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Abstract: An emissions trading system is a market instrument for pollution control that has been
used in China for many years. The Ministry of Environmental Protection of China has approved the
implementation of emissions trading pilot projects in 11 provinces since 2007, yet the effectiveness of
the policy has not been comprehensively estimated. With panel data from 29 provinces and cities in
China between 2003 and 2012, this study uses the data envelopment model-slack based measurement
(DEA-SBM) method to measure environmental efficiency indicators and a difference in difference
(DID) model to examine the impact of the emissions trading system on environmental efficiency.
The results indicate that the policy has significantly improved environmental efficiency in the pilot
provinces. However, the effects are heterogeneous with different efficiency levels across the diverse
regions. Higher impacts were found in the central and western regions. Some suggestions for the
optimization of the emissions trading system are suggested in this study.
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1. Introduction

The Chinese economy has developed rapidly in recent decades as a result of economic reforms.
However, alongside this economic development, environmental issues have become increasingly
prominent [1,2]. The recent outbreak of a series of environmental pollution incidents, such as the
cyanobacteria in Tai Lake during the summer of 2007, the national smog in the winter of 2012, and the
dead pigs floating in the Huangpu River in 2013, highlight the negative environmental externalities
that accompany Chinese economic growth [3–5]. These problems seriously affect individuals’ health
and regional environmental sustainability [6,7].

In order to alleviate the problems associated with the use of environmental resources and economic
development, governments have developed a series of environmental instruments since the 1980s.
One of the most important policies is the emissions trading policy. In 1989, the National Environmental
Protection Administration issued “Measures for the Implementation of Water pollution permit”, which
is the first law regarding water pollution permit. Since then, the central government started to introduce
the pollution trade system in some pilot cities. The emission trading system was initiated in the
2000s, and it aimed to control the acid rain issues in some cities. In 2001, the first transaction for
Sulfur dioxide was closed in Jiangsu province. The following regions including Shandong province,
Shanxi province, Shanghai, etc. joined the trade market. The water emission trading system started to
establish in 2001. Since piloting the emissions trading policy in 2002, 11 provinces, including Hebei,
Henan, Hubei, Hunan, Jiangsu, Inner Mongolia, Shanxi, Shaanxi, Tianjin, Zhejiang, and Chongqing,
have participated, and environmental quality has been significantly improved in recent years. The
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State Council promulgated the pilot project and further promoted the paid use and trading of emission
rights in the market in 2007. The purpose is to further utilize and improve the emissions trading
market and achieve energy conservation and emission reduction targets.

The proper use of environmental resources can promote the sustainable development of the social
economy [8,9]. The emissions trading policy emphasizes market mechanisms to adjust emissions,
encouraging enterprises to improve their own emission reduction technologies and thereby achieve
environmental governance goals [10–12]. Compared with other environmental tools, the emission
trading policy can effectively reduce management costs for enterprises through information disclosure
and trading platforms and prevent the occurrence of “government failure” [13,14]. The control system
and the paid use of environmental resources help to improve the quality of the ecological environment
and transform the model of economic development to one which is more environmentally sustainable.
Thus, it is important to examine the implementation of emissions trading systems and to calculate the
environmental dividends for enterprises and society.

An emissions trading system helps to alleviate the environmental resources shortage crisis [15].
Many studies have evaluated the effectiveness of this environmental tool in China, but most have
focused on analyzing the short-term emission reduction effects. For example, Li and Shen (2008) [16]
use industrial provincial panel data (1996–2005) to find that the collection system of sewage charges
has a more significant impact on emission reductions compared to the emission trading system. Jin and
Shen (2010) [17] suggest that the emissions trading system has improved social welfare and solved the
environmental externalities. Yan and Guo (2012) [18] use the difference in difference (DID) model to
show that the amount of sulfur dioxide produced has reduced significantly due to the implementation
of the trading policy.

In addition to emissions reduction, the environmental tools of emission rights may also generate
benefits for environmental governance and economic performance [19,20]. Brannlund et al. (1998) [21]
use the data envelopment analysis (DEA) efficiency model and find that the Swedish paper industry
achieved maximum yields under the system of emissions trading. Fare and Ahmed (2014) [22] extend
Brannlund’s model and suggest the emissions trading system can bring significant economic dividends
to enterprises. Chen (2010) [23] simulates the gains and losses to China in the next 50 years and find
that although the technological progress of energy-saving and emission reduction has a negative
impact in the short-term, the growth rate of all factors will maintain a stable trend in a long run and
achieve a win-win situation for the economy and the environment.

Existing research mainly focuses on system design, system improvement, and legal norms [24–26].
Policy evaluations are mostly concentrated on the reduction of sulfur dioxide emissions, while studies
on water pollution rights transactions are rare [27,28]. Some research has examined the environmental
and economic effects following the introduction of emissions trading [29,30]. However, studies
about environmental governance efficiency and environmental economic efficiency are limited [31,32].
Most of the literature on environmental governance efficiency focuses on energy use and emission
reduction policies [33–35], which has limited application to emissions trading systems. This paper
assesses the evolution of China’s emissions trading system in the pilot areas and applies a DEA-slack
based measurement (SBM) method to measure regional efficiency indicators including environmental
governance efficiency and environmental economic efficiency. Finally, based on the panel data of
29 provinces and cities between 2003 and 2012, a DID method is used to evaluate the implementation
effects of the emission trading system. The existing problems and countermeasures to them are also
proposed and discussed.

