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Abstract: The ecological integrity and biodiversity of steppes were destroyed under the long-term
and high-intensity development of open-pit coal mines in China, causing desertification, steppe
degradation, landscape function defect, and so on. As a source of species maintenance and dispersal,
an ecological source is a key area for preservation in order to restore the ecological security pattern of
the larger landscape. The purpose of this study was to establish a landscape key area recognition
model to identify the landscape key areas (LKA) surrounding an open pit coalmine located in
semi-arid steppe. This study takes the Yimin open pit mining area as a case study. We assessed
Landsat 5 Thematic Mapper (TM) and Landsat 8 Operational Land Imager (OLI) remote sensing
images taken during the peak season of vegetation growth from July to August in 1999, 2006, 2011,
and 2017. From these images, we identified the main landscape types and vegetation coverage grades
in order to identify the ecological land. Next, we applied the three indices of Importance of Patch
Connectivity, Habitat Quality, and Ecosystem Service Value to calculate the comprehensive results that
identify ecological land. Finally, the ecological land quality results of different years are superimposed
and averaged, and then Very Important Patch (VIMP), Important Patch (IMP), and General Patch
(GEP) areas were used for LKA extraction. Our results showed LKA to cover 177.35 km2, accounting
for 20.01% of the total study area. The landscape types identified as LKA are primarily grassland
(47.37%), wetland (40.27%), and shrubland (11.88%), indicating that landscape type correlates strongly
with its value as a landscape key area. The proposed landscape key area recognition model could
enrich the foundations for ecological planning and ecological security pattern construction in order to
support ecological protection and restoration in semi-arid steppe areas affected by coal mining.
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1. Introduction

China is both the largest producer and consumer of coal in the world. The Inner Mongolia
Autonomous Region occupies China’s largest coal production, accounting for approximately 25% of
the total output, which plays an important role in economic and social development [1]. The steppes
of Inner Mongolia are representative of the grasslands of China, which have a high ecosystem service
value. However, the steppe ecosystem is vulnerable to damaging effects from Inner Mongolia’s open-pit
coal mines, which are mostly located in arid and semi-arid areas. Opencast mining disrupts anywhere
from two to eleven times more land area than underground mining [2]. Moreover, opencast mining
activities often directly change the land surface and affect ecosystems both directly and indirectly

Sustainability 2020, 12, 2239; doi:10.3390/su12062239 www.mdpi.com/journal/sustainability

http://www.mdpi.com/journal/sustainability
http://www.mdpi.com
https://orcid.org/0000-0003-4600-4085
http://dx.doi.org/10.3390/su12062239
http://www.mdpi.com/journal/sustainability
https://www.mdpi.com/2071-1050/12/6/2239?type=check_update&version=2


Sustainability 2020, 12, 2239 2 of 22

through occupation and suppression [3–5] and can also lead to ecological and environmental problems
such as land degradation, vegetation degradation [6,7], soil erosion, loss of biodiversity [4], and carbon
pools [8,9]. These factors have seriously hindered the normal functioning of prairie ecosystems, leading
to remarkably rapid landscape-level pattern changes [10]. In Inner Mongolia, local ecosystems have
been seriously threatened by the reduced connectivity associated with landscape fragmentation caused
by coal mining activities [11]. Thus, the ecological issues at both local and landscape levels associated
with coal mining deserve careful investigation.

During the past decade, there has been an increasing interest in landscape pattern changes in coal
mine areas [12–15]. These changes reflect a spatiotemporal evolution specific to the effects of coal mining,
which might lead to the rapid degradation of its native ecosystem [16,17]. Previous research shows
that mining activities lead to reduced farmland, landscape fragmentation [18], decreased landscape
quality and stability [19,20], and severely impaired ecological balance [21,22]. The construction of
ecological corridors and the establishment of ecological networks are also current research concerns
regarding landscape security patterns. A series of quantitative models and methods have been utilized
to represent the radical disturbance of coal mining on landscape-level patterns in areas with complex
terrain [23].

With the development of remote sensing (RS) technology and geographic information system
(GIS), studies on landscape-level pattern changes in mine areas have achieved great progress [16,24].
Landscape metrics have been utilized in many research topics, including but not limited to examining
the interplay between landscape structures and ecological functions [25,26], and quantifying ecosystem
services [27]. Considerable research has been conducted on the landscape-level pattern changes in coal
mine areas [23,28]. Key aspects of landscape ecology can be identified by simulating different ecological
processes, such as nodes, patches, and networks. Nevertheless, research that would enable recognition
of key landscape areas is still lacking, especially for the ecologically fragile steppes associated with coal
mines. Composed of grassland-area organisms and non-biological characteristics, the steppe ecosystem
is a basic functional unit within the larger landscape that facilitates material circulation and energy
exchange. However, it is not scientific to extract all grassland as ecological source without evaluation
and screening. Currently, the majority of existing index systems select economic, social, industrial,
environmental, and other statistical data based on administrative divisions that are not applicable in
ecologically fragile coal mine areas with sparse population, underdeveloped economy, and in relatively
small research areas. The goals of this study are to (1) construct an ecological landscape key area
recognition index system for a steppe coal mine area for both spatial and temporal scales; (2) identify
the landscape key areas (LKA) of a steppe coal mine area; and (3) highlight the properties of a coal
mine area in a steppe region in order to provide other similar areas with a guide for recognizing LKA
and optimizing ecological networks.

2. Material and Methods

2.1. Study Area

The study site is the Yimin open-pit coal mine (119.650◦E to 119.764◦E, 48.539◦N to 48.645◦N),
located in Ewenki Autonomous Banner, Hulun Buir City, Inner Mongolia Autonomous Region, China
(Figure 1). Located in the eastern region of Hailar Basin on the West slope of the Greater Khingan Range,
this area comprises approximately 886.24 km2. The terrain consists of a basin, hills, and mountains,
with an elevation of 644–781 m. The basin is located in the central portion of the study area, where
frequent strong air exchange results in large temperature variations. The eastern and western regions
of the study area are characterized by a generally high, flat topography with vegetation, artificial lakes,
and residential areas interspersed across the landscape.
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Figure 1. Location of the study area.

