’s urbanization but was also related to
the water footprints and urbanization of adjacent provinces.

In the above model, i represents the province, j represents the industry, t represents the year,
and X contains two categories of control variables, one category being the provincial level control
variables, including water endowment (WB), resident income level (PI), and climate factors (QH)
and the other category being industry-level control variables, including the industry’s size (ES), the
industry’s structure (IS), industrial water efficiency (YF), industrial technology advancement (TE),
industrial environmental regulation (EI), industrial import and export trade (TR), and the foreign
investment of industry (FO). µ, δ, and ϕ are province, industry, and time dummy variables, respectively.
ε and W are random disturbance terms and the spatial weight matrix, respectively. Considering the
possible lingering effect of changes in the industrial water footprint, we added its lag term to the
model. The addition of a lag term also enabled the incorporation of other influencing factors that
were not explicitly included in the model. In addition, considering the possible heteroscedasticity of
variables, provincial-level control variables, such as water endowment and resident income levels,
and industry-level control variables, such as industry size and industry structure, were presented in
logarithmic form in the model.

4.2. Variable Measurement and Data Collection

The first dependent variable, the industrial water footprint, was measured as: industrial internal
water footprint + industrial external water footprint + industrial internal gray water footprint +

industrial external gray water footprint. The row vector of each industry’s water consumption and the
row vector of wastewater discharge in the traditional input-output model were added to measure the
industrial water footprint. To measure the internal water footprint of the industry (the amount of water
needed for the final unit production of industry j), we first calculated the direct consumption coefficient
matrix (the direct consumption coefficient was the input required by industry j from industry d to
increase the unit output) and used the matrix to obtain the Leontief inverse matrix, then multiplied
the Leontief inverse matrix with the direct virtual water intensity matrix to obtain the virtual water
intensity of industry j (the direct virtual water intensity was the amount of water input directly needed
by industry j to increase the unit output. The virtual water intensity was the sum of all direct and
indirect water quantities required to meet the final demand of industry j’s unit output). The internal
water footprint was obtained by multiplying the virtual water intensity of industry j by the domestic
consumer demand. To measure the external water footprint of the industry (the amount of water
needed for imported products used in the final demand of industry j), we added the amount of water
needed for the imported products directly used for the final demand of industry j with the amount of
water needed for the imported products used as the intermediate demand and to be converted into the
final consumption of industry j (as imported products used for intermediate demand are converted
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into final demand and exports, they were adjusted by (domestic consumer demand-export)/domestic
consumption demand). To measure the industry’s internal gray water footprint (the amount of
wastewater discharged from domestically produced products used in the final demand of industry j),
we first obtained the virtual wastewater intensity of industry j by multiplying the Leontief inverse
matrix with the direct virtual wastewater intensity matrix (direct virtual wastewater intensity was the
amount of wastewater directly discharged by industry j from increasing the unit output; the virtual
wastewater intensity was the sum of all direct and indirect wastewater volumes that met the final
demand of the industry j unit output); then multiplied the virtual wastewater intensity of industry j by
the domestic consumption demand (the amount of wastewater discharged from imported products
used in the final demand of industry j) to obtain the industry’s internal gray water footprint. As
for measuring the industry’s external wastewater footprint, we added the amount of wastewater
discharged by the imported products directly used in the final demand of industry j with the amount of
wastewater discharged by the imported products that were used for the intermediate demand and then
converted this into the final consumption of industry j (as imported products used for intermediate
demand are converted into final demand and exports, they were adjusted by (domestic consumer
demand-export)/domestic consumption demand).

The second dependent variable, the virtual water footprint of an industry, was measured as:
virtual water export-virtual water import. The former was the amount of water needed for industry j’s
export products, which was equal to the virtual water intensity of industry j times the export demand.
The latter was the external water footprint of the industry. In addition to analyzing the impact of
urbanization on the industrial water footprint overall, we further investigated the separate impact of
urbanization on the agricultural, manufacturing, and service industries. Using the same measurement
algorithms as above, we obtained the water footprints of the agricultural, manufacturing, and service
industries, the virtual water footprints and the gray water footprints of these three industries. The
original data came from China’s Input-Output Table and its provincial input-output tables, the China
Statistical Yearbook and its provincial statistical yearbooks, the China Water Resources Bulletin and its
provincial water resources bulletins, China’s Statistical Bulletin of Water Conservancy Development,
annual reports of provincial water conservancy statistics, the China Environmental Yearbook, and the
China Environmental Statistics Yearbook. The sample period for this study was 1997-2015, and the
input-output tables provided data for 1997, 2000, 2002, 2005, 2007, 2010, 2012, and 2015, respectively.
The missing data in the intervening years were estimated using the moving average method.

Turning to measuring urbanization—the focus independent variable—most of the existing
literature has measured it by the urbanization rate of the resident population. This paper draws on
the index system constructed by Lv and Kan (2017) [37] and adds into the three-level index system of
population urbanization—economic urbanization, social urbanization, and spatial urbanization—with
the following variables: the urbanization rate of household registration, the proportion of high-tech
industry value added in above-scale manufacturing industries and the comprehensive coverage
rate of social insurance, the number of telephones per 100 households (including mobile phones),
and the rate of environmental noise reaching and beyond the standard level. We used a principal
component approach to process the data and the reverse index by the Z-score method and constructed
the “1-reverse index” or the “1/reverse index” of urbanization. The original data were derived from
the China Statistical Yearbook and its provincial statistical yearbooks and the China Economic and
Social Development Statistics Database.

