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Abstract: Conceptual understanding has been emphasized in the national curriculum and principles
and standards across nations as it is the key in mathematical learning. However, mathematics
instruction in classrooms often relies on rote memorization of mathematical rules and formulae without
conceptual connections. This study considers the concreteness fading instruction strategy—starting
with physical activities with manipulatives and gradually fading concreteness to access abstract
concepts and representations—as a promising and sustainable instructional model for supporting
students in accessing conceptual understanding in mathematics classrooms. The results from the case
study support the validity of the concreteness fading framework in providing specific instructional
strategies in each phase of concept development. This study implies the development of sustainable
teacher education and professional development by providing specific instructional strategies for
conceptual understanding.
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1. Introduction

While a reform of how mathematics is taught in school is a worldwide issue, the implementation
of such a reform in U.S. schools has been advocated by the Principles and Standards for School
Mathematics [1], and more recently by the Common Core State Standards for Mathematics (CCSS-M) [2].
These standards emphasize the importance of mathematics by learning aspects such as conceptual
understanding, communication, and productive disposition in teaching and learning mathematics.
While national curricular in some countries and mathematics instruction have influenced CCSS-M in
the U.S., the U.S. reform in school mathematics has also influenced mathematics education in other
countries. This educational reform movement in such countries has made a change in mathematics
textbooks and has recommended changing teaching practices in mathematics classrooms. However,
mathematics teachers often face challenges in employing these principles and standards in their
classrooms as they are too generally written or advocated, and they should be supported by explicit
instructional guidance in how to do so.

In order to support teachers and students, mathematics textbooks have been revised and a variety
of contextually rich problems have been introduced. Features of the new approach include story-telling
mathematics (i.e., contextualizing the mathematical content and connecting it to history, visualization,
music, design, and additional real-life situations) and problem solving. In this context, the significance
of mathematizing from Realistic Mathematics Education (RME) [3] has been more emphasized. RME
is a mathematical instructional theory that argues that students’ mathematical knowledge gradually
becomes more abstract and less context specific by doing mathematics in rich realistic situations [4]. In
his method of didactical phenomenology, Freudenthal considers mathematics as a human activity, so
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students should engage in active mathematizing processes rather than be passive receivers of ready-made
mathematics, which he views as an anti-didactic inversion.

Similarly, Bruner [5] proposes three forms for children’s conceptual development: concrete,
pictorial, and symbolic forms. While RME proposes six core principles for teaching mathematics (i.e.,
the activity principle, reality principle, level principle, intertwinement principle, interactivity principle,
and guidance principle) [6], it is still hard for K–12 mathematics teachers to apply these principles in
their instructional practices due to the lack of specificity in terms of application to K–12 situations.
However, the concreteness fading technique recommended by Bruner [5] provides implications on
specific instructional strategies that help students engage in mathematizing. Concreteness fading is a
technique that is used to support students in gradually fading from manipulating concrete materials to
representing abstract concepts in mathematical learning.

In this article, I argue that the concreteness fading strategy in the context of RME provides fruitful
insights on teaching for mathematical thinking with active mathematizing processes. The case of a
high school mathematics lesson was used to illustrate how the hybrid framework provides benefits
both in theory and practice.

2. Theoretical Backgrounds

2.1. Concreteness Fading

Concreteness fading was originally proposed by Bruner [5]. According to Bruner, children’s
cognitive development is processed in three forms: (1) an enactive or concrete form, in which students
develop mathematical concepts by manipulating concrete objectives physically; (2) an iconic form, in
which they learn to represent a mathematical concept in a graphic or pictorial form; and (3) a symbolic
form, in which they learn to represent a concept with an abstract model or symbols. For example,
students can count three blocks or three apples physically (concrete) to represent the quantity “three”,
and the quantity three can then be represented by three dots in a graphic form or as graphic bars on a
number line, which is still concrete but more abstract than the physical forms. Finally, the quantity
“three” can be represented by a mathematical symbol, the numeral 3. In Korea, this concreteness fading
is well known as Bruner’s EIS (Enactive-Iconic-Symbolic) theory [6,7]. In early childhood education or
special education in the U.S., it is also known as Bruner’s concrete-representational-abstract (CRA) [8,9].
In Singapore, it is known as the concrete-pictorial-abstract (CPA) sequence, and it is nationally
recommended as a key instructional strategy for the development of mathematical concepts [10]. To
emphasize the techniques of gradual progression in a continuum from concreteness to abstractness
(see Figure 1), I adopt the term, concreteness fading [5,11–13].
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Figure 1. Continuum of concreteness fading.