2. Methodology and Data

2.1. Environmental Efficiency Evaluation

Following previous studies, we use the DEA method to evaluate environmental efficiency across
the study area. DEA has been widely used for evaluating environmental governance and technical
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efficiency in recent years [31,36,37]. The main principle of this method is to measure the changes
in productivity or economic output under the constraints of environmental resources through an
increase or decrease in inputs and outputs of different proportions and along different vectors [38].
However, this method can be biased if investment and production are insufficient or if production
is too high [39,40]. Tone (2001) proposes a non-radial, non-angled DEA, slack based measurement
(SBM), which improves the conditions of input and output slack variables [41]. In this study, we
employed a DEA-SBM method to measure environmental governance efficiency and environmental
economic efficiency.

2.1.1. Environmental Governance Efficiency

Assuming each decision-making unit (a province in this study) uses n inputs with an input matrix
of X = (x1, x2 . . . xn) ∈ Rn

+ to produce m outputs with an output matric Y = (y1, y2 . . . ym),∈ Rm
+; λ

is the weight of the coefficient vector, λ ≥ 0; µ+ represents the output relaxation vector, µ+ ≥ 0; µ−

represents the input relaxation vector, and µ− ≤ 0. Then, the environmental efficiency measurement
model of the province to be assessed is:

min
θε{1,...,n}

Eθ =
1− 1

n
∑n

i=1
µi
−

xi0

1 + 1
m

∑m
i=1

µ+r
yi0

(1)
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x jiλi + µ j
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n∑
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where Eθ represents the θ-th environmental management efficiency of the resource (the water or
atmosphere), x0 is the input vector, y0 is the output vector, µ+r is the r-th output indicator, and µ−i
is the i-th input indicator. When Eθ = 1 then environmental governance is perfectly effective with
µ+r = µ−i = 0, implying there is no redundant input or output. When 0 ≤ Eθ < 1, environmental
governance in the region is not effective, and there is potential for improving it.

2.1.2. Environmental Economic Efficiency

Based on the assumptions of Model 1, the input factors are unchanged, and m1 represents the
number of environmental positive goods with a vector of Yg

m1
=

(
yg

1 , yg
2 . . . y

g
m1

)
∈ Rm1
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the number of environmental negative goods with a vector Yb
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(
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b
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)
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}
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The environmental economic efficiency measurement model to be evaluated is:

min
θε{1,...,n}
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∑n

i=1
y ji
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where EEθ represents the θ-th environmental economic efficiency. µg
r is product shortage for the

environmental positive goods, and µb
r is product shortage for the environmental negative goods. When

EEθ = 1, then the environmental economy of the unit is perfect effective with µg
r = µb

r = µ−i = 0, and
when 0 ≤ EEθ < 1, this implies that the regional environmental economy still has potential dividends
that can be released.

2.2. Emissions Trading System Effect Estimation: A DID Model

The effects of the emissions trading system on environmental efficiencies can be estimated by the
DID model. The DID model is a widely used method for policy evaluation that essentially estimates
the net impacts of a policy on the people it acts on [42–44]. The model divides the sample into a control
group and a treatment group. The control group is the object that has not been affected by the policy,
the treatment group is the object affected by the policy, and then the policy is implemented by changing
the two groups of experiments accordingly. In recent years, many studies have used this method to
evaluate the emission reduction effect of the emissions trading policy [45–47]. In this study, we use
11 provinces and municipalities (Hebei, Henan, Hubei, Hunan, Jiangsu, Zhejiang, Tianjin, Chongqing,
Inner Mongolia, Shanxi, and Shaanxi) that piloted emissions trading in 2007 as treatment groups, and
then employe propensity score matching (PSM) to match the remaining 18 provinces as control groups.
The PSM method is used to find the control group with respect to the time of policy implementation,
divide into the non-pilot period (2003–2006) and the pilot period (2007–2012). We set the period before
the pilot of emissions trading policy to be 0, and the period after the implementation of the emissions
trading policy to be 1. The provinces in effect are indicated by the dummy variable treated, treated = 0
represents the unpiloted area, treated = 1 represents the pilot area, and the interaction between the
period and the treated area is the net effect of the policy. The baseline model can be summarized as:

Yi = β0 + β1period + β2treated + β3period× treated + ε (3)

where Yi is the environmental governance efficiency or environmental governance performance in the
province, and the interaction term β3 is the effect of the policy.