Finally, regarding the measurement of control variables, the water resources endowment, income
level of residents, and climate factors were measured by, respectively, per capita water resources,
per capita disposable income of urban residents + per capita net income of rural areas (through
population weighting processing), and precipitation. The industry’s scale, industry’s structure,
industry’s water-use efficiency, and industry’s technology progress (industry value added/annual
average number of employees in the industry) were measured by, respectively, the industry’s total
output value, the industry’s output value/total output value, the industry’s value added/industry’s
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water consumption, and the total labor productivity. The industry’s environmental regulation, import
and export trade, and foreign capital utilization level were measured by, respectively, the industry’s
pollution control investment/total amount of industry pollution, the industry’s import and export
volume, and the output of foreign capital unit/industry’s total output value. The original data
were derived from the China Statistical Yearbook and the provincial statistical yearbooks, the China
Industrial Statistical Yearbook, the China Environmental Yearbook, the China Environmental Statistics
Annual Report, the CEIC (China entrepreneur Investment Club) China Economic Database (this study
covers 30 provinces; Tibet was excluded due to incomplete data. In the sample some variables, such
as industry scales and import and export totals had zero values. As ln(1+T) ≈ T, when T was very
small, the industry scales and total imports and exports with zero values were given 1 before taking
the logarithmic transformation).

4.3. Spatial Autocorrelation Test

The improvement of the urbanization level in a region not only comes from the supply of local
factors and water resources, but also depends on the supply of other regions’ factors and water resources.
The complementary or competitive relationship between regions leads to commodity circulation,
factor mobility, and water resources flow, which have an important impact on the development of
regional urbanization. Due to similar social, economic, and geographical conditions, the urbanization
development goals and water-resource management goals set by a region are usually based on the
urbanization development level and water-resource management level of the surrounding regions, and
the policies to promote urbanization development and water-resource management are often learned
from each other between geographically adjacent regions. Therefore, urbanization and the water
footprint are likely to have spatial correlation. In the spatial-econometrics literature, Moran’s I index is
commonly used to test the existence of a spatial correlation of regional economic variables. Following
standard practice, we used Moran’s I index to study the spatial autocorrelation pattern between
urbanization and the industrial water footprint, industrial virtual water footprint, and industrial
gray water footprint (when calculating Moran’s I index, the spatial weight matrix W adopted the
0-1 weight matrix commonly used in the literature—W = 1 if two provinces are adjacent and W = 0
otherwise. When Moran’s I index was >0, <0, and = 0 respectively, it shows that provincial variables
had spatial positive correlation, negative correlation, and non-correlation). The results showed that the
Moran’s I value of urbanization and the industrial water footprint, industrial virtual water footprint,
and industrial gray water footprint were all positive in the sample period, indicating that there were
spatial clusters between urbanization and the industrial water footprint, industrial virtual water
footprint, and industrial gray water footprint in China. That is, there was statistically significant spatial
interdependence between urbanization and the industrial water footprint, industrial virtual water
footprint, and industrial gray water footprint across provinces. Specifically, in the provinces with
higher urbanization levels, the adjacent provinces also had a higher level of urbanization (for example,
Beijing had a higher level of urbanization, and the adjacent province Tianjin also had a higher level
of urbanization; Shanghai had a higher level of urbanization, and the adjacent provinces of Jiangsu
and Zhejiang also had higher levels of urbanization) and vice versa (for example, Yunnan had a lower
level of urbanization, and the adjacent provinces of Guizhou and Guangxi also had a lower level of
urbanization; Gansu had a lower level of urbanization, and the adjacent provinces of Qinghai and
Xinjiang also had a lower level of urbanization). Similarly, spatial interdependence also applied to
the industrial water footprint, industrial virtual water footprint, and industrial gray water footprint
variables. That is, in the provinces with higher industrial water footprints, industrial virtual water
footprints, and industrial gray water footprints, the industrial water footprints, industrial virtual water
footprints, and industrial gray water footprints in adjacent provinces were also higher (for example,
the industrial water footprint in Jiangsu was higher, and the industry water footprint in the adjacent
province of Shandong was also higher) and vice versa (for example, the industrial water footprint
in Shaanxi was lower, and the industrial water footprints in the adjacent provinces of Shanxi and
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Ningxia were also lower). Further, provinces with higher urbanization levels appeared to have spatial
correlation with provinces with higher industrial water footprints, industrial virtual water footprints,
and industrial gray water footprints. Likewise, provinces with a lower urbanization level also had
spatial correlation with provinces with lower industrial water footprints, industrial virtual water
footprints, and industrial gray water footprints. Therefore, simple autocorrelation tests have already
provided preliminary evidence that urbanization is positively correlated with the industrial water
footprint, industrial virtual water footprint, and industrial gray water footprint.

4.4. Selection of Spatial Dynamic Panel Model

Before using the system GMM regression, we conducted LM (Lagrange Multiplier) tests to
determine whether the spatial dynamic panel lag model or spatial dynamic panel error model was a
more appropriate estimation model. It can be seen from Table 2 that when the dependent variables
were the industrial water footprint and the agricultural, manufacturing, and service industries’ water
footprints, the significant levels of LM (lag) and Robust LM (lag) were higher than LM (error) and
Robust LM (error), respectively. Further, in the case that the dependent variables were the industrial
virtual water footprint; agricultural, manufacturing, and service virtual water footprints; the industrial
gray water footprint; and the agricultural, manufacturing, and service gray water footprints, only
the LM (lag) statistic was significant. Thus, the spatial dynamic panel lag model appeared more
appropriate and was selected for estimation. Researchers commonly used the GMM method to estimate
the spatial dynamic panel lag model. The GMM method can be divided into the differential GMM
method and the system GMM (Arellano and Bond, 1991; Arellano and Bover, 1995; Blundell and Bond,
1998) [38–40]. The estimator of the system GMM method further uses the moment condition of the
level equation on the basis of the estimator of the differential GMM method and takes the first-order
difference of the lagged variable as the instrumental variable for the corresponding level variable in the
level equation. Therefore, the system GMM method was used here to estimate the model. The results
are shown in Table 3.