The concreteness fading strategy helps not only in providing students with various types of
representations of an abstract mathematical concept, but also in supporting them to make connections
among those representations by gradually decontextualizing concreteness. There is a significant
amount of research on the benefits for mathematical learning when generating and using multiple
representations (e.g., [12–14]). However, students often fail to intellectually engage in explicit attention
to key concepts by making connections between ideas, procedures, and various representations [15–17],
especially when concrete manipulatives or visual representations are merely introduced without
support to connect them to abstract representations. Students should be supported in making
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connections among the various representations toward the symbolic representations of key concepts.
Thus, the concreteness fading strategy can support students in engaging in mathematizing and
eventually in developing abstract concepts by generating multiple representations, comparing those
representations, and analyzing representations to extract key mathematical concepts.

2.2. Theoretical Framework

The theoretical framework in this study was developed based on previous literature on concreteness
fading [5,11]. Previous studies on RME [3,5,18,19] also contributed to our understanding of the
importance of mathematizing and its process, and studies on concreteness fading suggest key
techniques for learning mathematics using concrete materials, iconic, and symbolic representations.
However, the core principles for teaching mathematizing did not provide specific strategies for teachers
to apply and implement it in their practice. Studies on CRA or CPA such as Fyfe, McNeil, and
Borjas [20], or Flores [21] provide evidence of how concrete and pictorial representations help students
to develop mathematical concepts better; however, clear suggestions on how to provide the connections
between phases (e.g., a connection between the concrete phase and the pictorial phase, or a connection
between the pictorial phase and the symbolic phase) had not been provided until very recently. Thus, in
this section, I use a theoretical framework that helps teachers to implement the ideas of mathematizing
and concreteness fading in mathematical teaching and learning. The framework is shown in Figure 2
and the critical features of connections are additionally elaborated in the last part of this section.
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Concreteness fading strategies support students in developing mathematical concepts and in
experiencing mathematizing, starting with concrete models and physical activities with concrete
manipulatives in the enactive/concrete phase. In the enactive/concrete phase, teachers select and
provide concrete objectives to students and support students in engaging with unambiguous and
familiar concepts. These concrete activities with familiar objectives help students organize informal
concepts that will then be connected to the core mathematical concepts later on.

In the iconic/pictorial phase, teachers can either encourage students to generate pictorial forms or
provide visual representations, depending on the mathematical concepts. This pictorial phase is still
concrete when compared with abstract forms; however, superficial features from the concrete phase
are deleted so that it can be seen as a scaffold or a ladder for connection toward the abstract phase.

The last phase is the symbolic or abstract phase, which is an alternate goal for the development of
mathematical concepts. In this phase, students finally have a schema of the concept so that they can
manipulate these schematized concepts mentally.

The critical features of the framework of concrete fading are the suggestions of instructional
strategies in connecting the stages between phases (e.g., a connection between the enactive and the
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iconic phase, or a connection between the iconic and the abstract phase). The instructional strategies
for the connecting stage between the enactive and iconic phases are as follows:

(1) Teachers support students in interpreting their activities with manipulatives in mathematically
meaningful ways (e.g., generating/providing graphical representations for concrete objectives); and

(2) Teachers delete superficial features of physical activities whenever they occur in the concrete phase.

By deleting unrelated and unimportant features of physical activities, students can gradually step
into making connections between these physical activities and pictorial forms.

When students enter the iconic/pictorial phase, teachers support them by focusing on the core
mathematical concepts with visual representations. In the connection stage between the iconic/pictorial
phase and the symbolic/abstract phase, teachers can

(1) Introduce symbolic forms of mathematical concepts;
(2) Support students in interpreting their activities with visual representations in mathematically

meaningful ways; and
(3) Delete superficial and unrelated features from activities with visual representations by highlighting

the core structures of concepts.

By implementing these strategies, teachers can help students focus on the core structures of mathematical
concepts, which is a stepping-stone to the symbolic phase of concept development.