In order to better estimate the model and reduce bias, we expand the basic model by incorporating
a control variable matrix based on previous studies [48–50]. This included eight factors: the capital
investment in enterprise environmental governance, the collection of sewage charges, the level of
economic development, the living standards level of each region, the degree of industrialization in
each region, the ownership structure, the proportion of heavy industry, and whether the province is in
the central and western regions. Equation (3) can be seen as:

E = β0 + β1period + β2treated + β3period× treated + α1 ln eaw + α2 ln pl f
+ α3 ln gdpp + α4 ln urb + α5indrate + α6storate + α7hirate

+ α8exeast + ε
(4)

where E represents indicators such as wastewater environmental treatment efficiency (EW), waste gas
environmental treatment efficiency (EG), wastewater environmental economic efficiency (EEW), and
gas environmental treatment efficiency (EEG).

eaw represents self-raised funds by enterprises to measure their environmental awareness. The
environmental awareness of enterprises has a significant impact on regional environmental governance
efficiency [51,52]. Companies’ stronger awareness of environmental governance is associated with
a higher level of environmental technologies, more enterprises participating in the environmental
guidelines advocated by the government, and improved environmental management efficiency.
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pl f is the degree of regional environmental supervision. The sewage charge system is the
main system for the implementation of pollution control in China and represents the intensity
of environmental regulation. It has been shown that the sewage charge system has improved
environmental quality and achieved the goal of emissions reduction in recent years [53,54]. However,
the effects are heterogeneous across regions. Areas with higher charging standards have a greater
degree of environmental supervision, and vice versa. We use charging standards as a proxy variable
for regional environmental supervision.

gdpp represents per capita gross domestic product (GDP) and is used to measure the economic
development and living standards of residents in each region. Generally speaking, the higher the living
standards of residents in a region, the higher the demand for good environmental quality. This leads to
the government increasing investment in the monitoring of the environment, thereby affecting regional
environmental governance and affecting the level of environmental economic efficiency [55–57].

urb is the urbanization rate calculated by the urban population/total population. Most scholars
believe that the process of urbanization has an impact on environmental pollution [58,59]. The main
reason is that the acceleration of urbanization brings increasing amounts of polluting emissions and
reduces the efficiency of environmental pollution treatment. However, the expansion of urbanization
also brings a shift in heavy industry to the tertiary industry, thereby improving environmental and
economic efficiency and increasing the degree of emissions trading [60,61].

indrate is the ratio of the output value of industrial enterprises above a designated size (in terms
of the value of output) to the GDP to measure the intensity of industrialization. Most studies have
shown that the higher the intensity of industrialization, the more serious the pollution situation, and
the relatively lower level of environmental governance and economic performance, which affects the
implementation of emissions trading policies [62,63].

storate is the proportion of industrial output value of the state-owned and state-holding enterprises
above a designated size over the total industrial output value, which measures the strength of ownership.
State-owned and state-held enterprises more strongly emphasize economic outputs and benefits but
might ignore the negative effects of environmental pollution on society. In general, the higher the
proportion of enterprises, the more serious their pollution will be [64,65]. However, large state-owned
and state-holding companies often have a brand associated with greater social responsibility, and as
such are required to demonstrate more investment in pollution control. Thus, the ownership structure
may have dual impacts on regional pollutant emissions.

hirate represents the proportion of the output value of heavy industrial enterprises to the total output
value of industrial enterprises to measure the industrial structure. Heavy industrial enterprises are the
main source of pollution emissions. With the rapid economic reforms, heavy industrial enterprises
have shifted from first-tier cities to inland cities, while less-developed areas have gradually become
"pollution havens". This may have a certain degree of negative impact on regional environmental
governance efficiency and economic performance. The implementation of emissions trading policies
also increases the cost of heavy industrial enterprises’ pollution control, which affects the regional
industrial structure.

exeast is a regional dummy variable for the eastern region with 0 and 1 for otherwise. The level of
economic development in the east of China is much higher than in other regions which might lead
to heterogeneity issues in the estimation. The dummy variable can be used to control the possible
heterogeneity with other regions.

2.3. Data

The sample interval studied in this paper is from 29 provinces in China from 2003 to 2012. Due
to the lack of data, Tibet, Qinghai, Hong Kong, Macao, and Taiwan regions were not included in the
scope of this study. The variable data mainly comes from the 2004–2013 China Environmental Statistics
Yearbook, the 2004–2013 China Statistical Yearbook, the 2005–2013 China Environmental Yearbook,
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and the 2004–2013 China Industrial Economics Statistical Yearbook. The descriptive statistical analysis
of the variables is shown in Table 1.

Table 1. Descriptive statistical analysis of variables.