Table 2. LM (Lagrange Multiplier) statistics for model selection.

LM (lag) LM (error) Robust LM (lag) Robust LM (error)

Industrial water footprint 12.424 *** 7.098 ** 6.453 ** 3.564 *
Agricultural water footprint 12.003 *** 6.834 ** 6.276 ** 3.451 *

Manufacturing water footprint 10.215 *** 6.012 ** 5.802 ** 2.792 *
Service water footprint 8.796 *** 5.181 ** 5.005 ** 2.413 *

Industrial virtual water footprint 6.138 * 2.347 —— ——
Agricultural virtual water footprint 4.550 * 1.369 —— ——

Manufacturing virtual water footprint 5.199 * 1.975 —— ——
Service virtual water footprint 6.632 * 2.494 —— ——
Industrial gray water footprint 5.337 * 2.027 —— ——

Agricultural gray water footprint 4.363 * 1.335 —— ——
Manufacturing gray water footprint 4.984 * 1.913 —— ——

Service gray water footprint 6.341 * 2.410 —— ——

Note: *, **, and *** indicate that the variable was significant at the level of 10%, 5%, and 1%, respectively. Data
source: Authors’ collation according to the software regression results.
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Table 3. Estimation results of urbanization impact at national and regional levels.

China The Eastern Region The Central Region The Western Region

Industrial
Water

Footprint

Industrial
Virtual
Water

Footprint

Industrial
Gray
Water

Footprint

Industrial
Water

Footprint

Industrial
Virtual
Water

Footprint

Industrial
Gray
Water

Footprint

Industrial
Water

Footprint

Industrial
Virtual
Water

Footprint

Industrial
Gray
Water

Footprint

Industrial
Water

Footprint

Industrial
Virtual
Water

Footprint

Industrial
Gray
Water

Footprint

C 2.646 ** 3.021 ** 3.271 * 3.119 ** 4.568 ** 2.523 * 2.884 ** 3.073 * 2.977 * 4.349 ** 3.056 ** 3.485 **
Dependent
variable
with one

lag period

0.281 * 0.266 ** 0.252 ** 0.304 * 0.272 * 0.289 ** 0.275 * 0.262 ** 0.311 ** 0.280 * 0.257 ** 0.243 *

lnUR 0.198 * 0.104 ** 0.137 ** 0.103 ** -0.076 ** 0.065 * 0.201 ** 0.138 ** 0.142 ** 0.257 ** 0.184 * 0.196 *
lnWB 0.112 * 0.093 0.106 0.075 ** 0.092 0.064 0.137 0.119 0.125 0.141 ** 0.128 0.139
lnPI 0.107 ** 0.105 * 0.098 * -0.081 * -0.073 * −0.076 ** 0.122 * 0.116 * 0.108 * 0.130 * 0.119 * 0.113 **

lnQH 0.063 0.067 * 0.062 0.045 0.037 0.039 0.074 0.071 0.075 0.089 ** 0.077 * 0.082
lnES 0.169 ** 0.174 ** 0.145 ** 0.102 ** 0.106 ** 0.090 ** 0.188 ** 0.195 ** 0.167 ** 0.196 * 0.208 ** 0.181 **
lnIS 0.096 ** 0.095 ** 0.090 ** -0.047 ** -0.042 ** -0.051 * 0.123 ** 0.120 ** 0.126 * 0.131 ** 0.133 ** 0.138 *
lnYF −0.134 * −0.136 * −0.131 * −0.180 * −0.178 * −0.193 ** −0.125 ** −0.127 * −0.119 ** −0.097 ** −0.085 * −0.082 *
lnTE −0.093 −0.091 −0.084 −0.165 ** −0.159 ** −0.172 ** −0.086 −0.078 −0.082 −0.061 −0.056 −0.054
lnEI −0.121 −0.098 −0.129 −0.146 ** −0.132 * −0.164 * −0.109 −0.085 −0.114 −0.093 −0.082 −0.097
lnTR 0.130 ** 0.125 ** 0.118 ** 0.074 0.046 0.063 0.141 ** 0.134 ** 0.129 ** 0.160 ** 0.157 ** 0.145 **
lnFO 0.077 0.078 0.075 * 0.039 0.030 0.026 0.089 0.092 0.083 * 0.084 0.086 0.089
ρ 0.065 ** 0.067 ** 0.070 * 0.078 ** 0.094 ** 0.080 ** 0.084 ** 0.086 ** 0.085 * 0.118 ** 0.069 ** 0.076 **

Wald test 1332.824 1024.571 1008.253 1047.664 1156.966 1262.204 970.297 954.838 992.161 1095.670 1148.602 882.967
Hansen

test 0.717 0.579 0.608 0.681 0.619 0.702 0.571 0.599 0.668 0.609 0.634 0.515

Note: *, **, and *** indicate that the variable was significant at the level of 10%, 5%, and 1%, respectively. Arellano-Bond AR Statistics are not abnormal. Data source: Authors’ collation of
the data according to the software regression results.
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5. Results

5.1. The Impact of Urbanization on the Industrial Water Footprint

(1) Empirical results at the national level: Table 3 shows that as the urbanization level increased
by 1%, the industrial water footprint, industrial virtual water footprint, and industrial gray water
footprint increased by 0.198%, 0.104%, and 0.137%, respectively, with the significance levels at 10%,
5%, and 5%, respectively. It appears that urbanization raised the industrial water footprint, industrial
virtual water footprint, and industrial gray water footprint.