Teachers help students make connections between pictorial and symbolic representations, and
even connections with concrete activities when students finally enter into the symbolic/abstract
phase. This is indeed helpful for students for understanding abstract concepts through interpreting
unambiguous objects [22,23]. In this phase, it is also important to foster students in engaging in mental
activities with symbolic representations by generating alternative symbolic forms and comparing these
representations and forms [24].

3. Methods: The Empirical Case to Support Concreteness Fading Strategies

Empirical studies for Bruner’s EIS or CRA model have increased, but they are mostly studies in
early childhood mathematics or in elementary school level mathematics. Furthermore, the empirical
supports have focused more on each phase of EIS or CRA in tutoring settings, rather than in classroom
settings where teachers face more complicated real-life situations. In this article, I provide the case
of a high school lesson with the topic of the summation of finite sequences to support the theoretical
framework of the concreteness fading strategy. The summation of finite sequences is often considered
to be one of the most difficult topics in high school because the derivation of formulae for the sums of
different sequences is not easily understandable. Furthermore, the symbol

∑
is new to high school

students following the Korean national mathematics curriculum.

3.1. Participants and Data Sources for the Case

The participant of this study was a high school mathematics teacher in Korea, Ms. K, with four
years of experience in teaching middle school mathematics and three years of experience in teaching
high school mathematics at the time of data collection. The videotaping and observation of her
classroom was conducted in 2015. The high school was an all-female high school and was located in
an urban school district in a metropolitan city in South Korea. The classroom consisted of 35 female
students in second grade, 16–17 years old, at the same high school. Three cameras were used to collect
classroom video data: one focused on the front of the classroom and was located at the back; another
focused on the students as a whole group and was located at the front; and the third one followed the
teacher whenever she led a group discussion, and focused on a small group of students while students
worked in small groups. These classroom video data are the main data used in this study.

As supplementary data, I collected teacher interview video data asking questions about her
lesson goals and reflections of her own teaching; video data for reflections and discussions among the
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observing teachers including myself, Ms. K, and other teachers who observed Ms. K’s class; and the
lesson plans that Ms. K had crafted.

3.2. Context of the Case

The teacher, Ms. K, taught the topic of “finding the generalized sum of finite sequences” and the

class, particularly focused on the concepts of
n∑

k=1
k2 =

n(n+1)(2n+1)
6 and

n∑
k=1

k3 =
{

n(n+1)
2

}2
, by using

blocks, visual representations, and algebraic representation.
The textbook that Ms. K’s school adopted, “High School Mathematics I” [25], mainly presents the

concept by deriving the sum of the squares of consecutive natural numbers, 12 + 22 + 32 + . . .+ n2 =
n∑

k=1
k2 =

n(n+1)(2n+1)
6 , using conventional methods at the beginning of the lesson. To motivate the

students to engage in the abstraction of mathematical concepts using conventional methods, Korean
textbooks usually present each mathematical concept starting with the Problems of Inquiry (or Opening
Problems) before introducing conventional methods. This lesson unit in the textbook also presents the
Problems of Inquiry first, which initiates students’ thinking on the topic more broadly, and motivates
students toward abstract mathematical thinking through numerical representations listed in the
textbook (see Figure 3).
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Figure 3. Problems of inquiry in a Korean textbook (opening problems).

Next, the textbook guides the learners toward an understanding of how to derive the formula for the
sum of the squares of consecutive natural numbers using conventional methods (see Figure 4). Figure 4

shows (1) a reminder of the previous lesson’s concept 1 + 2 + 3 + . . .+ n =
n∑

k=1
k =

n(n+1)
2 , and (2) a

derivation of the formula 12 + 22 + 32 + . . .+ n2 =
n∑

k=1
k2 =

n(n+1)(2n+1)
6 using numerical representation.

For
n∑

k=1
k3 =

{
n(n+1)

2

}2
, the textbook recommends that students use the identity, (x− 1)4

− x4 =

4x3 + 6x2 + 4x + 1, similar to
n∑

k=1
k2 =

n(n+1)(2n+1)
6 . Next, the textbook provides some exercises

related to these two formulae, and at the end of the lesson, there are some visual representations of
n∑

k=1
k3 =

{
n(n+1)

2

}2
(Figure 5) and

n∑
k=1

k2 =
n(n+1)(2n+1)

6 (Figure 6).
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Figure 4. Algebraic representation of the ∑ 𝑘2𝑛
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𝑛(𝑛+1)(2𝑛+1)

6
 in the textbook. 