Variable Description Mean Standard
Deviation Min Max.

eaw Self-raised funds by enterprises (10 thousand
Yuan) 11.61 0.86 8.39 14.19

plf Degree of regional environmental supervision
(sewage charges) 10.55 0.86 7.65 13.03

ind The ratio of the output value of industrial
enterprises above designated size to the GDP 0.43 0.07 0.19 0.57

sto

The proportion of industrial output value of
the state-owned and state-holding enterprises
above designated size over the total industrial

output value

0.47 0.22 0.11 0.82

hi
The proportion of the output value of heavy

industrial enterprises to the total output value
of industrial enterprises

0.75 0.12 0.44 0.95

gdpp Per capita GDP (10 thousand Yuan) 9.88 0.68 8.19 11.35

urb The urbanization rate(urban population/total
population) 0.46 0.16 0.86 0.23

exeast Tegional dummy variable for eastern region
with 0 and 1 for otherwise 0.65 0.48 0 1

To study environmental governance efficiency, the selected input indicators were the funds and
equipment invested in environmental governance. The output indicators were emissions data such as
the emissions standards along two dimensions: wastewater treatment and air pollution treatment. The
specific explanations are as follows.

a. Direct capital investment in environmental treatments, including the amount of investment in
wastewater treatment and the amount of investment in air pollution treatment.

b. Labor input. We selected the number of full-time employers that engage in environmental
protection activities to measure a region’s human resources in environmental governance.

c. Technical inputs, including the number of operating systems for wastewater and air pollution.
d. Treated outputs, referring to the amount of wastewater and air pollution discharged up to the

standard, and the amount of industrial wastewater and industrial air pollution discharged.

Similarly, environmental economic efficiency was measured in terms of maximizing environmental
resource utilization. In this study, we define the total industrial output value of industrial enterprises
above the designated size (annual income over 20 million RMB) in each region as the “good” product,
and the associated total demand for the chemical oxygen and the total emissions of sulfur dioxide as
the “bad” product. The environmental economic efficiency of water and atmosphere include:

a. Capital investment, the net value of industrial fixed assets above the designated size.
b. Labor input, the number of employers in industrial enterprises above the designated size.
c. Resources and energy inputs. The use of environmental and energy resources are important

to input through the production process of enterprises, and they are also the main source of
pollutant emissions.

Before modeling, we apply the unit root test (Im-Pesaran-Shin test) to test the possible
autocorrelations for all variables. Following IM et al. (2003) and Pesaran (2015), The cross-sectional
averages are subtracted from the series to mitigate the impact of cross-sectional dependence. The
number of lags of the series is chosen such that the AIC for the regression is minimized [66,67]. The
advantage of the Im-Pesaran-Shin test is to relax the assumption of a common ρ and instead allow
each panel to have its own ρi [66]. The results in Table A1 (Appendix A) showed that all variables
reject the null hypothesis that contains unit-roots.
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3. Results

3.1. Comparative Analysis of Regional Environmental Treatment Efficiency

Using provincial panel data from 2003 to 2012, we apply DEA-solver software to calculate
the environmental treatment efficiency for wastewater (EW), environmental treatment efficiency for
gas pollution (EG), and treatment environmental economic efficiency for wastewater (EEW) and
gas pollution (EEG) at the provincial level. We compare those indicators before and after the pilot
implementation (2007) as shown in Table 2.

Table 2. Comparison of the regional environmental and economic treatment efficiency before and after
the pilot implementation.

Before After

EW EG EEW EEG EW EG EEW EEG

Pilot

Hebei 0.47 0.49 0.43 0.42 0.79 0.84 0.65 0.65
Henan 0.39 0.48 0.37 0.38 0.65 0.5 0.48 0.52
Hubei 0.41 0.47 0.25 0.29 0.64 0.53 0.45 0.56
Hunan 0.53 0.3 0.29 0.33 0.61 0.52 0.47 0.62
Jiangsu 0.69 0.59 0.42 0.38 0.74 0.62 0.75 0.71

Inner Mongolia 0.21 0.91 0.29 0.26 0.35 0.83 0.56 0.52
Shanxi 0.16 0.85 0.27 0.23 0.27 0.73 0.45 0.49

Shaanxi 0.25 0.39 0.28 0.26 0.4 0.73 0.46 0.52
Tianjin 0.19 0.5 0.32 0.3 0.19 0.35 0.34 0.34

Zhejiang 0.58 0.59 0.65 0.85 0.81 0.8 0.61 0.87
Chongqing 0.49 0.51 0.31 0.32 0.84 0.72 0.46 0.8

None-Pilot

Anhui 0.45 0.63 0.3 0.34 0.77 0.71 0.4 0.46
Beijing 0.21 0.28 0.72 0.7 0.44 0.39 0.84 0.78
Fujian 0.69 0.36 0.41 0.53 0.77 0.4 0.48 0.54
Gansu 0.17 0.4 0.25 0.23 0.17 0.39 0.32 0.32

Guangdong 0.38 0.36 0.45 0.42 0.61 0.42 0.76 0.72
Guangxi 0.73 0.77 0.26 0.28 1 0.64 0.34 0.38
Guizhou 0.11 0.59 0.24 0.22 0.17 0.59 0.27 0.25
Hainan 0.44 0.64 0.33 0.33 0.37 0.79 0.44 0.48

Heilongjiang 0.34 0.41 0.28 0.33 0.34 0.34 0.31 0.36
Jilin 0.34 0.55 0.34 0.37 0.45 0.36 0.45 0.51