Owing to its deep inland location, the Yimin coal mine area is characterized by a temperate
continental monsoon climate, with an annual average temperature of about −1.9 °C. The annual
precipitation ranges between 227.7 and 408.4 mm, while the annual average evaporation ranges
between 1053.2 and 1318.3 mm. The main soil types are chestnut, alkali, meadow, swamp, and
sandy. The vegetation is mainly composed of perennial herbaceous plants with approximately 50–70%
coverage. The typical vegetation around the mining area is Stipa grandis and Leymus chinensis, and the
banks of the Yimin River are mainly broad-leaved forests composed of deciduous trees, and the lower
layer is a weed meadow. Among them, Stipa grandis is the founding species, and Leymus chinensis is
the substituting species.

The recoverable raw coal reserves of Yimin Open-pit Mine are 2.3 × 109 tons. The design scale
of coal mines has grown from 1 Mt·a-1 in 1990 to 11 Mt·a-1 in 2010. Open-pit coal mining has turned
large-scale grazing pastures into industrial and mining land. At the same time, due to mining and
dredging the surface and groundwater, the original lake in the mining area disappeared and the
wetland area decreased sharply. The Yimin River and the coastal ecological environment in the east of
the mining area were greatly affected.

2.2. Data Collection

The Yimin open-pit coal mine was opened in 2000, followed by the construction of an underground
coal mine and the second phase of the open-pit mine. The vegetation growth season in the study area
is from June to August, making this the optimal time period to record data on vegetative conditions.
The series of Landsat 5 Thematic Mapper (TM) and Landsat 8 Operational Land Imager (OLI) data
from Geospatial Data Cloud (http://www.gscloud.cn/) collected in 1999, 2006, 2011, and 2017 were
carried out during the optimal window of vegetative growth in order to optimize land classification
and source area identification in the study area. Image data are shown in Table 1.

Table 1. Research Data.

No Data Source Resolution Date Type

1 LT051230261999081001T1 30 m 1999.08.10 Landsat 5 TM
2 LT51230262006193BJC00 30 m 2006.07.12 Landsat 5 TM
3 LT051230262011081101T1 30 m 2011.08.11 Landsat 5 TM
4 LC081230262017081101T1 30 m 2017.08.11 Landsat 8 OLI

http://www.gscloud.cn/
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2.3. Data Processing

The overall technical route is: (1) remote sensing image pretreatment, (2) extraction of eco-logical
land, (3) construction of recognition index system, and (4) recognition of landscape key area and
ecological source. The technology roadmap is shown in Figure 2.

The image was cloud-free and the coordinate system was registered to the World Geodetic System
1984 (WGS 84). Radiation calibration, FLAASH atmospheric correction, image registration, and image
clipping were preprocessed using the remote sensing image processing software ENVI 5.3 (Exelis Visual
Information Solutions Inc., California, CA, USA). Then the remote sensing images were interpreted by
ENVI 5.3 and ArcGIS 10.6 (Environmental Systems Research Institute, California, CA, USA) to obtain
the main landscape type identification and vegetation coverage. Moreover, the ecological land was
extracted and analyzed by FRAGSTATS 4.2 (University of Massachusetts, Amherst, Massachusetts,
MA, USA).

We used three main indices in constructing our recognition model. The first, Importance of Patch
Connectivity (IPC), reflects the freedom or hindrance of ecological flow between habitat patches and is
a key factor in maintaining ecosystem stability and integrity [29]. The Habitat Quality (HQ) assessment
is critical for biodiversity research and conservation, and an important index for recognizing ecological
sources [30,31]. The Ecosystem Service Value (ESV) assessment quantifies the ecosystem’s ability to
provide integrated services and visually reflect the ecological benefits of the landscape [32]. Therefore,
IPC, HQ, and ESV are all important indices for recognizing key landscape areas and ecological sources.
Next, ESV classification was calculated by ArcGIS 10.6. IPC was evaluated by Conefor Inputs for
ArcGIS 10 and Conefor Sensinode 2.2 (University of Lleida, ESP), while HQ was evaluated by InVEST
3.7 (Stanford University, California, USA & The Nature Conservancy, Washington D.C., USA & World
Wildlife Fund, Grande, SWI).
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2.4. Data Analysis

2.4.1. Recognition and Extraction of Ecological Land

(1) Recognition of Landscape Types

Landscape ecology is the study of the pattern and interaction between ecosystems within a region
of interest, and the way the interactions affect ecological processes, especially the unique effects of
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spatial heterogeneity on these interactions [33]. Landscape ecology focuses on the role of land use types
in different ways than the land-use/land-cover model (LULC), as landscape ecology principles could
be used to quantify the amount and spatial distribution of land cover types and then relate them to the
ecological process in question. However, the criteria for landscape type classification in coal mine area
are not currently clear. Therefore, researchers generally categorize landscape types according to their
own research purposes [27,34]. In order to account for the extensive damage to the landscape wrought
by coal mining, including open pits and dumps, our study area was divided into eight landscape types
(bare land, built-up land, mining land, grassland, shrub land, wetland, water, and road).

We concluded categories of potential landscape types via Landsat imagery, Google Earth images,
and acquired land use maps. Moreover, we conducted a field survey. Some studies have found that
the Random Forest Method (RF) provided the highest accuracy (86%) [35]. Therefore, we applied the
random forest algorithm for landscape classification. Supervised classification and visual correction
methods were used to obtain land use maps with the support of ENVI 5.3 and ArcGIS 10.6.