(2) Empirical results at the regional level: As can be seen from Table 3, in the eastern region, as the
level of urbanization increased by 1%, the industrial water footprint, industrial virtual water footprint,
and industrial gray water footprint changed by 0.103%, −0.076%, and 0.065%, respectively. All of
the changes were statistically significant. In the central region, a 1% increase in urbanization caused
the industrial water footprint, industrial virtual water footprint, and industrial gray water footprint
to significantly increase by 0.201%, 0.138%, and 0.142%, respectively. In the western region, a 1%
increase in urbanization caused the industrial water footprint, industrial virtual water footprint, and
industrial gray water footprint to significantly increase by 0.257%, 0.184%, and 0.196%, respectively.
The results show that urbanization in the three regions raised the industrial water footprint and gray
water footprint, while the improvement effect of urbanization was smaller in the eastern region. The
results also show that urbanization in the eastern region contributed to the reduction of the virtual
water footprint of industry, while urbanization in the central and western regions increased industry’s
virtual water footprint.

(3) Empirical results on spatial spillover effects: Table 3 shows that the parameter ρ was positively
significant in all equations, indicating that a given province’s industrial water footprint, industrial
virtual water footprint, and industrial gray water footprint were respectively affected by the industrial
water footprint, industrial virtual water footprint, and industrial gray water footprint of the adjacent
provinces. This means that the industrial water footprint, industrial virtual water footprint, and
industrial gray water footprint of the provinces were significantly affected by the industrial water
footprint, industrial virtual water footprint, and industrial gray water footprint of the adjacent
provinces, respectively. That is, there were significant spatial spillover effects from adjacent provinces
in industrial water footprint, industrial virtual water footprint, and industrial gray water footprint.

5.2. The Impact of Urbanization on the Water Footprint in Different Industries

We grouped all industries into agricultural, manufacturing, and service industries according
to the "Three Industries Classification Guidelines" stipulated by the National Bureau of Statistics of
China. We then examined the separate impacts of urbanization on the water footprint, the virtual
water footprint, and the gray water footprint of the agricultural, manufacturing, and service industries.
The results are shown in Tables 4–6.
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Table 4. Estimation results of the impact of urbanization on the water footprints in agriculture, manufacturing, and services.

China The Eastern Region The Central Region The Western Region

Agricultural
Water

Footprint

Manufacturing
Water

Footprint

Services
Water

Footprint

Agricultural
Water

Footprint

Manufacturing
Water

Footprint

Services
Water

Footprint

Agricultural
Water

Footprint

Manufacturing
Water

Footprint

Services
Water

Footprint

Agricultural
Water

Footprint

Manufacturing
Water

Footprint

Services
Water

Footprint

C 2.508 ** 2.861 * 3.049 ** 2.954 ** 4.320 ** 2.397 * 2.732 * 2.910 ** 2.819 * 4.113 ** 2.891 ** 3.298 *
Dependent
variable
with one

lag period

0.277 * 0.263 ** 0.255 * 0.296 ** 0.268 * 0.282 ** 0.271 ** 0.254 * 0.305 ** 0.279 * 0.256 * 0.244 **

lnUR −0.092 ** 0.158 ** 0.136 ** −0.115 * 0.113 ** 0.104 ** −0.070 * 0.159 ** 0.131 ** −0.052 ** 0.164 ** 0.140 *
Control
variable Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

ρ 0.074 * 0.085 * 0.084 ** 0.093 ** 0.112 * 0.093 * 0.105 ** 0.103 ** 0.102 * 0.130 * 0.082 ** 0.079 **
Wald test 1359.489 1045.082 1028.430 1068.611 1180.117 1287.461 989.716 973.947 1012.016 1117.596 1171.586 900.638
Hansen

test 0.743 0.603 0.632 0.706 0.644 0.728 0.595 0.623 0.693 0.634 0.659 0.537

Note: *, **, and *** indicate that the variable was significant at the level of 10%, 5%, and 1%, respectively. Arellano-Bond AR Statistics are not abnormal. Data source: Authors’ collation
according to the software regression results.

Table 5. Estimation results of the impact of urbanization on the virtual water footprint in agriculture, manufacturing, and services.

China The Eastern Region The Central Region The Western Region

Agricultural
Virtual Water

Footprint

Manufacturing
Virtual Water

Footprint

Services
Virtual Water

Footprint

Agricultural
Virtual Water

Footprint

Manufacturing
Virtual Water

Footprint

Services
Virtual Water

Footprint

Agricultural
Virtual Water

Footprint

Manufacturing
Virtual Water

Footprint

Services
Virtual Water

Footprint

Agricultural
Virtual Water

Footprint

Manufacturing
Virtual Water

Footprint

Services
Virtual Water

Footprint

C 2.470 ** 2.817 ** 3.003 * 2.909 * 4.252 ** 2.361 * 2.690 * 2.866 ** 2.777 * 4.049 * 2.850 ** 3.248 *
Dependent
variable
with one

lag period

0.277 * 0.263 * 0.251 ** 0.294 * 0.269 * 0.285 ** 0.272 * 0.254 * 0.305 ** 0.267 * 0.256 * 0.245 *

lnUR −0.035 ** 0.209 * −0.072 ** −0.057 ** −0.043 ** −0.096 * −0.031 ** 0.228 ** −0.063 ** −0.024 ** 0.251 * −0.047 **
Control
variable Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