Jiangxi 0.61 0.44 0.3 0.31 0.81 0.57 0.43 0.47
Liaoning 0.42 0.68 0.42 0.42 0.41 0.61 0.55 0.57
Ningxia 0.26 0.54 0.25 0.21 0.49 0.68 0.29 0.26

Shandong 0.32 0.59 0.37 0.7 0.53 0.55 0.7 0.96
Shanghai 0.59 0.83 0.46 0.42 0.75 0.46 0.79 0.74
Sichuan 0.37 0.37 0.27 0.31 0.45 0.51 0.38 0.43
Tianjin 0.27 0.41 0.4 0.37 0.37 0.48 0.71 0.68
Yunnan 0.26 0.43 0.32 0.31 0.32 0.41 0.33 0.34

Note: EW represents wastewater environmental treatment efficiency; EG represents waste gas environmental
treatment efficiency; EEW represents wastewater environmental economic efficiency; EEG represents.

It can be seen from Table 2 that the environmental treatment efficiencies in the pilot period are
generally higher than in the non-pilot period and the EG is higher than EW. The treatment efficiencies
in the developed regions are higher than those in the developing regions. Guangxi is the only province
that has achieved effective environmental treatment for wastewater. Anhui, Fujian, Hebei, Jiangsu,
Jiangxi, Shanghai, Zhejiang, and Chongqing have higher wastewater treatment efficiency than the
national average, which is over 0.75 after the pilot, while the EW in eastern areas such as Gansu,
Guizhou, and Xinjiang is much lower at less than 0.2. The treatment efficiency for air pollution in the
pilot areas such as Hainan, Hebei, Inner Mongolia, Shanxi, Shaanxi, Zhejiang, and Chongqing is at
a high level. Hebei Province has the highest with 0.84 after treatment, followed by Inner Mongolia,
Zhejiang, and Shanxi.
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The changes in EEW and EEG are similar to those of EW and EG. The average value of
environmental efficiency improved significantly after pilot implementation. Beijing, Guangdong,
Jiangsu, Shandong, Shanghai, and Tianjin have relatively high EEWs, with the highest value of 0.84
in Beijing, and the largest growth in Shandong Province (an increase of 0.4), while the EEWs in the
under-developed regions like Guizhou Province and Ningxia are much lower than the national average,
at 0.27 and 0.29, respectively. The EEGs in Beijing, Shanghai, and Guangdong regions are the highest
in the country. Shandong, Jiangsu, Zhejiang, and Chongqing also achieved higher EEG performances,
for example, Shandong with 0.96, and Jiangsu and Chongqing with 0.71 and 0.8, respectively, after
the pilot.

An important finding is that the changes in EG/EW are not consistent with EEG/EEW, meaning
that a higher EG/EW in an area is not associated with higher levels of EEG/EEW. For example, the
EG in Inner Mongolia over the 2007–2012 period ranked second highest in the country but was in
the lower level in terms of EEG. This is because of the relatively lower value of industrial output or
development of the economy. Although it is more efficient in environmental quality and governance, its
environmental economic efficiency is lower. Thus, it is important to discuss the diversity of the regions.

3.2. Propensity Score Matching

Given the estimated regional environmental treatment efficiencies, we use PSM to select the
control group among the remaining non-pilot provinces before the implementation of the emissions
trading trials from 2003 to 2006. The implementation method is divided into the following steps.
First, the logit model is selected to estimate all the variables in Table 1 that may affect environmental
efficiency (EW/EG/EEW/EEG), and then the propensity score is calculated. Second, the area closest to
the treated group is selected as the control group by a matching of the propensity score values. Before
performing PSM, we perform a simple regression on the influencing factors. The matching results are
shown in Tables 3 and 4. Table 3 indicated that the t-values for the average treatment effect on the treat
(ATT) in the four models are less than 1.96, which implies there is no difference between the treated
group and the control group.

Table 3. The Results of Propensity Score Matching.

Variable Sample Treated Controls Difference S.E. t-Value

EW Unmatched 0.4 0.41 −0.003 0.041 −0.08
ATT 0.4 0.38 0.023 0.041 0.56

EEW Unmatched 0.4 0.41 −0.003 0.041 −0.08
ATT 0.4 0.38 0.023 0.041 0.56

EG Unmatched 0.54 0.53 0.004 0.039 0.11
ATT 0.54 0.26 0.177 0.565 0.31

EEG Unmatched 0.37 0.39 −0.021 0.033 −0.63
ATT 0.37 0.38 −0.015 0.036 −0.43

Note: 1. EW represents wastewater environmental treatment efficiency; EG represents waste gas environmental
treatment efficiency; EEW represents wastewater environmental economic efficiency; EEG represents. 2. ATT
represents the average treatment effect on the treat.

Table 4. Validity test for Propensity score matching.