For ∑ 𝑘3𝑛
𝑘=1 = {

𝑛(𝑛+1)

2
}

2

, the textbook recommends that students use the identity, (𝑥 − 1)4 −
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𝑘=1 = {

𝑛(𝑛+1)

2
}

2

.  

Let the length of the small square in the diagram be 1.  

Then, the area of the blue square is 12, and there is only one blue square. 

There are 2 squares with area 22. 

There are 3 squares with area 32. 

There are 4 squares with area 42. 
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Hence, 1 × 12 + 2 × 22 + 3 × 32 + 4 × 42 = 13 + 23 + 33 + 43 = (1 + 2 + 3 + 4)2 = {
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2
}

2

 

Therefore, ∑ 𝑘34
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2
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2

 

When we generalize this equation, we obtain ∑ 𝑘3𝑛
𝑘=1 = (1 + 2 + 3 + ⋯ + 𝑛)2 = {

𝑛(𝑛+1)

2
}

2

 

Figure 5. Visual representation of
n∑

k=1
k3 =

{
n(n+1)

2

}2
.
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Figure 6. Visual representations of
n∑

k=1
k2 =
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3.3. Data Analysis

Video observation data were analyzed to illustrate how Ms. K used concreteness fading strategies
to support the students’ conceptual understanding. Video data were transcribed and summarized in
video logs with time stamps so that the instructional ways and students’ works were summarized in
order of time. The instructional supports related to concreteness fading strategies were identified as
coding. After the video logs with transcripts were coded, the video data were reviewed to verify the
coding. Two trained research assistants coded the video logs separately, and three researchers, the
two assistants and the principal investigator, discussed the identified concreteness fading strategies to
assess inter-rater reliability. As the phases and strategies were clearly identifiable, the agreement was
100%. The textbook and students’ works were also analyzed with regard to the presentation of such
instructional strategies.

4. Results

4.1. Textbook: Abstract Instruction

The ways in which the textbook provides concrete, visual, and abstract representations on the
topic of “finding the generalized sum of finite sequences” is not based on the concreteness fading
strategy. The concreteness fading strategy differs from merely providing concrete materials and
visual representations. The textbook provides abstract representations first (Figure 4), and then the
visual representations are provided at the end of the lesson unit (Figures 5 and 6). This is not an
implementation of the concreteness fading strategy but abstract instruction [14]. This is typically used
in school algebra classes in the U.S. [26], or traditional mathematics classes in Korea. However, Ms.
K, did not use the textbook in a written way per se, but taught the lesson using concreteness fading
strategy by creating her own student learning activity sheets, which differed from the textbook.

4.2. Activity Sheet: Concreteness Fading Strategies

Ms. K created an activity sheet with different ways of explaining mathematical concepts and
representations compared with the textbook at her school-based lesson study group with mathematics
teachers of the same grade. The activity sheet is attached in Appendix A as well as another activity
sheet that she prepared that includes visual representation hints, and is attached in Appendix B.

The activity sheet that Ms. K created and provided to her students included concreteness fading
strategies. While the textbook provides abstract representation first, the activity sheet guides students
to use concrete materials such as magnetic blocks to represent each concept. For example, the first
activity on the activity sheet guides students to represent 1 + 2 + 3 using magnetic blocks, first with the

goal of representing
n∑

k=1
k =

n(n+1)
2 . The second question aims to represent 1 + 2 + 3 + 4 with a fading

of the concreteness, (i.e., students can use magnetic blocks to represent 1 + 2 + 3 + 4 but are starting to
broaden their thinking of how to expand the concept (see Figure 7)). Therefore, the third question asks
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how to represent 1 + 2 + 3+ . . . + 10,000 using multiplication (i.e., symbolic notion). The last question

is on how to represent
n∑

k=1
k using multiplication without

∑
(i.e., 1 + 2 + 3 + . . .+ n =

n(n+1)
2 ).
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2 .