ρ 0.073 * 0.076 ** 0.085 * 0.081 ** 0.108 * 0.091 ** 0.095 ** 0.100 ** 0.099 * 0.128 ** 0.082 ** 0.086 **
Wald test 1235.542 949.800 934.667 971.202 1072.525 1170.080 899.483 885.159 919.750 1015.703 1064.774 818.523
Hansen

test 0.686 0.554 0.581 0.648 0.591 0.668 0.547 0.572 0.636 0.582 0.605 0.495

Note: *, **, and *** indicate that the variable was significant at the level of 10%, 5%, and 1%, respectively. Arellano-Bond AR Statistics are not abnormal. Data source: Authors’ collation
according to the software regression results.
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Table 6. Estimation results of the impact of urbanization on the gray water footprints in agriculture, manufacturing, and services.

China The Eastern Region The Central Region The Western Region

Agricultural
Gray Water
Footprint

Manufacturing
Gray Water
Footprint

Services
Gray Water
Footprint

Agricultural
Gray Water
Footprint

Manufacturing
Gray Water
Footprint

Services
Gray Water
Footprint

Agricultural
Gray Water
Footprint

Manufacturing
Gray Water
Footprint

Services
Gray Water
Footprint

Agricultural
Gray Water
Footprint

Manufacturing
Gray Water
Footprint

Services
Gray Water
Footprint

C 2.598 * 2.957 * 3.151 ** 3.052 * 4.460 * 2.476 ** 2.823 * 3.007 * 2.915 ** 4.249 * 2.994 * 3.403 **
Dependent
variable
with one

lag period

0.290 ** 0.276 * 0.262 * 0.313 ** 0.282 * 0.298 * 0.284 * 0.272 ** 0.319 * 0.291 ** 0.268 * 0.256 *

lnUR 0.054 ** 0.192 ** 0.168 ** 0.036 * 0.085 ** 0.073 ** 0.057 ** 0.206 ** 0.174 ** 0.075 * 0.240 ** 0.218 **
Control
variable Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

ρ 0.075 * 0.083 ** 0.069 * 0.081 ** 0.117 ** 0.095 ** 0.101 ** 0.104 * 0.103 * 0.132 ** 0.093 ** 0.090 *
Wald test 1296.856 996.931 981.027 1019.394 1125.753 1228.142 944.117 929.075 965.390 1066.104 1117.606 859.173
Hansen

test 0.715 0.580 0.606 0.679 0.618 0.701 0.572 0.604 0.666 0.610 0.635 0.519

Note: *, **, and *** indicate that the variable was significant at 10%, 5%, and 1% level, respectively. Arellano-Bond AR Statistics are not abnormal. Data source: Authors’ collation according
to the software regression results.
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Table 4 presents the empirical results of the impact of urbanization on the water footprint of the
agricultural, manufacturing, and service industries separately. It shows that as urbanization increased
by 1%, the water footprint of the agricultural, manufacturing, and service industries increased by
−0.092%, 0.158%, and 0.136%, respectively. All of these coefficients were statistically significant,
indicating that urbanization reduced the agricultural water footprint and increased the manufacturing
and service water footprints in China. The separate impacts of urbanization on the water footprints
of these three types of industries at the national level were also found to be similar at the regional
level. One notable regional difference was that urbanization had the largest effect on reducing the
agricultural water footprint, and the smallest effect on increasing the manufacturing and service water
footprints in the eastern region.

Table 5 presents the results of the impact of urbanization on the virtual water footprint of the
agricultural, manufacturing, and service industries. It shows that as urbanization increased by 1%, the
virtual water footprints of the agricultural, manufacturing, and service industries changed by −0.035%,
0.209%, and −0.072%, respectively. All of these coefficients were statistically significant, indicating that
urbanization had reduced the virtual water footprints of the agricultural and service industries, but
increased the manufacturing virtual water footprint in China. This national pattern was also applicable
to the central and western regions. Table 5 also shows that as urbanization increased by 1% in the
eastern region, the virtual water footprint of the agricultural, manufacturing, and service industries
in that region decreased by 0.057%, 0.043%, and 0.096%, respectively. All of these coefficients were
statistically significant, indicating that urbanization had reduced the virtual water footprint of the
agricultural, manufacturing, and service industries in the eastern region.

Table 6 displays the results of the impact of urbanization on the gray water footprints of the
agricultural, manufacturing, and service industries. It shows that as urbanization increased by 1%, the
gray water footprints of the agricultural, manufacturing, and service industries increased by 0.054%,
0.192%, and 0.168%, respectively. All of these coefficients were positively significant, indicating that
urbanization had raised the gray water footprints of the agricultural, manufacturing, and service
industries in China. This national pattern was also similarly exhibited in three regions, among
which urbanization in the eastern region had the smallest impact on the gray water footprints of the
agricultural, manufacturing, and service industries.