Variables Mean t-Test

Treated Control t-value P > |t|
eaw 11.58 11.73 −0.79 0.43
plf 10.57 10.6 −0.18 0.86
ind 0.45 0.46 −0.78 0.44
sto 0.48 0.43 0.97 0.97
hi 0.7 0.68 0.98 0.33

gdpp 9.53 9.68 −1.53 0.13
urb 0.49 0.43 −0.46 0.54
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As shown in Table 4 the t value of the average treatment effect is less than 1.96 for all the
measurements of efficiency, indicating that there is no significant difference in outcomes between the
treated group and the control group. Table 4 shows that the matching results are balanced for the
independent variables. 11 out of 18 provinces including Anhui, Fujian, Guangdong, Heilongjiang, Jilin,
Jiangxi, Liaoning, Ningxia, Shandong, Shanghai, and Sichuan were identified as the control group
using in the DID analysis. Nine of none-pilot provinces are not included in the control group. This
is because the treatment group is selected based on an administrative decision rather than random
selection, thus, including all these regions in the control group would lead to biased results.

3.3. Empirical Results of DID

The pilot areas were selected based on the level of development and the decisions of the Ministry of
Environmental Protection, which might lead to self-selection issues. We apply a fixed-effect regression
to control for the differences in regions while controlling for the time dimension [68]. The results are
shown in Table 5.

Table 5. The estimate results with the full sample.

Variable EW EEW EG EEG

eaw 0.054 **
(2.69)

−0.023
(−1.37)

0.09 ***
(4.11)

−0.006
(−0.35)

plf 0.013
(0.44)

0.023
(0.95)

0.008
(0.25)

0.034
(1.34)

ind −0.366
(−1.2)

−0.481 *
(−1.98)

−0.878 **
(−2.84)

−0.165
(−0.63)

sto −0.201
(−1.52)

−0.124
(−1.13)

−0.08
(−0.58)

−0.134
(−1.15)

hi −0.402
(−1.97)

−0.395 *
(−2.35)

−0.016
(−0.08)

−0.301
(−1.68)

gdpp 0.235 ***
(5.97)

0.301 ***
(9.29)

0.249 ***
(6.05)

0.327 ***
(9.45)

urb −0.312 ***
(−2.07)

0.027
(0.28)

−0.392 ***
(−2.64)

0.075
(0.76)

period*treated 0.063
(1.72)

0.081 **
(2.68)

0.079 **
(2.66)

0.139 ***
(4.30)

year yes yes yes yes
Fixed-effect yes yes yes yes

_cons −3.761 ***
(−4.29)

−2.049 **
(−2.84)

−4.732 ***
(−5.16)

−2.899 ***
(−3.76)

N 220 220 220 220

Note: 1. EW represents wastewater environmental treatment efficiency; EG represents waste gas environmental
treatment efficiency; EEW represents wastewater environmental economic efficiency; EEG represents. 2. In
parentheses is the T Statistics; 3. * p < 0.05, ** p < 0.01, *** p < 0.001.

The coefficient of the interaction term between the pilot period and the pilot region (period*treated)
is used to evaluate the policy effect. As can be seen from Table 6, the coefficient of interaction is positive,
which indicates that the impact of the emissions trading policy on environmental efficiency is positive.
The effects of the policy for EG and EEG are statistically significant at a level of 0.1%, and the effects of
the policy for EEW are statistically significant at a level of 5%, while the effects of the policy are weak
on EW.
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Table 6. The estimate results with the subsample.

Eastern Region Central and Western Region

Variable EW EEW EG EEG EW EEW EG EEG

eaw 0.085 ***
(3.86)

−0.008
(−0.61)

0.077 **
(2.91)

−0.016
(−0.79)

0.015
(0.31)

−0.003
(−0.07)

0.129 **
(3.12)

−0.020
(−0.51)

plf 0.044
(1.31)

0.015
(0.78)

0.062
(1.54)

−0.037
(−1.23)

0.0034
(0.05)

0.026
(0.46)

0.001
(0.01)

0.039
(0.72)

ind −0.550
(−1.82)

−0.013
(−0.08)

−0.741 *
(−2.04)

−0.549*
(−2.01)

−0.830
(−0.86)

−1.892 *
(−2.38)

−1.124
(−1.37)

−1.243
(−1.65)

sto −0.157
(−1.19)

−0.071
(−0.95)

−0.114
(−0.72)

−0.0960
(−0.81)

−0.376
(−0.57)

−0.324
(−0.59)

−1.101
(−1.96)

−0.299
(−0.58)

hi −0.422
(−1.81)

−0.130
(−0.97)

−0.095
(−0.34)

−0.051
(−0.24)

−0.003
(−0.01)

−1.720 ***
(−4.23)

−0.201
(−0.48)

−1.196 **
(−3.09)

gdpp 0.155 ***
(3.46)

0.211 ***
(8.23)

0.279 ***
(5.18)

0.259 ***
(6.41)

0.315 **
(2.78)

0.496 ***
(5.34)

0.277 **
(2.89)

0.430 ***
(4.89)

urb −0.001
(−0.01)

0.147 *
(1.93)

−0.487 **
(−2.17)

0.021
(0.56)

−0.214 *
(−1.97)

0.201
(1.04)

−0.157
(−1.41)

0.211
(1.61)

Period*
treated

0.070
(1.81)

0.087 *
(1.98)