The activities Ms. K provided in her lesson activity sheet have already been shown to be
concreteness fading strategies. The concreteness fading instructional strategy, using the instructional
support by Ms. K during the lesson, is described in the next section.

4.3. Concreteness Fading Instructional Strategies

Ms. K’s concreteness fading instructional strategies are summarized in Table 1. Table 1 is
summarized and described within the theoretical framework (i.e., Figure 2) that emphasizes the
connecting phases.

The activity that she provided to small groups of students involved making sense of the three

equations of the sums of the power of positive integers,
n∑

k=1
k =

n(n+1)
2 ,

n∑
k=1

k2 =
n(n+1)(2n+1)

6 , and

n∑
k=1

k3 =
{

n(n+1)
2

}2
, by using magnetic blocks first, and guiding students in generalizing the sums

step-by-step, as described in Section 4.2.
Briefly describing her instruction, in her lesson, Ms. K started the lesson with an opening inquiry

question to motivate students to engage in the lesson topic and the learning objectives. She then
conducted a small group activity using the activity sheet by suggesting to students the use of concrete
manipulatives (i.e., the magnetic blocks such as shown in Figure 7). Students in each group were given
magnetic blocks so that they could attempt to construct their own models. During the group activity,
Ms. K helped the students in determining the models or rules using blocks through collaboration and
communication with each other in small groups. When the students struggled to find the models, Ms.
K distributed the visual representation hint sheets (Figures 6 and 8).
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Table 1. Concreteness fading instructional strategies.

Concreteness Fading
Phases Concrete Phase Connecting Phase Pictorial Phase Connecting Phase Abstract Phase

n∑
k=1

k =
n(n+1)

2

Step-by-step approach.
Representation of 1 + 2 +
3 using magnetic blocks
first.
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k =
n(n+1)

2 .

n∑
k=1

k3 =
{
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Representation of
13 + 23 + 33 using
magnetic blocks first.
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blocks.  

Providing a visual hint 

sheet for struggling 

students. (Figure B2)  

Supporting students in 

interpreting their activities 

with magnetic blocks or the 

visual hint sheet.  

Highlighting how the re-

organized blocks can be 

represented in algebraic 

forms.  

Students use an algebraic 

form, ∑ 𝑘𝑛
𝑘=1

3
=  {

𝑛(𝑛+1)

2
}

2

for 

representation by making 

connections between blocks, 

visual diagrams and the formula. 

They first figure out that the re-

organized blocks represent 

 (1+2+…+n)x(1+2+…+n), 

i.e., {
𝑛(𝑛+1)

2
}

2

. 

Ms. K summarizes the connection 

by rephrasing the students’ 

presentation (Figure 10).  
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represented in algebraic 

forms.  

Students use an algebraic 

form, ∑ 𝑘𝑛
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3
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for 

representation by making 

connections between blocks, 

visual diagrams and the formula. 

They first figure out that the re-

organized blocks represent 

 (1+2+…+n)x(1+2+…+n), 

i.e., {
𝑛(𝑛+1)

2
}

2
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Ms. K summarizes the connection 

by rephrasing the students’ 

presentation (Figure 10).  

Asking students how to
represent 12 + 22 + 32 +
. . .+ n2 using
re-organizing blocks.

Providing a visual hint
sheet for struggling
students. (Figure A2)

Supporting students in
interpreting their
activities with magnetic
blocks or the visual hint
sheet.

Highlighting how the
re-organized blocks can
be represented in
algebraic forms.

Students use an algebraic

form,
n∑

k=1
k3 =

{
n(n+1)

2

}2

for representation by
making connections
between blocks, visual
diagrams and the formula.
They first figure out that
the re-organized blocks
represent
(1 + 2 + . . . + n)x(1 + 2 +
. . . + n),

i.e.,
{

n(n+1)
2

}2
.

Ms. K summarizes the
connection by rephrasing
the students’ presentation
(Figure 10).
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Table 1. Cont.

Concreteness Fading
Phases Concrete Phase Connecting Phase Pictorial Phase Connecting Phase Abstract Phase

n∑
k=1

k2 =
n(n+1)(2n+1)

6

Step-by-step approach.
Representation of
12 + 22 + 32 using
magnetic blocks first.
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visuals and abstract forms of 
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𝑘=1

2
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𝑛(𝑛 + 1)(2𝑛 + 1)
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Instructional support 

strategies 

Ms. K focuses on 

sense-making of each 

concept by 

supporting students 

in operating the 

magnetic blocks (i.e., 

concrete objectives 

and physical 

activities) with step-

by-step questions.  