6. Discussion

Table 3 shows that urbanization increased the industry water footprint, industry virtual water
footprint, and industry gray water footprint in China. This may be because while urbanization
increases the efficiency of water resources utilization in industry by promoting industrial agglomeration,
generating economies of scale, reducing the cost of technological research and development, improving
the technological level of industry, gaining more opportunities for education and training, promoting
the upgrading of industrial structures, and reducing the misplacement of water resources in industry
caused by factor market distortions, etc., urbanization also promotes the use of water resources in
industries by stimulating consumption, expanding the scale of industries, promoting the transfer of
employment to labor-intensive industries and traditional services that tend to consume more water,
stimulating fixed asset formation in industries, and promoting foreign capital inflow and export scale
expansion. The former has a smaller improvement effect, while the latter exerts a larger effect, resulting
in a net increase in the water, virtual water, and gray water footprints. The underlying reason is that
China’s urbanization is more of an extensive mode of development, lacking sufficient connotation
and sophistication. China’s urbanization focuses on the urbanization growth rate per se, resulting in
low quality urbanization. The average quality of urbanization in the sample period was only 1.263,
and the quality of urbanization varied greatly across regions. In addition, the demographic dividend
and market formed by urbanization have led to an influx of foreign investment in labor-intensive
industries and a large expansion in the export of low value-added products, resulting in a large amount
of water consumption in the production process of foreign enterprises in these industries and in the
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production process of export products, which in turn has resulted in a large-scale expansion of virtual
water exports. In the process of urbanization, China imported a large number of high value-added
products with a high technology content. Most of these industries are modern manufacturing and
technology-intensive industries, which consume less water. As a result, the scale of virtual water
import is small, causing urbanization to improve the virtual water footprint of industry. Finally,
the urbanization process in China is characterized by weak industrial water ecological awareness,
imperfect sewage treatment facilities, a lack of industrial water saving and reclaimed water reuse
facilities, a low utilization rate (according to the China Statistical Yearbook, China’s reclaimed water
reuse rate only accounted for about 11% of the sewage treatment capacity in 2015), low implementation
efficiency of industrial environmental regulations, and arbitrary enforcement of the law on water
pollution. All these have led to a notable rise in the industrial gray water footprint.

Urbanization raised the industrial water footprint and gray water footprint in all three regions,
while the eastern region showed the smallest increase in the water footprint, perhaps because the
quality of urbanization in this region was higher than that in the central and western regions (the
average quality of urbanization during the sample period was 1.697 in the eastern region, the average
quality of urbanization during the sample period in the central and western regions was 1.112 and
0.975, respectively). The eastern region achieved the largest improvement in the utilization efficiency
of water resources in industry through an industrial agglomeration effect, industrial technology-level
upgrading, industrial human capital enhancing, industrial structure upgrading, and the reduction of
industrial water resources misplacement. Additionally, the eastern region achieved better containment
of the industrial gray water footprint through the improvement of industrial sewage treatment facilities,
better facilities for water saving and reclaimed water reuse, higher utilization rate (according to the
China Statistical Yearbook, the reclaimed water reuse rate of the eastern region accounted for about
25% of the sewage treatment capacity in 2015), stricter industrial environmental regulations, a higher
implementation efficiency, and a sound water pollution supervision system.

Urbanization in the eastern region reduced the industrial virtual water footprint, and urbanization
in the central and western regions raised the industrial virtual water footprint. This may be
because, on the one hand, urbanization in the eastern region attracted high-quality types of foreign
investment (such as asset-seeking and efficiency-seeking foreign investment), and these types of foreign
investment are centered on technology/knowledge-intensive industries producing and exporting
technology/knowledge-intensive products. Foreign enterprises in these industries consume less water
resources in the production process of export products, making the virtual water export smaller. On
the other hand, rapid urbanization in the eastern region quickly dissipated the population dividend.
Coupled with the rising cost of land and raw materials, this pushed water-consuming labor-intensive
industries out of the region to the central and western regions and Southeast Asian countries. Again,
this relocation led to the decline of the virtual water footprint in the eastern region.

Table 4 shows that urbanization reduced the agricultural water footprint and increased the
water footprints of manufacturing and service industries in China as a whole and in all three regions.
Additionally, urbanization had the largest effect on reducing the agricultural water footprint, and
the smallest effect on increasing the manufacturing water footprint and service water footprint in
the eastern region. Compared with the central and western regions, the eastern region has absorbed
a large surplus rural labor force in the urbanization process and raised the level of agricultural
mechanization and production efficiency (according to the China Statistical Yearbook, the average
agricultural production efficiency during the sample period was $920.9 per capita in the eastern region;
the agricultural production efficiency during the sample period in the central and western regions was
$731.0 per capita and $791.8 per capita, respectively), thereby substantially reducing the agricultural
water footprint. Moreover, fast economic growth enabled the eastern region to amass substantial fiscal
revenue, which was used to finance construction of agricultural water conservancy infrastructure
and water-saving irrigation infrastructure, raised the effective utilization rate of irrigation water, and
significantly reduced the agricultural water footprint in this region. In addition, compared with the
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central and western regions, urbanization in the eastern region led to a greater replacement of farmland
by urban construction and a greater decrease in arable land. Studies found that as urbanization in the
eastern region increased by 1%, arable land decreased by nearly 140,000 hectares. Arable land in the
central and western regions did not decrease as much. This decrease of arable land area caused by
urbanization in the eastern region also contributed to the greater reduction of the agricultural water
footprint in this region. Furthermore, urbanization in the eastern region increased people’s income
and upgraded residents’ consumption structure toward a healthier consumption pattern. This, in
turn, increased the demand for low calorie, fat and sugar, and less water-consuming agricultural
products such as rice, legumes, potatoes, barley, broad beans, and wheat and reduced demand for
more water-consuming meat products (according to the Food and Agriculture Organization of the
United Nations, 10,000–15,000 kg of water is needed to produce 1 kg of meat (its effective utilization
rate is less than 0.01%), while only 400–3000 kg of water is needed to produce 1 kg of grain product,
which is about 5% of the water needed to produce meat).