0.186 *
(2.50)

0.157 ***
(4.51)

−5.104 *
(−2.54)

−4.273 *
(−2.60)

−2.688
(−1.58)

−4.820 **
(−3.09)

_cons −1.232
(−1.00)

−0.223
(−0.32)

−4.944 **
(−3.34)

−1.866
(−1.68)

0.095
(1.08)

0.061
(0.84)

0.044
(0.95)

0.088
(1.28)

N 130 130 130 130 90 90 90 90

Note: 1. EW represents wastewater environmental treatment efficiency; EG represents waste gas environmental
treatment efficiency; EEW represents wastewater environmental economic efficiency; EEG represents. 2. Eastern
region includes Jiangsu, Tianjin, Zhejiang provinces; Central and western regions include Hebei, Henan, Hunan,
Hubei, Inner Mongolia, Shanxi, Shaanxi, Chongqing provinces 3. In parentheses is the T Statistics; 4. * p < 0.05,
** p < 0.01, *** p < 0.001.

The improvement of per capita GDP (gdpp) can significantly improve regional environmental
governance and environmental economic efficiencies. With the improvement of the economy, people’s
demand for high-quality environmental quality also rises. This forces the transformation of the
industrial structure and leads the heavily polluting enterprises to invest in advanced technology for
environmental protection. Enterprises actively pursue profits while taking into account the total
emission controls.

An increase in the urbanization (urb) significantly reduces environmental governance efficiency
but improves environmental economic efficiency. The acceleration of the urbanization process may
lead to some negative effects on environmental governance, but this does not mean that the size of
the city should be reduced [58,60]. As long as the economic benefits brought by an increase in the
urbanization can offset the costs that its environment can bear, the city can continue to steadily grow.

The coefficients of enterprise self-financing investment on the environment (ewa) are significantly
positive for EW and EG, implying that the increase in corporate environmental protection awareness is
associated with greater capital investment and higher environmental governance efficiency. However,
the coefficients of corporate self-funded variables for EEW and EEG are insignificant. An intuitive
explanation is that investments in environmental protection, such as purchasing environmental
protection equipment, reduce profits. As Villegas and Coria (2010) mentioned, the emissions trading
policy in China is mainly completed under the governance framework and the price is transferred or
sold to the government at a fixed ratio, which leads to the underestimation of the value of emission
rights [69]. The cost of using emission rights to pollute is much lower than self-governance. Moreover,
the framework of China’s emissions trading platform has not been completed, and its distribution is
relatively unfair in some areas. Enterprises that need to produce a certain amount of emissions have to
reduce their profits due to the higher fees for paid emission rights.
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The effect of industrial proportion on environmental efficiency (ind), in general, is negative,
consistent with our expectations, implying that a higher proportion of industry reduces the level of
environmental efficiency. However, this is only statistically significant for EEW and EG. Reducing the
degree of industrialization can improve the quality of the water environment, achieving a win-win
situation for the economy and emissions reduction, but it has little effect on the governance of the
atmospheric environment.

The coefficients of heavy industry (hi) are negative and only statistically significant at the 5%
level for EEW. The cost of treatment of heavy polluting enterprises such as the chemical industry and
metal smelting is higher and worsens environmental degradation. Reducing the proportion of heavy
industry can improve environmental efficiency by decreasing the consumption of energy and lead
to economic dividends through resource utilization and technological progress [54]. However, the
economic output brought by an increase in the heavy industry cannot make up for the social costs
resulting from their environmental externalities [65].

The degree of regional environmental supervision (plf ) shows an insignificant impact on efficiency
in all four equations. This may be due to the incomplete legislative and regulatory systems in China’s
emissions trading policy. Similarly, the proportion of state-owned and state-holding enterprises
(sto) has negative coefficients on environmental efficiency, but these are insignificant. State-owned
and state-controlled industrial enterprises with low environmental supervision could increase their
profitability by ignoring the impact of their pollutants on the environment. In contrast, non-state-owned
enterprises can improve the efficiency of environmental governance with lower costs.

3.4. Results in Subsample and Robustness Test

The significant imbalance in social development in the eastern and western regions may lead to
heterogeneity. This study divides the sample into the central and western regions and the eastern
region to compare results between the regions (Table 6).

Table 6 shows that the emissions trading policies in the eastern region can significantly improve
the economic efficiency of the wastewater environment (EEW) and the environmental and economic
efficiency of air pollution governance (EG and EEW), while the emissions trading policies in central
and western regions can significantly improve the environmental and economic efficiency of the
wastewater environment (EG and EEW) and the economic efficiency of air pollution governance (EEW).
But the marginal effects are much larger in central and western regions. This might be because of
the relatively high level of economic and social development in the eastern region, for which other
approaches to environmental pollution control, such as environmental tax pilots and water resource
compensation, may be better suited. The effect of the emissions trading policy is insignificant in those
regions. Moreover, most of the polluting industries have been moved out of the eastern region and
replaced by the service sector. There is a greater demand for emission rights in the central and western
regions, in which the trade policy is easier to implement. This suggests that policy implementation
needs to pay more attention to the central and western regions, especially in terms of environmental
and economic efficiency.