(2) Calculation of Vegetation Fractional Coverage

Vegetation coverage refers to the percentage of the vertical projection area of vegetation (including
leaves, stems, and branches) on the ground to the total area of the statistical area. Vegetation coverage
is an important index that reflects the status of vegetation growth, as well as other complex ecological
processes [36]. This is especially true in semi-arid steppe environments, where changes in vegetation
coverage and other ecological changes can potentially trigger desertification [37], and other forms of
environmental degradation [38]. In order to assess this important parameter, we preprocessed the
Landsat TM/OLI data and then estimated the vegetation cover in the images based on the binary pixel
model [39]. Vegetation coverage of the study area is measured by formula (1) and formula (2):

NDVI =
NIR−RED
NIR + RED

(1)

where NDVI is the normalized difference vegetation index; NIR is the near infrared band; and RED is
the red band; and

VFC =
NDVI −NDVIsoil

NDVIveg −NDVIsoil
(2)

where VFC is the vegetation fractional coverage (VFC); NDVIsoil is the minimum value of the confidence
interval; and NDVIveg is the maximum value. The confidence interval was set to [5%, 95%].

(3) Extraction of Ecological Land

With China’s increasing emphasis on the construction of ecological civilization, the ecological
role of various types of land has also received widespread attention. Ecological land is a concept
with Chinese characteristics. In this study, we define ecological land as a type of land use that
provides ecosystem services [40]. We define the ecological source as a center of species dispersal and
maintenance, which is essential for maintaining regional ecosystem stability. Thus, the ecological
source could be regarded as the key area of ecological land. In this study, the ecological land was
extracted first and then the key areas could be located. Grassland, shrubland, water, and wetlands are
all extracted as ecological land.

Because the study area is located in a fragile grassland environment, serious degradation due
to natural conditions and human activities could be expected [41]. Owing to the reduced vegetation
coverage in heavily degraded areas, we were not able to extract all grassland areas as ecological
land [42]. Therefore, the vegetation coverage was selected to be 60–100% when extracting grassland.
As images were screened for ecological land, patches smaller than 1 ha were removed because their
area is too small to support the survival and spread of species and to impact on the overall landscape
ecosystem process.
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FRAGSTATS is a program for quantifying landscape structure [43]. The landscape pattern index
of extracted ecological land was calculated by FRAGSTATS 4.2 software, and the changes of ecological
land in the research period were analyzed from the perspective of landscape ecology. Moreover,
Total Area (TA), Number of patches (NP), Patch Density (PD), Largest Patch Index (LPI), Landscape
Shape Index (LSI), Splitting Index (SPLIT), Aggregation Index (AI), Contagion Index (CONTAG), and
Interspersion Juxtaposition Index (LJI) were selected to analyze the landscape pattern in the study area.
Furthermore, the definition and description of these indices has been given by the FRAGSTATS user’s
guide [44].

2.4.2. Construction of Ecological Landscape Key Area Recognition Index Model

(1) Assessment of Habitat Quality (HQ)

The HQ is a function of the landscape type within a given grid cell, along with that of the
surrounding grid cells, and the sensitivity of the habitat in the focal grid cell to threats posed by the
surrounding landscape [30,31]. HQ was calculated combining information on landscape types and
threats to biodiversity. The equation is shown in formula (3):

Qxj = H j

1− D2
xj

D2
xj + k2

 (3)

where Qxj is the HQ in grid cell x that is in landscape type j, while Hj represents habitat suitability, and
Dxj is the total threat level in grid cell x within habitat type j. The half-saturation constant k is equal to
0.5 in this study. The detailed evaluation procedure of HQ can be found in the literature [45].

Some input parameters for the InVEST model were determined from the literature [46,47] in the
field of regional ecological assessment as described in China’s National Key Research and Development
Program, “Ecological restoration and protection in typical vulnerable ecological regions.” The following
parameters were input into the InVEST model: current landscape cover, threat raster dataset, threats
data (Table 2), sensitivity of landscape types to each threat (Table 3), and half-saturation constant.

Table 2. Threats Data.

Threat Maximum Effective Distance (km) Weight DECAY

Road 1.0 0.5 Linear
Built-up land 2.0 0.7 Exponential
Mining land 3.0 1.0 Exponential

Bare land 1.0 0.8 Linear

Table 3. Sensitivity of landscape types to each threat.

Landscape Type Habitat Bare Land Construction Land Mining Land Road

Grassland 0.8 0.5 0.7 0.6 0.4
Shrub Land 0.7 0.2 0.4 0.5 0.3

Wetland 0.9 0.4 0.5 0.6 0.4
Water 0.6 0.5 0.9 1.0 0.8

Bare Land 0.0 0.0 0.0 0.0 0.0

The HQ maps were obtained after running the InVEST model with grid resolution set to 30 m,
consistent with remote sensing data. The HQ of the ecological land was identified and divided into
4 levels by the natural discontinuous point classification method. Grades 1 to 4 represent HQ from low
to high.



Sustainability 2020, 12, 2239 7 of 22

(2) Assessment of Ecosystem Service Value (ESV)

The ESV is an estimate of ecosystem services and natural capital using economic laws. Costanza’s
approach to estimating ESV is widely used [32,48]. As land use pattern is the most important factor in
the supply of ecosystem services, we utilized the Landsat 5 TM and Landsat 8 OLI remote sensing data
to assess changes in ESV over temporal and spatial scales.

The ecological service function is in linear proportion to biomass. The biomass-based ESV
adjustment method is shown in formula (4), with a correction factor of 0.44 for determining grassland
biomass in Inner Mongolia [49]. Nine indicators of ESV were selected and divided into four
categories [48]: supply service (food supply, raw supply); regulation service (atmospheric regulation,
climate regulation, hydrological regulation, waste disposal, and soil conservation); support service
(biodiversity); and cultural service (landscape aesthetics) [50].

Pi j =
b j

B j
× Pi (4)

where the variable i indicates the type of ESV (i = 1, 2, 3 . . . 9), while j denotes the type of ecosystem;
Pij is the revised ESV in value type i that is found in ecosystem type j; and Bj is average biomass per
unit area in ecosystem type j, while bj is the total biomass in ecosystem type j.

Using these categories, we were able to evaluate and analyze the ESV for different landscape
types in the study areas. The ESV in waters, grasslands, woodlands, and wetlands were assigned a
grade of 1–4 in order to designate patches of ecological land.