The eastern region, compared to the central and western regions, experienced the smallest increase
in manufacturing and service water footprints. While the proportion of manufacturing industry in the
eastern region initially increased with urbanization, subsequently it declined, and the proportion of
service industries rose rapidly. Additionally, the proportion of modern high-technology manufacturing
industry among manufacturing industries in the eastern region was higher, and the proportion of
knowledge-intensive emerging service industry among service industries was larger. These industries
tend to consume less water than other manufacturing and service industries. Moreover, the eastern
region has a better developed ladder water pricing mechanism for the manufacturing and service
industries and stricter regulations on high-water-consuming low-end manufacturing and traditional
service industries, enhancing the utilization efficiency of water-saving facilities and the recycling
efficiency of water resources. All these enabled the region to achieve the smallest rise in the water
footprints of the manufacturing and service industries.

Table 5 shows that urbanization reduced the virtual water footprints of the agricultural and
service industries and raised the virtual water footprint of the manufacturing industry in China at
the country level and also in the central and western regions. This could be due to the fact that
agricultural exports were less than imports, and this trade deficit increased along with the process
of urbanization. In 2015, China exported $70.68 × 109 and imported $116.88 × 109, with a deficit of
$46.2 × 109 agricultural products (data source: China Customs). Major agricultural export items (such
as vegetables, fruits, aquatic products, and tea) are products that consume less water, and major import
items (such as cereals, livestock products, cotton, sugar, edible oilseeds, and edible vegetable oil) are
products that consume more water. Consequently, the agricultural virtual water footprint has decreased.
Similarly, as urbanization progresses, the service trade deficit increases steadily. According to the China
Service Trade Statistics 2016, in 2015, China’s service exports were $288.19 × 109 and imports were
$424.81 × 109, amounting to a deficit of $136.62 × 109. Among them, exports of less water-consuming
services (such as telecommunications, computer and information services, professional management,
and consulting services) were greater than imports (with a surplus of US$29.72 × 109), and exports
of water-consuming services (such as traditional tourism and transportation services) were much
smaller than imports (with a trade deficit of $74.94 × 109). Consequently, the service virtual water
footprint fell. As for urbanization increasing the manufacturing virtual water footprint, this could be
attributed to the manufacturing trade structure and trade surplus. In 2015, China’s manufacturing
exports were $2.209 × 1012 and imports were $1.563 × 1012, registering a surplus of $0.6459 × 1012 (data
source: Compiled from the 2016 China Statistical Yearbook). The main export items (such as textile,
clothing and footwear, automatic data processing equipment and its components, and hand-held or
vehicle-mounted radios) are traditional labor-intensive manufacturing products, which consume more
water per unit, while the main import items (such as integrated circuits, crude oil, iron ore, and coal)
are high-technology-content and energy products, which consume less water per unit. Consequently,
the manufacturing virtual water footprint increased.
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The notable exception of urbanization actually reducing the manufacturing virtual water footprint
in the eastern region may be due to the fact that urbanization in this region has optimized the internal
structure of the manufacturing industry by forming an industrial agglomeration, upgrading the
technological level, and promoting the industrial gradient transfer. This has transformed the industry
from labor-intensive low-end manufacturing to high-end manufacturing with a high technology
content. Although the eastern region also has a manufacturing trade surplus, the virtual water content
of manufacturing exports is lower than that of manufacturing imports because less water-consuming
middle- and high-end manufacturing products are exported, and more water-consuming processing
trade has been transferred to the central and western regions.

Table 6 shows that urbanization in China raised the gray water footprints of the agricultural,
manufacturing, and service industries in China in all three regions, with the eastern region sustaining
the smallest impact on the gray water footprints in the agricultural, manufacturing, and service
industries. During the process of urbanization, the extensive production mode of agriculture has not
been fundamentally changed. Agricultural non-point source pollution (from planting, livestock and
poultry breeding, aquaculture, straw, plastic film, and many other aspects) has resulted in serious
agricultural water pollution, and yet the water pollution monitoring system has not been established
in rural areas. All of this made the agricultural gray water footprint rise significantly. The eastern
region achieved the lowest rise in the agricultural gray water footprint due to its more advanced
development in agricultural eco-recycling and stricter management and control of the use of pesticides
and chemical fertilizers. Urbanization has led to the rapid expansion of China’s manufacturing
industries (particularly industries such as papermaking, chemical industry, iron and steel, electric
power, food, textiles, and other industries), which have generated enormous wastewater in the
production process, resulting in a substantial increase in the manufacturing gray water footprint.
However, compared with the central and western regions, the eastern region has invested more in the
wastewater treatment of the manufacturing industry. In 2015, the eastern region invested $1081.96× 106

in wastewater treatment, which amounted to an average investment of $98.36 × 106 per province in
the region. The central and western regions invested $346.35 × 106 and $472.89 × 106, respectively. The
average investment per province in the central and western regions was $57.72 × 106 and $33.78 × 106,
respectively, which were only 58.69% and 34.34% of the counterpart in the eastern region (data source:
Compiled from the 2016 China Statistical Yearbook). In addition, cities in the eastern region have
established a more comprehensive water pollution control and supervision system, with stricter
environmental controls and a higher utilization rate of manufacturing sewage treatment facilities,
enabling the region to achieve the smallest increase in the manufacturing gray water footprint. Finally,
while urbanization promotes rapid development of China’s modern service industry, it also expands
traditional service industries (such as lodging and catering, wholesale and retail, transportation, and
post and telecommunications), resulting in a great deal of water pollution and raising the gray water
footprint of the service industry. Compared to the central and western regions, the eastern region has
implemented a step pricing policy for water use to control the total amount of water used. At the same
time, this region has acquired and developed more advanced water pollution control equipment and
imposed stricter regulations on the water ecological environment. All these enabled this region to
achieve the smallest increase in gray water footprint of service industry.