Ms. K supports her students 

in representing simpler 

concepts with magnetic 

blocks, and also in 

interpreting their activities 

with manipulatives in 

mathematically meaningful 

ways.  

Ms. K focuses on concept 

development and 

meaningful support by 

providing visual 

representations, especially 

when students are 

struggling with making 

connections between 

concrete activities and 

abstract representations.  

Ms. K guides students in 

deleting superficial features 

from manipulatives or visual 

presentations.  

She highlights core structures 

of mathematical concepts.  

Ms. K fosters students in using 

abstract representations of the 

concept by supporting 

generalizations and core abstract 

concepts. 

She also supports students in 

generating different algebraic 

forms of a concept from their 

concrete and visual 

representations.  

Representing
12 + 22 + 32 + 42 both
using three pairs of blocks
of 12 + 22 + 32 + 42 and
implicitly expanding it
into an abstract
representation.
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meaningful support by 
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Asking students how to
represent 12 + 22 + 32 +
. . .+ n2 using complied
three sets of blocks.

Providing a visual hint
sheet for struggling
students. (Figure A1)

Supporting students in
interpreting their
activities with magnetic
blocks or the visual hint
sheet.

Selecting a different model
from the small group
works to present to the
whole group: A student
presents her group’s
model that is different
from the hint sheet using
a diagram (Figure 12)

Students use two ways of
representing algebraic

forms of
n∑

k=1
k2:

(a) n(n+1)(2n+1)
6

(b) n(n + 1) 2n+1
2 ÷ 3

Several students
demonstrate their
understanding of
connections among blocks,
visuals and abstract forms
of

∑n
k=1 k2 =

n(n+1)(2n+1)
6

Instructional support
strategies

Ms. K focuses on
sense-making of each
concept by supporting
students in operating the
magnetic blocks (i.e.,
concrete objectives and
physical activities) with
step-by-step questions.

Ms. K supports her
students in representing
simpler concepts with
magnetic blocks, and also
in interpreting their
activities with
manipulatives in
mathematically
meaningful ways.

Ms. K focuses on concept
development and
meaningful support by
providing visual
representations, especially
when students are
struggling with making
connections between
concrete activities and
abstract representations.

Ms. K guides students in
deleting superficial
features from
manipulatives or visual
presentations.

She highlights core
structures of
mathematical concepts.

Ms. K fosters students in
using abstract
representations of the
concept by supporting
generalizations and core
abstract concepts.

She also supports
students in generating
different algebraic forms
of a concept from their
concrete and visual
representations.
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Figure 8. Visual representation hint sheet for
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After the small group activity, students presented their group work of how they made sense of the
concept using magnetic blocks and abstract representations to the entire class. Students finally made
connections between concrete manipulatives, visual representations, and abstract representations with
the support of Ms. K.

4.3.1. Instructional Strategies in the Opening Phase

In the opening phase, Ms. K inquired whether the students were engaged with the learning
objectives by asking thought-provoking questions, “How can we figure the value of 12 + 22 + 32 +

. . .+ 10002 out in easier ways?”, using the opening problem provided in the textbook (Figure 3). This
question would be explored throughout the whole lesson rather than receiving the answer right away,
so that students could engage with the lesson objectives during the lesson.

Subsequently, she provided the learning objectives of the day’s lesson: (1) students can prove
the formulae of the sums of the powers of positive integers, and can solve related problems; and
(2) students work collaboratively and all students engage in collaborative work. Students read the
learning objectives aloud together as Korean teachers believe that this reading-aloud-together makes
students more aware of what they are going to learn throughout the lesson.

4.3.2. Instructional Strategies in Concreteness Fading Phases

After reading the learning objectives together, Ms. K led small group work described on the
activity sheet that contained three mathematical concepts (e.g., making sense of three equations,

n∑
k=1

k =
n(n+1)

2 ,
n∑

k=1
k2 =

n(n+1)(2n+1)
6 , and

n∑
k=1

k3 =
{

n(n+1)
2

}2
) in the way of concreteness fading. The

three mathematical concepts are provided in step-by-step descriptions, as described in Section 4.2.
Each small group was given magnetic blocks, so that they could attempt to construct their own models
(i.e., concrete representation) to represent abstract models and to make sense of the abstract model that
they generalized from their concrete models.