(3) Assessment of Importance of Patch Connectivity (IPC)

Landscape connectivity refers to the extent to which the landscape promotes or hinders species’
movement between habitat patches, and it plays an important role in ecosystem services, protection of
animal and plant gene communication, and landscape planning. Landscape connectivity is the degree
of connectivity between each ecological patch, and the probability of connectivity (PC) is the overall
index used for measuring the flow of ecological processes between patches [29]. PC represents the
possibility of connectivity between patches (0<PC<1), and the value of PC is related to the distance
between patches. The higher the PC value, the greater the possibility of landscape connectivity.

The Probability of Connectivity for each patch (dPC) was an index of patch importance. The dPC
could be used to determine the extent to which a patch could influence the connectivity of the study
area [51]. Moreover, it was applied to evaluate the importance of individual patches as connectivity
providers [52]. Then the dPC could be calculated from the percentage of the variation in PC caused by
the removal of each individual element from the landscape [53]. So, the influence and effect of patch
on landscape connectivity could be analyzed. The higher the dPC value, the higher the Importance of
Patch Connectivity (IPC) in landscape with outside.

Conefor is a software package that allows quantifying the importance of habitat areas and links
for the maintenance or improvement of connectivity, as well as evaluating the impacts on connectivity
of habitat and landscape changes [54]. The connection distances and nodes text file between patches
were calculated by the Conefor Inputs for ArcGIS 10.6 module. The evaluation of the optimal threshold
distance and the classification of functional types could be achieved by statistical methods [51]. Results
were then imported into Conefor Sensinode 2.2 to calculate dPC. The calculation of PC and dPC is
given in formula (5) and formula (6), respectively.

PC =

n∑
i=1

n∑
j=1

ai·a j·P∗i j

A2
I

(5)
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where n is the number of the patches of the ecological land. ai and aj represent the areas of patch i and
j, respectively. Pij

* represents the probability of direct dispersal of species in patches i and j. AI is the
maximum landscape attribute; when the patch attribute is habitat area, AI corresponds to the total
landscape area of the ecological land.

dPC =
PC− PCremove

PC
(6)

where PCremove is the probability of connectivity after removal of a single patch.
The dPC value reflects the relative importance of each patch in measuring PC, and is of great

significance for patch grading recognition. Natural Breakpoint Method is a commonly used classification
method in ArcGIS 10.6, which could best group similar values and distinguish values with large
differences, so that each group of data has strong internal correlation and large external difference.
Moreover, the dPC value of each patch is graded on a scale of 1–4 by the natural breakpoint method.
A larger dPC value corresponds to a higher connectivity level, and therefore the IPC of the patch.

(4) Recognition Landscape Key Area and Ecological Source

Using the grid calculator function of ArcGIS, equal weights are given to IPC, HQ, and ESV in
constructing the comprehensive quality evaluation maps of patches (CQEMP) for 1999, 2006, 2011,
and 2017.

In order to designate an area as an ecological source, its ecology must be relatively stable for a
certain period of time. Therefore, it is necessary to recognize the ecological source on both spatial
and temporal scales. In order to do so, the CQEMPs for 1999, 2006, 2011, and 2017 are superimposed
and graded. The grading criteria are as follows: 1O Very Important Patch (VIMP): the CQEMP of the
ecological patches are all in the top 25% in all four years; or the CQEMP of the ecological patches are in
the top 25% in three years and in the top 25–50% for the fourth. 2O Important Patch (IMP): the CQEMP
of ecological patches are in the top 25% in two of the years and in the top 25–50% for the other two
years; or the CQEMP of the ecological patches are in the top 25–50% in three of the years and in the top
25% for the fourth. 3O General Patch (GEP): the CQEMP of the ecological patches are in the top 25–50%
for all four years. 4ONot Important Patch (NIMP): All remaining patches. By extracting VIMP, IMP,
and GEP as ecological sources, the final ecological recognition results were obtained.

3. Results

3.1. Ecological Land

(1) Landscape Classification

The research area landscape was divided into eight categories (see Figure 3 and Table 4), with
the overall accuracy exceeded 84%. For the entire study period from 1999 to 2017, the landscape type
changes showed significant regional distribution characteristics. The area of land occupied by the mine
steadily increased from 1999 to 2017. The area of built-up land and road also increased during the
same period. In contrast, the bare land area decreased from 1999 to 2006, and from 2011 to 2017, while
increasing from 2006 to 2011.

The area of water and shrubland changed little from 1999 to 2017, while the area of grassland
decreased in total area, from 627.25 km2 to 531.10 km2. Distributed mainly over the western and
northeastern regions, grassland is the largest landscape type, accounting for more than half of the
study area. The wetlands are mainly distributed near the Yimin River Basin. Throughout the entire
study period, the variation of the wetland area was large, increasing by 40.08 km2 from 1999 to 2006,
and 9.58 km2 from 2011 to 2017, while decreasing by 13.76 km2 from 2006 to 2011.
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Shrubland 43.53 4.91% 27.73 3.13% 59.19 6.68% 36.13 4.08%
Wetland 60.44 6.82% 100.52 11.34% 86.76 9.79% 96.34 10.87%

Water 8.98 1.01% 6.83 0.77% 13.76 1.55% 13.13 1.48%
Mining land 6.18 0.70% 8.48 0.96% 22.75 2.57% 30.91 3.49%
Built-up land 11.17 1.26% 19.93 2.25% 24.39 2.75% 29.94 3.38%

Road 7.13 0.80% 9.81 1.11% 21.07 2.38% 23.78 2.68%
Bare land 121.56 13.72% 71.37 8.05% 192.11 21.68% 124.92 14.10%

(2) Vegetation Fractional Coverage

The vegetation fractional coverage of the study area was evaluated and divided into 5 categories
(see Figure 4 and Table 5). The landscape types with high VFC area (60–100%) are largely wetland,
shrubland, and some grassland. High VFC area was maximal in 2006 (44.76%), followed by 2011
(44.60%), 2017 (40.19%) and 1999(36.09%). Low VFC area (0–40%) was the highest in 2011 (40.38%),
followed by 2017 (36.68%), 1999 (36.67%), and reaching a low in 2006 (22.62%). Meanwhile, the high
VFC area is mainly distributed in the southeast of the study area, and the low VFC area is mainly
distributed in the mining area. The interannual variation of VFC in the northwest grassland of the
study area is large.
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Table 5. Statistics information of vegetation fractional coverage in 1999, 2006, 2011, and 2017 (km2).

