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Abstract: In the 21st century, heavier rainfall events and warmer temperatures in mountainous regions
have significant impacts on hydrological processes and the occurrence of flood/drought extremes.
Long-term modeling and peak flow detection of streamflow series are crucial in understanding the
behavior of flood and drought. This study was conducted to analyze the impacts of future climate
change on extreme flows in the Kaidu River Basin, northwestern China. The soil water assessment
tool (SWAT) was used for hydrological modeling. The projected future precipitation and temperature
under Intergovernmental Panel on Climate Change (IPCC) representative concentration pathway
(RCP) scenarios were downscaled and used to drive the validated SWAT model. A generalized
extreme value (GEV) distribution was employed to assess the probability distribution of flood events.
The modeling results showed that the simulated discharge well matched the observed ones both in
the calibration and validation periods. Comparing with the historical period, the ensemble with
15 general circulation models (GCMs) showed that the annual precipitation will increase by 7.9–16.1%
in the future, and extreme precipitation events will increase in winter months. Future temperature
will increase from 0.42 ◦C/10 a to 0.70 ◦C/10 a. However, with respect to the hydrological response to
climate change, annual mean runoff will decrease by 21.5–40.0% under the mean conditions of the
four RCP scenarios. A reduction in streamflow will occur in winter, while significantly increased
discharge will occur from April to May. In addition, designed floods for return periods of five, 10 and
20 years in the future, as predicted by the GEV distribution, will decrease by 3–20% over the entire
Kaidu watershed compared to those in the historical period. The results will be used to help local
water resource management with hazard warning and flood control.
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1. Introduction

The increased frequency and magnitude of extreme climate events under climate change has
been one of the biggest challenges to human societies [1]. Many researchers have indicated that
climate change will change hydrological cycles and have a severe impact on the availability of
water resources and the occurrence of hydrological extremes [2]. Particularly in northwestern China,
many rivers are recharged by snow melt [3]. Previous studies have shown that, hydrological processes
of several main basins in Tianshan and Kunlun Mountains have been significantly influenced by climate
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change [4]. Extreme precipitation events have the potential to aggravate floods and droughts [5–7],
while the continuous rise in air/surface temperature may lead to the increasing snow melting and
evapotranspiration (ET) in such mountainous river basins [8]. Understanding variations in historical
discharge extremes and evaluating future changes will greatly contribute to flood hazard control and
water resource management in inland river basins [9,10].

Hydrological models play an important role in modern water resource management [11]. Climate
change impacts on the hydrological cycle can be investigated by integrating projected future scenarios
based on downscaled general circulation models (GCM) data in hydrological models [12]. Considerable
uncertainties exist in climate change impacts on hydrological systems. Moreover, compared to the
effects of climate change on average conditions, changes in extremes are much more uncertain [13].
The uncertainties reside primarily in GCM, GCM initial conditions, future emission scenarios,
downscaling techniques, and the structure of hydrological models and their parameters. However, it is
difficult to address these sources of uncertainty effectively, and it is particularly difficult to handle
all of them at the same time through effective methods [14]. Kay et al. [15] found that the GCM
structure is the most significant uncertainty source when compared to the uncertainties originating from
emission scenarios, GCM initial conditions, downscaling techniques, hydrological model structures,
and hydrological model parameters. Chen et al. [16] also showed that the choice of GCM is the major
uncertainty contributor. Najafi et al. [17] indicated that the uncertainties associated hydrologic model
was larger than GCM. Dams et al. [13] indicated that the uncertainty due to climate change scenarios
is larger than the uncertainty introduced by the structure of hydrological models. To reduce the
uncertainty in climate predictions [2], simplifications in GCM and downscaling methods [1,18,19]
as well as ensemble methods of climate change scenarios have been commonly used to simplify the
GCM outputs [20]. Several types of GCM ensemble have been used in recent studies [12], such as the
arithmetic ensemble means (AEMs), the Bayesian model average (BMA), and the reliability ensemble
average (REA) methods. Ntegeka et al. [20] described and used tailored climate change scenarios to
limit the number of future scenarios. Hosseinzadehtalaei et al. [21] calculated the response of extreme
precipitation to future climate change through sensitivity and uncertainty analysis on GCM, initial
conditions of the GCM and representative concentration pathways (RCPs). However, the source and
contribution of uncertainties in the context of climate change and the inherent impact on hydrology are
regionally dependent, and more in-depth research is needed [22].