In particular, during the small group activity, Ms. K supported students in representing simpler
sums first such as 1 + 2 + 3, 12 + 22 + 32, or 13 + 23 + 33 using blocks. She focused on the students’
understanding of each concept by fostering them in operating the blocks. For example, she asked
questions while the students discussed how to calculate 13 + 23 + 33 using the previous method of
calculating 1 + 2 + 3.

T: Can you remember how to represent 1 + 2 + 3 + 4 using blocks? S1: Yes. T: How did you do that?
S1: We first made one stair model (see Figure 7) and added another model upside down. Then, we
calculated the area of all blocks using the rectangle area model. Then divided by 2. T: That’s right.
Can you do it in similar way for 12 + 22 + 32? S2: We tried, but it is not that simple. T: Then, we can
do 13 + 23 + 33 first. What does 13 look like? What about 33? S2: A cube? // S1: A rectangle? Square?
T: Yes, a cube. You will reorganize these blocks, but the hint is that you will do this in the plane rather
than thinking of a 3-D structure.
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While Ms. K fostered students in reorganizing the blocks, several groups of students were struggling
to disassemble and re-assemble the blocks to model the generalization of the sums. When students
struggled to build the models, Ms. K distributed the visual representation hint sheets (Figures 6 and 8).
She then kept supporting students in representing 13 + 23 + 33 + 43 using both blocks and thinking
about how to disassemble and re-assemble the blocks, like that shown in the visual hint sheets (see
Figure A1, Figure A2). While asking students to do so, Ms. K also supported students in interpreting
their activities with blocks to generalize the sums.

T: So, are you disassembling the blocks of 13 + 23 + 33 + 43? Then, what shape are they going to be in
the plane? Students: Square! T: Yes, it looks like a square (see second diagram in Figure 8). Then, what
is the length of one side of the square? S1: Oh, n? //S2: n + 1? (students had already started thinking of
the generalization from the 4th model of the sum) T: That’s right. A square with n-length. Then, what
about the re-assembled square? What will be the length of one side of this square (see the very right
diagram in Figure 8)? S2: Oh, it’s the sum of n. T: Yes, it is going to be 1 + 2 + 3 + . . . + n. Then, what
will be the area of the square? Students: Wow, it’s square of (1 + 2 + 3 + n).

This is evidence that the instructional support strategies that Ms. K used were helpful in supporting
students in making connections between the concrete, visual, and abstract representations in
mathematically meaningful ways.

After the activity, Ms. K also made students present their models to the whole group. Several

students demonstrated their understanding of the models for
n∑

k=1
k3 =

{
n(n+1)

2

}2
using magnetic

blocks in front of the whole class (see Figure 9) and other students also presented their models for
n∑

k=1
k2 =

n(n+1)(2n+1)
6 (Figure 11).
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Figure 9. Students present their models for
n∑

k=1
k3 =

{
n(n+1)

2

}2
worked in small groups using blocks.

Figure 9 shows that two students of a small group presented how they constructed their model
using blocks. Students’ understanding was shown in their presentation on how they made connections
between concrete and abstract representations or between concrete, visual, and abstract representations.
After the detailed mathematical ideas were discussed with others during the student presentation
time, Ms. K rephrased the students’ voices from the presentation and discussion so that other groups
had a better understanding and made better connections among different representations. She also
highlighted the core structures of each model with different representations. Ms. K, then summarized
and made connections between the concrete materials and their corresponding symbolic representations
(Figure 10).
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Figure 10. Ms. K’s connection and generalization for
n∑

k=1
k3 =

{
n(n+1)

2

}2
.