1999 2006 2011 2017

Area Percentage Area Percentage Area Percentage Area Percentage

0–20% 109.07 12.31% 76.11 8.59% 109.21 12.32% 179.67 20.27%
20–40% 215.89 24.36% 124.36 14.03% 248.68 28.06% 145.42 16.41%
40–60% 241.43 27.24% 289.09 32.62% 133.09 15.02% 204.94 23.12%
60–80% 143.10 16.15% 223.27 25.19% 176.61 19.93% 169.92 19.17%
80–100% 176.74 19.94% 173.41 19.57% 218.65 24.67% 186.29 21.02%

(3) Ecological Land

The ecological land in the study area was extracted combine with the assessment results of
landscape type and vegetation coverage. Then we used FRAGSTATS 4.2 software to calculated the
landscape pattern index of extracted ecological land. The change in ecological land area is shown
in Table 6 and Figure 5. The Total Area (TA) of ecological land changed relatively little from 1999 to
2016, with an overall increase of 23.72 km2. Within this time, the area of ecological land increased by
96.92 km2 and 13.15 km2 from 1999 to 2006 and 2011 to 2017, respectively, and decreased from 2006 to
2011 by 86.35 km2. The Number of patches (NP), Patch Density (PD), and Largest Patch Index (LPI) as
ecological land fluctuated from 1999 to 2017, showing a decreasing trend overall. Thereinto, the LPI
decreased from 17.66% to 9.75%, indicating the cracking and reduction of large giant patches in the
study area. Moreover, the Landscape Shape Index (LSI) increased from 84.63 to 101.42, indicating that
patch shape irregularity was serious. The Splitting Index (SPLIT) increased from 17.72 in 1999 to 45.52
in 2017, which directly reflects the increasing fragmentation of landscape space and the increasing
impact of human activities on the ecosystem. The Aggregation Index (AI) decreased from 84.26%
in 1999 to 76.98% in 2017, indicating that the dispersion degree of different types of patches in the
landscape decreased. The Contagion Index (CONTAG) was high in 1999 (61.17%), indicating that
the dominant plaque type with high connectivity existed in the study area. However, the CONTAG
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value decreased to 52.41% in 2017, indicating that the plaque fragmentation in the study area was
serious, the original dominant plaque type was broken, and the spatial advantage was greatly reduced.
The Interspersion Juxtaposition Index (LJI) fluctuated from 1999 to 2017, showing a decreasing trend
overall. It indicates that the proximity between patches decreased in the study area. The results show
that the landscape pattern of the ecological land in the study area is changing towards fragmentation.
Therefore, it is necessary to further analyze the existing ecological land and identify the landscape
key areas.

Table 6. Overall landscape pattern index of ecological land in 1999, 2006, 2011, and 2017.

Year 1999 2006 2011 2017

TA (km2) 300.93 397.85 311.50 324.65
NP (#) 7110 5595 8001 6229

PD (#/100 ha) 23.63 14.06 25.69 19.19
LPI (%) 17.66 12.68 16.89 9.75

LSI 84.63 109.42 117.86 101.42
SPLIT 17.72 23.67 28.29 45.52
AI (%) 84.26 79.62 76.99 76.98

CONTAG (%) 61.17 59.40 53.75 52.41
LJI (%) 72.66 43.65 59.35 47.67

Sustainability 2020, 12, x FOR PEER REVIEW 12 of 24 

Table 6. Overall landscape pattern index of ecological land in 1999, 2006, 2011, and 2017. 

Year 1999 2006 2011 2017 
TA (km2) 300.93 397.85 311.50 324.65 

NP (#) 7110 5595 8001 6229 
PD (#/100 ha) 23.63 14.06 25.69 19.19 

LPI (%) 17.66 12.68 16.89 9.75 
LSI 84.63 109.42 117.86 101.42 

SPLIT 17.72 23.67 28.29 45.52 
AI (%) 84.26 79.62 76.99 76.98 

CONTAG (%) 61.17 59.40 53.75 52.41 
LJI (%) 72.66 43.65 59.35 47.67 

 
Figure 5. Overall landscape pattern index of ecological land in 1999, 2006, 2011, and 2017.  
Total Area (TA); Number of patches (NP); Patch Density (PD); Largest Patch Index (LPI); Landscape 
Shape Index (LSI); Splitting Index (SPLIT); Aggregation Index (AI); Contagion Index (CONTAG); 
Interspersion Juxtaposition Index (LJI). 

3.2. Construction of Ecological Landscape Key Area Recognition Index Model 

3.2.1. Habitat Quality 

Figure 5. Overall landscape pattern index of ecological land in 1999, 2006, 2011, and 2017. Total Area
(TA); Number of patches (NP); Patch Density (PD); Largest Patch Index (LPI); Landscape Shape Index
(LSI); Splitting Index (SPLIT); Aggregation Index (AI); Contagion Index (CONTAG); Interspersion
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3.2. Construction of Ecological Landscape Key Area Recognition Index Model

3.2.1. Habitat Quality

We used InVEST 3.7 to determine HQ area and level. The quality of each patch was divided into
four levels; with Level 1 being the lowest and Level 4 the highest (see Figure 6 and Table 7). The result
showed that the area of Level 1 and Level 2 accounted for a low proportion, but showed an increasing
trend from 1999 to 2017. The land area designated HQ Level 3 was the largest for all research years,
exceeding 50% of the total area. Moreover, the area change of Level 3 and Level 4 fluctuates from 1999
to 2017.Sustainability 2020, 12, x FOR PEER REVIEW 13 of 24 
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Table 7. The area (km2) and percentage of Habitat Quality levels in 1999, 2006, 2011, and 2017.