In order to test the robustness results, we add a lag term of the implementation of the emission
trading policy for study periods. The results in Table 7 consist of the previous analysis and suggest
that the emissions trading policy has a significant impact on the economic efficiency of the water
environment, and the environmental and economic efficiency of the atmospheric environment.
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Table 7. The robustness test for the DID.

Variable EW EEW EG EEG

period −0.002
(−0.03)

−0.082 *
(−2.08)

−0.048
(−0.94)

−0.071
(−1.67)

period*treated 0.051
(1.33)

0.076 *
(2.37)

0.083 *
(1.99)

0.131 ***
(3.80)

eaw 0.050 *
(2.45)

−0.034
(−1.96)

0.090 ***
(4.04)

−0.02
(−1.07)

plf 0.007
(0.23)

0.032
(1.23)

0.003
(0.10)

0.051
(1.82)

ind −0.381
(−1.22)

−0.471
(−1.80)

−0.976 **
(−2.87)

−0.229
(−0.81)

sto −0.133
(−0.94)

−0.152
(−1.29)

−0.036
(−0.23)

−0.136
(−1.07)

hi −0.387
(−1.72)

−0.096
(−0.51)

−0.012
(−0.05)

−0.017
(−0.08)

gdpp 0.231 ***
(6.10)

0.315 ***
(9.94)

0.222 ***
(5.41)

0.337 ***
(9.84)

urb −0.197 **
(−2.84)

0.084
(1.24)

−0.227 ***
(−4.94)

0.187
(1.57)

_cons −3.843 ***
(−4.28)

−2.574 ***
(−3.42)

−4.665 ***
(−4.78)

−3.373 ***
(−4.15)

N 198 198 198 198

Note: 1. EW represents wastewater environmental treatment efficiency; EG represents waste gas environmental
treatment efficiency; EEW represents wastewater environmental economic efficiency; EEG represents. 2. In
parentheses is the T Statistics; 3. * p < 0.05, ** p < 0.01, *** p < 0.001.

4. Conclusions and Policy Implementation

This study assessed the evolution of China’s emissions trading system in the pilot areas and applied
a DEA-SBM method to measure regional efficiency indicators: environmental governance efficiency
and environmental economic efficiency. A DID method was used to evaluate the implementation effects
of the emissions trading system. The results indicate that the emissions trading policy has significantly
improved environmental efficiency in the pilot provinces. However, the effects are heterogeneous with
different efficiency measures across different regions. Higher impacts on environmental economic
efficiency were found in the central and western regions.

Increasing investment in environmental protection funds can significantly improve environmental
efficiency. The self-financing of environmental protection funds by enterprises may lead to a decline in
economic efficiency due to its cost, but the results suggested that the negative impact is weak. The
government should encourage enterprises to increase investment in environmental protection funds
and build environmental protection projects by offering loans with lower interest rates and promoting
the sustainable development of environmental resources to achieve a win-win situation for economic
development and environmental improvement.

The emissions trading policy in China has shown an effective impact on governance efficiency
for air pollution, but the impact on the efficiency of wastewater management is still weak. The main
reason is that, although water pollution is a problem in multiple administrative areas leading, the body
responsible for the pollution is not clear [34]. In practice, most of the basins are across multi-provinces,
while different provinces have different trading systems and regulations. This will lead to serious
issues in the policy implementation, such as administrative and trade barriers over the regions and
high transaction costs (information collection cost and negotiation costs). The basin authority should
take the lead in setting up a trading market and platform for water pollution rights. This will mean
that water pollution rights can be traded freely and effectively in markets over the whole basin. This
could help reducing transaction costs, and administrative and trade barriers, as well as encouraging
enterprises to participate [70,71].
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The emissions trading system has significantly improved environmental efficiencies in the central
and western regions, indicating that the promotion of emission selling policies in the central and
western regions can effectively improve environmental quality. For this reason, more environmental
management efforts should focus on the central and western regions through, for example, pollution
and emission supervision and punishment, encouraging industrial enterprises to participate, improving
the system of sewage charges, and making diverse emissions trading policies to achieve environmental
emission reduction tasks and objectives.
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Appendix A

Table A1. Results of Unit root test for all variables.

Variables Statistics (t) H0: Contain Unit Roots

EW −2.56 *** Reject
EEW −2.49 *** Reject
EG −5.20 *** Reject

EEG −2.12 ** Reject
eaw −2.49 *** Reject
plf −3.74 *** Reject
ind −3.86 *** Reject
sto −8.81 *** Reject
hi −4.81 *** Reject

gdpp 1.69 * Reject
urb −1.6 * Reject

Note: A Im-Pesaran-Shin test applied to test the Unite root for all panels. The cross-sectional averages are subtracted
from the series to mitigate the impact of cross-sectional dependence. The number of lags of the series is chosen such
that the AIC for the regression is minimized. * p < 0.05, ** p < 0.01, *** p < 0.001.
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