In China, most studies analyzing the climate change impact on extreme floods have focused on
several major rivers in the southern and southeastern parts of the country [23]. Recently, the annual and
seasonal changes of extreme hydrological events in inland rivers of northwestern China have attracted
increasing attention as well. However, few studies have been performed to examine the impact of
climate change in this region [24]. The Tarim River is located in northwestern China and is the longest
inland river in the country [25]. Under the dual influence of climate change and human activities,
the hydrological cycle in the headwater regions has been severely changed. Indeed, some upstream
rivers have completely ceased flowing [26]. Currently, only four rivers, namely the Kaidu, Aksu,
Hotan, and Yarkand Rivers, flow to the main stream of the Tarim River [27]. Among these source
streams, water resources from the Kaidu River passing through Bosten Lake are the most important
supplement of the lower Tarim River [11]. Therefore, the analysis and prediction of the runoff of the
Kaidu River are essential for water resource management and disaster warnings [28].

Previous studies of the hydrological cycle in the Tarim River have mainly focused on fractal patterns
of runoff, trends and change point detection based on annual or monthly streamflow data [29–32].
Few studies have been conducted on extreme hydrological events due to the lack of essential daily data
sets [33]. Hydrological models can simulate the variability in runoff at different space-time scales and fill
the data gaps of conventional observation stations, particularly at the daily or hourly scales [8]. Recent
studies have evaluated the climate change impacts on the hydrology of the Tarim River headstreams
using hydrological models. Liu et al. [34] investigated the impacts of climate change on the hydrology
of three upstream catchments of the Tarim River using the variable infiltration capacity (VIC) model.
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Liu et al. [35] used both lumped and distributed hydrological models to assess the climate change
impact on hydrology under emission scenarios (SERS) of the IPCC through 2050 s. Ma et al. [36]
analyzed the response of snowmelt runoff to future climate in the Kaidu watershed by coupling
GCM outputs with the snowmelt runoff model (SRM). Meng et al. [37] found that climatologically
parameters are contributing to 92% of the runoff variability, and human activity was responsible for
7.72% of the runoff change in the Aksu watershed. Liu et al. [38,39] coupled an average ensemble of
18 available GCMs with a well-calibrated Mike System Hydrological European (MIKE SHE) model
and simulated hydrological processes under future climate change scenarios. Their results indicated
that snow storage at high altitudes will decrease due to increasing evaporation, which will therefore
decrease the available water in the downstream region.

Through previous studies, the mechanism of climate change impacts on the hydrology of the
Tarim headstreams has been gradually recognized [34,35,38–40]. However, research on extreme runoff

prediction is still lacking [41]. Variations and tendencies of extreme flow events under historical
and future climate change scenarios have not been investigated. Previous studies have shown
that the frequency and intensity of extreme floods in the Kaidu River have increased over the past
decades [28,42]. Therefore, the objective of this research is to assess the potential effects of future
climate change on extreme floods in the upper Kaidu River and to use the advances noted above
to enhance our understanding of future climate change and local hydrology variations. The SWAT
model is used to simulate river runoff. The uncertainty in runoff projections related to GCMs and
RCP scenarios are also investigated. Finally, the variation in flow extremes is revealed by a frequency
analysis model. The obtained results will be used to help local water authorities establish effective
flood control policies and thus improve water resource security in the region.

2. Study Area

The Kaidu watershed is located in the northeast Tarim River Basin and has an area of 1.90 × 104 km2

(Figure 1). The elevation of the Kaidu watershed ranges from 1400 m to 4794 m. The land cover is
dominated by alpine meadow and grassland (81%), followed by surface water bodies (8%), bare rock
(9.5%), and forest (1.5%). The soils in this region include fine and coarse sand, loamy sand, slit clay
loam, sandy loam, loam, and rock [11].
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In the study area, meteorological and hydrological observations began in the mid-1950s. There are
two meteorological stations. One is the Bayblk (BYBLK) station, located in the upper reaches of the
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Kaidu River with an elevation of 2500 m, and the other is the Dashankou (DSK) station with an
elevation of 1500 m, located at the outlet of the Kaidu watershed. The climate is typical of mountainous
environments in arid regions, with sparse precipitation, low temperature and high evaporation.
Average annual precipitation in the study area is approxmately 384 mm/year, and more than 80%
of the total precipitation is distributed from May to September. The annual average temperature
is approximately −4.16 ◦C, and the mean temperature in Summer is 9.8 ◦C. Pan evaporation is
approximately 1157 mm/year, which is much higher than the precipitation in the region. And regional
average actual ET is approximately 193 mm/year [43]. Snowmelt is the most important source of
water in spring. Several studies have indicated that precipitation and temperature have increased
significantly during the past 50 years, especially since 1990 [35].