1999 2006 2011 2017

Area Percentage Area Percentage Area Percentage Area Percentage

Level 1 12.36 4.11% 16.02 4.03% 16.85 5.41% 17.71 5.46%
Level 2 50.11 16.65% 60.07 15.10% 59.15 18.99% 61.69 19.00%
Level 3 162.20 53.90% 230.51 57.94% 154.79 49.69% 174.09 53.62%
Level 4 76.26 25.34% 91.24 22.93% 80.71 25.91% 71.16 21.92%

Figure 7 shows that wetland and shrubland ecosystem types comprised the majority of HQ Levels
3 and 4, while water and grassland generally ranked lower. The percentage of wetland rated Level 4
was 84.75% in 1999, 83.21% in 2006, 84.62% in 2011, and 55.99% in 2017. The percentage of shrubland
rated Level 3 was 45.37% in 1999, 68.95% in 2006, 83.54% in 2011, and 48.35% in 2017. During the
study period, the Levels 3 area of grassland accounted for about 2/3, indicating that the habitat quality
of most grassland was good. Therefore, the patches with higher habitat quality (Levels 3 and 4) are
located in the wetland of the Yimin River Basin, the shrubland in the east, and some of the grassland
patches in the eastern and western regions of the study area. Level 1 and Level 2 are mainly distributed
in the water and part of the grassland. The results indicate that both wetland and shrubland play an
important role in overall habitat quality.
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3.2.2. Ecosystem Service Value

The ESVs of the landscape areas water, bare land, grassland, shrubland, mining land, and built-up
land in the study area are shown in Table 8. ESV values for the different types of landscape are wetland,
10,822.77 yuan/ha; shrubland, 5556.62 yuan/ha; grassland, 5387.75 yuan/ha; and water, 4871.55 yuan/ha.
Among these, wetland has the highest ESV, with the highest regulation (9048 yuan/ha) and cultural
(926.76 yuan/ha) service values. The results indicate that both wetland and shrubland play an important
role in overall ESV. Total ESV decreased from 1999 to 2017 with the increase of mining land, built-up
land, and bare land.

Table 8. The equivalent factor of Ecosystem Service Value in Yimin coal mine area (yuan/ha).

Service
Type Indicators Grassland Wetland Shrub-

land Water Built-Up
Land

Mining
Land

Bare
Land

Supply food supply 400.16 71.14 65.21 10.60 0 0 1.05

raw supply 50.64 47.42 588.86 1.05 0 0 0

Regulation

atmospheric regulation 93.33 476.23 853.65 0 0 0 0

climate regulation 95.38 2677.54 804.25 48.74 0 0 0

hydrological regulation 1848.30 2655.80 808.20 2159.72 −383.00 −383.00 3.17

waste disposal 2370.46 2845.50 339.88 1926.59 0 −260.38 1.05

soil conservation 123.83 393.23 794.37 1.05 0 0 2.12

Support biodiversity 120.78 729.16 891.19 263.88 0 0 36.03

Cultural landscape aesthetics 284.87 926.76 411.02 459.92 0 0 1.05

Sum 5387.75 10822.77 5556.62 4871.55 −383 −643.38 44.47

Figure 8 shows the distribution of different levels of ESV. The results indicate that the wetland in
the Yimin River Basin and the shrubland in the eastern region of the study area have the highest ESV,
while the water and grassland have the lowest. Over the duration of the study period, the area land
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classified as Level 4 and Level 1 increased by a total of 76.64% and 79.62%, respectively, while the area
of classified as Level 3 and Level 2 decreased by a total of 17.00% and 11.89%, respectively (see Table 9).
Land ranked Level 2 covers the largest percentage of area, accounting for 62.47%, 66.05%, 48.73%, and
51.02% of the total area of ecological land in 1999, 2006, 2011, and 2017, respectively. The second largest
area is of land ranked Level 4, which accounted for 20.08%, 25.27%, 27.85%, and 32.88% of the total
area of ecological land in 1999, 2006, 2011, and 2017, respectively.
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Table 9. The area (km2) and percentage of Ecosystem Service Value levels in 1999, 2006, 2011, and 2017.

1999 2006 2011 2017

Area Percentage Area Percentage Area Percentage Area Percentage

Level 1 8.98 2.98% 6.83 1.72% 13.76 4.42% 16.13 4.97%
Level 2 187.98 62.47% 262.76 66.05% 151.78 48.73% 165.63 51.02%
Level 3 43.53 14.47% 27.73 6.97% 59.19 19.00% 36.13 11.13%
Level 4 60.44 20.08% 100.52 25.27% 86.76 27.85% 106.76 32.88%

3.2.3. Importance of Patch Connectivity

The results of the Importance of Patch Connectivity (IPC) analysis revealed that the average
proportion of area covered by Level 4 (55.61%) and Level 1(24.98%) was relatively large, while that of
Level 3 (6.38%) and Level 2 (13.03%) was relatively small (Figure 9 and Table 10). The land changed
at different levels of IPC fluctuated from 1999 to 2017. Compared with 1999 and 2017, all the other
three levels increased except for Level 2. Thereinto, the area of Level 1 land increased by 24.28 km2

from 1999 to 2017, accounting for 30.82% of the area in 1999. The area of Level 2 land decreased from
77.45 km2 in 1999 to 2017, accounting for 73.19% of the area in 1999. The area of Level 3 land increased
from 7.88 km2 in 1999 to 2017, accounting for 35.79% of the area in 1999. Furthermore, the area of Level
4 land increased from 69.02 km2 in 1999 to 2017, accounting for 73.19% of the area in 1999.
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Table 10. The area (km2) and percentage of Importance of Patch Connectivity levels in 1999, 2006, 2011,
and 2017.