For
n∑

k=1
k2 =

n(n+1)(2n+1)
6 , a student presented her group work using a diagram and block model, as

shown in Figure 11 (Figure 12 shows a larger version of what the student used as a visual representation
during her presentation in Figure 11). In her presentation, students in her group noticed that there
would be one more layer in the cube-like model; thus, they designed another cube-like model using
blocks, and the diagram on the blackboard in Figure 11 visually shows a combination of two cube-like
models (this diagram is recreated in Figure 12). The upper and lower levels of the diagram each show

three
n∑

k=1
k2 expressions (i.e., there was a total of six

n∑
k=1

k2 expressions in the diagram in Figure 12), and

the volume of the cuboid was n(n + 1)(2n + 1). Therefore, one
n∑

k=1
k2 expression should be divided by

six (i.e.,
n∑

k=1
k2 =

n(n+1)(2n+1)
6 ).
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Figure 11. Students presenting their group work on connecting blocks and visual representation for
n∑

k=1
k2 =

n(n+1)(2n+1)
6 .

Similar to the instructional support strategies that she used in the lesson episodes of the other two
sums, Ms. K also supported students in representing their own ways of understanding using concrete
representation and visuals, and to make connections between them. Thus, students represented

two versions of the algebraic forms of
n∑

k=1
k2 as (a) n(n+1)(2n+1)

6 and (b) n(n + 1) 2n+1
2 ÷ 3. She also

highlighted the core structure of the models from the other students’ presentations, and repeated what
the student had presented to the whole group. During this time, Ms. K did not rephrase but rather
repeated, as the student’s presentation was very clear, so that other students could easily interpret the
model and make connections among the concrete, visual, and abstract representations.
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Figure 12. The visual model for
n∑

k=1
k2 =

n(n+1)(2n+1)
6 presented by a student representing her group.

5. Conclusions and Discussion

The ways in which Ms. K supported her students’ conceptual development can be described within
the concreteness fading strategy framework. The critical features of her instructional support strategies
were helping students to not only merely interact with manipulatives (i.e., concrete representations),
but also to use different representations and make connections between concrete, visual, and abstract
representations. Her supporting ways were to fade out the superficial features that are not helpful
in developing concepts with abstract representations, and to make connections among the different
representations that are the key for conceptual understanding [27]. This conclusion is also supported by
a recent experimental study which revealed that children with explicit guides for making connections
between different representations showed better outcomes than those who were provided with
comparisons between representations [28,29].

The concept of sequences extends to early algebra for exploring patterns using different
representations and strategies. Furthermore, it is critical to connect between representations and
ultimately use symbols to develop algebraic thinking [30] or conceptual understanding [27]. High school
mathematics teachers sometimes fail in letting students explore mathematical concepts using various
representations and in making connections between representations; thus, an ultimate understanding
of the core concepts is often lacking. The case described in this study allows for the development
of alternative perspectives and strategies for mathematics instruction that will ultimately contribute
to the arsenal of diverse methods of mathematical learning among the students. The instructional
strategies that Ms. K used in each phase described in Table 1 provide insights into how other teachers
can support their students to do conceptual understanding in their mathematics classrooms. The
specifically described strategies may be useful to apply them in their classrooms.

I believe that concreteness fading strategies in school mathematics will help students develop a
better conceptual understanding of mathematics. Some articles have pointed out that using concrete
manipulatives alone, or merely comparing two different representations does not guarantee successful
conceptual understanding [28,31], even though concrete manipulatives offer opportunities to do that.
This current study also points out that the concreteness fading instructional strategy emphasizes
the connection stages between the phases. One of the challenges teachers face while using concrete
materials in their mathematics classrooms are the lack of explicit guides for linking phases [31]. This
case study contributes not only to the possibility of expanding the concreteness fading instructional
strategy framework in mathematics classrooms, but also has implications for explicit instructional
strategies of linking phases, especially in high school mathematics.

Concreteness fading instructional strategy is a promising and sustainable instructional strategy for
fostering students’ conceptual understanding, especially for students with different learning strategies
in mathematics. Although this is a high school case, so we may need more cases at different school
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levels, there are more empirical studies to support this promising strategy (e.g., [29,31,32]). I do not
argue that this strategy is a panacea. However, it supports students’ conceptual understanding by
using multiple representations and explicit guides for making connections between them. Thus, this
study of a concreteness fading instructional strategy also has implications on pre-service teacher
education that has been put in place since the educational reform movement and curriculum change
(e.g., [33]) in Korea. The specified instructional strategies from this case and the proposed theoretical
framework can be used in teacher education and professional development resources, which will
produce sustainable educational reforms.
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