7. Conclusions

How to advance the new urbanization initiative and reduce the water footprints of industries are
urgent urbanization issues that need to be resolved. Based on spatial dynamic panel data, we used
the system GMM method to study the impact of urbanization on the industrial water footprint. The
results show that, overall, urbanization increases the industrial water footprint, industrial virtual water
footprint, and industrial gray water footprint in China. In separate industries: urbanization reduces the
agricultural water footprint and agricultural virtual water footprint but increases the agricultural gray
water footprint; urbanization increases the manufacturing water footprint, manufacturing virtual water
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footprint, and manufacturing gray water footprint; urbanization increases the water footprint and gray
water footprint of the service industry, but reduces the virtual water footprint of the service industry
in China. At the regional level, urbanization increases the industrial water footprint and industrial
gray water footprint in all three regions. In the eastern region urbanization exerts the least effect
on raising the industrial water footprint and actually reduces the industrial virtual water footprint.
Urbanization in the central and western regions increases the industrial virtual water footprint. In all
three regions urbanization has reduced the agricultural water footprint and raised the manufacturing
water footprint and service water footprint. The eastern region saw the greatest effect of urbanization
on reducing the agricultural water footprint and the smallest increase in the manufacturing water
footprint and service water footprint. Additionally, in the eastern region urbanization has reduced the
virtual water footprints of agriculture, manufacturing, and services. In the central and western regions,
urbanization has reduced the virtual water footprints of agriculture and services but increased the
manufacturing virtual water footprint. Finally, in all three regions urbanization has increased the gray
water footprints of agriculture, manufacturing, and services, with the eastern region sustaining the
least of such an effect.

Based on these findings, some policy implications and prescriptions are as follows. First, to reduce
the overall industrial water footprint while promoting new urbanization initiatives, China, especially
the central and western regions, should strive to reduce the cost of industry agglomeration, build
a high-end industry agglomeration platform, implement innovation-driven development strategy,
increase investment in industry R&D, and optimize the direction and structure of investment. To
reduce the industrial water footprint, China should also promote the market-oriented reform of water
resources management and raise the utilization efficiency of water resources through upgrading the
industrial structure and technology level, the enhancement of human capital, and the curtailing of
water resources misplacement.

Second, to reduce the agricultural water footprint while promoting new urbanization, China,
especially the central and western regions, needs to raise the level of agricultural mechanization,
develop and improve the construction of agricultural water conservancy and water-saving irrigation
infrastructure, and raise the effective utilization rate of farmland irrigation water. In addition, as
people’s income increases it is necessary to guide the populace to optimize consumption structure
and consumption patterns toward less water-consuming agricultural products and away from more
water-consuming meat products.

Third, to reduce the water footprint of the manufacturing and service industries while promoting
new urbanization, China, especially the central and western regions, needs to optimize the internal
structure of the manufacturing and service industries, increase the proportion of less water-consuming
modern manufacturing and service industries, implement the water ladder pricing mechanism, strictly
monitor and contain the water consumption of the low-end manufacturing industry and traditional
service industry, and improve the utilization rate of water-saving facilities and recycling efficiency of
water resources in the manufacturing and service industries.

Fourth, to reduce the virtual water footprint of industry in the process of urbanization, China,
especially the central and western regions, needs to optimize the export structure of agricultural,
manufacturing, and services products by reducing the export of water-consuming agricultural
products, increasing the export of less water-consuming agricultural products, by reducing the
export of water-consuming labor-intensive manufacturing products, and increasing the export of
less water-consuming technology-intensive manufacturing products, and also by reducing the export
of traditional service industries that consume more water and increasing the export of new service
industries that consume less water.

Fifth, to reduce the gray water footprint of industry, China, especially the central and Western
regions, needs to raise awareness of the water ecological environment in the process of urbanization,
further improve the sewage treatment pricing system and sewage treatment facilities, improve the
facility utilization rate, and strengthen environmental regulations and enforcement. Specifically, in
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the agricultural sector, authorities need to direct farmers to change extensive modes of production;
improve the monitoring system of agricultural water pollution; control the use of pesticides and
chemical fertilizers with a move toward precise fertilization; and strive for technological advancement
in several areas including green prevention and control technology, livestock, and poultry manure
treatment technology, aquaculture tail water treatment technology, and straw comprehensive utilization
technology, etc. In the manufacturing and service sectors, they need to increase investment in wastewater
treatment, improve water pollution treatment facilities, and enhance the omnibus management and
supervision system of water pollution so as to reduce the gray water footprint in the manufacturing
and service industries.

With the development of new urbanization, urbanization has changed from an extensive mode to
an intensive mode. The world is facing many challenges from global climate change: global warming
will directly affect the quantity of water resources, lead to a reduction of glaciers and decrease the water
flow of rivers and lakes, and cause drought; it will also cause more water evaporation and decrease
precipitation; it will also cause floods in coastal areas and pollute fresh water resources. We hope the
above proposed policy measures will help to reduce the industrial water footprint and to reconcile the
contradiction between water supply and demand in the process of urbanization.
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