1999 2006 2011 2017

Area Percentage Area Percentage Area Percentage Area Percentage

Level 1 78.79 26.18% 79.20 19.91% 72.43 23.25% 103.07 31.75%
Level 2 105.82 35.16% 19.20 4.83% 20.59 6.61% 28.37 8.74%
Level 3 22.02 7.32% 17.06 4.29% 16.13 5.18% 29.90 9.21%
Level 4 94.30 31.34% 282.39 70.98% 202.35 64.96% 163.32 50.31%

The areas with higher IPC values are mainly located in the shrubland in the eastern part of the
study area, the grassland in the northwestern and southwestern portions, and the centrally located
wetland, while IPC values for water and the grassland near the human activity are relatively low.
During 1999 to 2017, the IPC of the grassland in the southwest gradually emerged, indicating that
the ecological land in this area gradually had better connectivity. Furthermore, there has been a
consistently higher IPC over the four study periods for the shrubland and grassland located in the
southeastern part of the study area. The results show that forest land and grassland far from human
activity are especially important to IPC, while bodies of water play a lesser role.

3.3. Recognition of Landscape Key Areas

The results of comprehensive quality evaluation maps of patches (CQEMP) are shown in Figure 10
and Table 11. The results showed that the largest area of ecological land was categorized as Level 3,
accounting for 36.51%, 74.19%, 65.82%, and 53.67% of total ecological land in 1999, 2006, 2011, and
2017, respectively.
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Table 11. The area (km2) and percentage of comprehensive quality evaluation maps of patches (CQEMP)
in 1999, 2006, 2011, and 2017.

1999 2006 2011 2017

Area Percentage Area Percentage Area Percentage Area Percentage

Level 1 73.81 24.53% 38.93 9.79% 45.48 14.60% 50.71 15.62%
Level 2 83.38 27.71% 14.75 3.71% 35.30 11.33% 44.99 13.86%
Level 3 109.86 36.51% 295.17 74.19% 205.04 65.82% 174.25 53.67%
Level 4 33.88 11.26% 49.00 12.32% 25.67 8.24% 54.70 16.85%

The CQEMPs for 1999, 2006, 2011, and 2017 are superimposed and graded, as shown in
Figure 11a. By extracting Very Important Patch (VIMP), Important Patch (IMP) and General Patch
(GEP) as ecological sources, the landscape key area recognition results could be obtained, comprising
approximately 177.35 km2 in Figure 11b.

Results of the extraction of Landscape Key Area (LKA) are superimposed on the landscape types
of 2017 (Table 12). The results showed that 74.12% of the wetlands, 54.86% of the shrublands, and
15.82% of the grasslands were extracted as LKA in 2017. Landscape types that comprised the LKA
are mostly grassland (47.37%), wetland (40.27%), and shrubland (11.88%), indicating that landscape
type is highly correlated with its value as a landscape key area. Therefore, the extracted LKA could be
regarded as ecological sources. The LKAs are the important ecological functional areas and the core
components of the ecosystem with little human disturbance.
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Figure 11. Grade level assigned to ecological land (a) and ecological source (b).

Table 12. Statistics information of ecological source.

Wetland Shrub Grassland Water

Area (km2) 71.41 19.82 84.01 2.11
Percentage of the Ecological Source 40.27% 11.18% 47.37 1.19

Percentage of the total area for Landscape Type 74.12% 54.86% 15.82% 16.07

4. Discussion

4.1. Analyzation of Results for Recognition of Ecological Landscape Key Area

Large open-pit coalmines located in arid and semi-arid steppe areas lead to huge costs in terms of
environmental damages which are required to be reclaimed. However, some of the environmental
costs can be reduced by integrating local landscape design such as grassland, shrubland, and wetland
within the damaged area by optimizing the ecological structure to protect landscape integrity.

Although current research mostly focuses on ecological corridors and ecological security
patterns [55], they largely overlook the importance of LKA. This paper employs a recognition
model based on remote sensing data from the Landsat 5 TM and Landsat 8 OLI of the Yimin open-pit
coal mine of Inner Mongolia. The distribution of the LKA and ecological sources are determined by
utilizing HQ, IPC, and ESV as indices.

During the study period, HQ shows first an increasing and then a decreasing trend. The areas
with relatively low HQ index values were mainly distributed in the Yimin River Basin and some of
the grassland areas. The Yimin open-pit coalmine developed rapidly from 1999 to 2017, causing a
continuously decreasing trend in HQ.

Overall, the effects of open-pit mining on biodiversity and habitat quality are lasting. As similar
studies report [30,56], open-pit mining has many serious consequences for ecosystems, including
surface soil stripping, habitat degradation, and landscape fragmentation. The excavation, human
occupation, and wastes disposal associated with mines reduces and fragments healthy landscape
patches, decreasing connectivity, and leading to habitat islands of diminished size. These seriously
hinder the proliferation and circulation of specie [41]. In terms of landscape connectivity, the ecological
land with the highest patch connectivity is dominated by the large areas of eastern shrublands and
western grasslands, while the wetlands in the central Yimin River Basin have poor connectivity.
However, with the expansion of infrastructures, built-up land, coalmine, and other factors, the
landscape is severely fragmenting. Interestingly, the area of grassland in the western region was
lower in 1999, although there was no large-scale construction in that year. Some authors believe that
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transitional grazing restricts grassland biodiversity to a certain extent, which might be a factor in the
degraded grasslands of 1999 [42,57].

Open-pit mining and consequent landscape changes have caused many socio-economic and
environmental problems through the overall deterioration of the local environment and ecosystem
services [58]. Since the mine’s opening, the ESV of the surrounding area has decreased substantially
and, if the trend continues, it may negatively affect the quality of life available to residents in the area.
Some studies have found that ESV decreases in areas subjected to mining activity [10]. Therefore, in the
face of uncertainty regarding changes in ecosystem service and function in coal mine areas, a ranking
system for the ESV of ecological land is needed for ecosystem management. In this study, we divided
the ESV values of ecological land (wetland, shrubland, grassland, water) to facilitate the superposition
of HQ, ESV, and IPC in the later stage, while the method of division could be flexible.

Figure 11b and Table 12 show that the ecological source area is 177.35 km2, accounting for 20.01%
of the total studied area. Among all landscape types, 74.12% of wetland, 54.86% of shrubland, 15.82%
of grassland, and 16.07% of water were extracted as ecological sources. Ecological sources were mainly
distributed in the wetlands of the Yimin River Basin, the shrubland in the east, and the grasslands in
the northwest and southwest regions, which may reflect the spatial agglomeration characteristics of
biodiversity, water conservation, and soil conservation of multiple ecosystem services.

The study area is located in Greater Khingan Range, an important forestry base in China that is
rich in virgin forests. The main trees are Larix gmelinii, Pinus sylvestris var. mongolica, Betula platyphylla
Suk, and Quercus mongolica. This region is also very rich in animal species including many types of
birds, mammals, and amphibians, making the value of ecosystem services here very high.

This important ecological source guarantees the regional ecological security. The existing
Honghuaerji-Yimin-River National Wetland Park in Inner Mongolia (Pilot), one of the seven National
Wetland Parks (Pilot) approved by China within the study area, is located within an area we designated
as an ecological source. This offers some evidence that our spatial recognition results are consistent
with real-world conditions.

4.2. Advantages of the Ecological Landscape Key Area Recognition Index Model

In this study, a landscape key area recognition model was established through a comprehensive
method. This model has several advantages. First, the model’s indices of HQ, ESV, and IPC are all
based on Landsat 5 TM and Landsat 8 OLI. Therefore, the material can be easily obtained and the
model can be easily constructed in order to recognize and identify the LKA. Second, as shown in
Figure 10, the model is flexible in temporal scale, allowing variation of key time nodes according to
different requirements. This feature will be useful when recognizing LKA of other open-pit coalmine
areas by flexible construction of a recognition index system according to specific spatial characteristics.
Third, this model is suitable for the semi-arid steppe, it is very hard to improve the entire ecological
area for its large area. Therefore, it is feasible to recognize ecological LKA as ecological sources. In this
way, the model provides a new means of recognizing ecological sources around open-pit coalmines in
semi-arid steppes.

4.3. Suggestions and Research Prospects of Recognition for Ecological Landscape Key Area

The restoration of steppe open-pit coal mine areas centers on grassland as the starting point with
the aim of recognizing key areas of ecological processes and functions to target for restoration.

Open pit coal exploitation has affected the sustainability of steppes. Furthermore, open-pit
coal mines are highly vulnerable to natural disasters such as landslides and soil erosion due to
slope deformation and dumping. Moreover, because biodiversity does not tend to thrive in a single
geomorphic environment, the habitat fragmentation associated with mining limits ecological restoration
and resistance on desertification and erosion efficiency. All these problems must be considered in
any future landscape planning among the Yimin open-pit coalmine area. Geological stability and
ecological sustainability must be reclaimed within the effect areas of open pit coalmine.
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In summary, we advocate that the government should reinforce the protections of ecological
sources and strictly control regional urbanization and coalmine utilization. In particular, the wetlands
of the Yimin River Basin and the shrubland in the eastern region of our study area require special
protection in order to ensure species diversity and ecological flow throughout the wider landscape.
Further, ecological sources should be rationally utilized with consideration of environmental integrity,
while ecological corridors and landscape ecological security patterns should be constructed to conserve
landscape-level stability. In this way, functions of vulnerable ecosystem can better be enhanced
and maintained.

Although our recognition results are consistent with the actual conditions, our methods and
understanding are still in development. Therefore, the results could be further quantified in combination
with FRAGSTATS to obtain some more meaningful explanations on the quantity and spatial distribution
of ecological importance in the future. Several problems facing the ecological health of open-pit
coalmine areas need further study. For example, the indices used in this study are based on remote
sensing images, which are easily and dynamically captured in real time. However, ecological aspects
in finer scales, such as animal, plant, and microbial community dynamics, along with hydrological,
geological, and atmospheric factors should also be considered. In addition, dynamic changes in human
health, public governance, social stability, and other factors in the study area are important subjects of
investigation, such as relationships between mining and ecological as well as socio-economic factors
over an extended temporal scale. The objective of ecological restoration in mining areas is to conserve
a healthy landscape-level ecology and to establish a harmonious relationship between humans and
nature [59].

5. Conclusions

Open-pit coal mining is prone to causing ecological problems, such as soil erosion and other
disturbances which damage fragile ecosystems. Large-scale restoration of open-pit coal mines in
semi-arid steppes will entail huge labor and environmental capital costs. Therefore, the recognition
of LKA can effectively identify important ecological land patches as ecological sources, which are
important links in the continuity between ecosystem services and ecological protection strategies.
Because recognizing LKA is a spatiotemporal distribution problem, the comprehensive application of
RS and GIS is an effective means by which to quickly obtain and accurately analyze relevant data in
order to dynamically monitor changes in different landscape indices.

This study used the Yimin coal mine area as an example for establish a landscape key area
recognition model by selecting Habitat Quality, Importance of Patch Connectivity, and Ecosystem
Service Value as spatiotemporal indices. The model proposed in this study takes into account
the characteristics of open-pit coal mine in semi-arid steppes, such as grassland degradation, high
heterogeneity of the ecosystem services, and landscape fragmentation. This model has the advantage
of being flexible and open to identifying LKA of other coal mine sites because the recognition index
system can be flexibly constructed according to the characteristics of each research area.

Our research results show that (1) LKA in the Yimin coal mine area cover 177.35 km2. This accounts
for 20.01% of the total study area and is mainly distributed in the wetland of the Yimin River Basin
and the shrubland in the eastern portion of the study area. (2) The landscape types of LKA are mostly
grassland (47.37%), wetland (40.27%), and shrubland (11.88%), indicating that landscape type correlates
strongly with its value as a landscape key area. Further, LKA can be regarded as ecological sources.

The Yimin coal mine area is rich in forest and steppe resources, which offer important contributions
to the maintenance of ecosystem stability and environmental quality. However, ecological connectivity
is affected by landscape fragmentation, which is intensified by human activities such as coal mining.
Therefore, the question of how to conserve existing ecological sources has become an important part of
the ecological planning in the Yimin coal mine area. This study will provide a reference for recognizing
LKA in semi-arid steppe coal mine areas.
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