Hydrological observation also conducted at the BYBLK and DSK stations. Drainage area
controlled by the BYBLK station is 6.65 × 103 km2, and the drainage area controlled by the DSK station
is 19.01 × 103 km2. There are two flood seasons in spring and summer in Kaidu River. Spring flow
peaks occur in April to May due to the melting of snow. Summer flooding results from the combined
output of rainfall and snowmelt in high-altitude regions [44]. The river flood events not only represent
destructive natural hazards in the mountainous region but also affect the lower reaches of the Tarim
River [28]. Therefore, runoff prediction and flood risk assessment are essential for water resource
management and flood control in the study area.

3. Data and Methodology

3.1. Data Availability

A digital elevation model (DEM) with 90 × 90 m resolution, land use/cover, and soil types were
used to set up the hydrological model. Land use and land cover map in 2010 based on Landsat Thematic
Mapper (TM) images were processed by the Xinjiang Institute of Ecology and Geography, Chinese
Academy of Sciences (XIGE) [26]. Four land cover types (i.e., meadow, forest, rock, and surface water
body) were detected in the Kaidu watershed and used for hydrological simulations. The soil in the
study area was classified into seven types. Related physical parameters for each soil type were defined
according to the FAO soil property reference [39]. The initial soil physical parameters (e.g., hydraulic
conductivity, available water capacity) for each soil type were obtained by using the SPAW software
developed by USDA (Saxton and Rawls, 2006).

Daily discharges at the DSK and BYBLK hydrological stations were collected from 1996 to 2011.
Daily air temperatures, precipitation, humidity, and wind speed at the BYBLK and DSK stations from
1961 to 2011 were collected from the Tarim River Management Bureau (TRMB).

The daily precipitation and temperature outputs of 32 GCMs were downloaded from the dataset
of Phase 5 of the Coupled Model Inter-comparison Project (CMIP5) [35,39].

3.2. Methodology

3.2.1. Hydrological Modeling

The SWAT model is a physically distributed hydrological model that has been widely used to
assess the impacts of climate change and human activities on water [37,45]. To simplify the watershed
and facilitate calculation, the study area was divided into 22 subbasins with 271 hydrologic response
units (HRUs) based on land use, soil type, and slope.

SCti = SC0 +
t∑

i=1

(Pdayi −Qsur fi − Eai −Vseepi −Qgwi) (1)

where SCti is the soil water content (mm) at time t, SC0 is the initial water content (mm), t is the
simulation period (days), Pdayi is the precipitation on the ith day (mm), Qsur fi is the surface runoff on
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the ith day (mm), Eai is ET on the ith day (mm), Vseepi is the water entering the vadose zone from the
soil profile on the ith day (mm), and Qgwi is the base flow on the ith day (mm).

Surface runoff was simulated using the soil conservation service (SCS) curve numbers (USDA-SCS,
1972) in SWAT. Redistribution of water between soil layers was calculated using a kinematic storage
model. The underground flow was calculated as a function of the saturated hydraulic conductivity.
The Muskingum routing method was applied to calculate the channel flow routing, and the model
used a degree-day approach to estimate snow accumulation and melting.

The FAO Penman–Monteith method and Hargreaves method were used to estimate ET. Daily
precipitation, temperature, wind speed, and relative humidity data were obtained from the BYBLK and
DSK stations during the historical period (i.e., 1960–2010), and the solar radiation inputs were generated
using the built-in SWAT stochastic weather generator based on data from nearby weather gauges.
PET and ET, calculated according to the Penman–Monteith method, were close to those reported in
the literature [43]. However, only temperature can be used to calculate PET in future periods because
of the higher uncertainties in the GCM outputs for the additional variables. Therefore, we used PET
calculated via the Penman–Monteith method as a standard value and calibrated the parameters of the
Hargreaves method, which is only based on temperature and geographical location [46]. The calibrated
Hargreaves method also showed reasonable PET results in the study area. Therefore, the PET data
were calculated according to the calibrated Hargreaves method for both historical and future periods.

The sequential uncertainty fitting (SUFI-2) program version 2 embedded in the SWATCUP
software [47] was used for sensitivity analysis and model calibration. The T-states and p-values
of the parameters were used before and after improving the statistical model to obtain parameter
sensitivity [48,49]. The period from 1996 to1997 was chosen as the spin-up period, while calibration
and validation periods were from 1998 to 2007 and 2008 to 2010, respectively. Daily discharge data
from the BYBLK and DSK stations were applied for model validation. The Nash–Sutcliffe coefficient
(NS), water balance bias (WB) and correlation coefficient (R) were applied to evaluate the simulation
accuracy [50].

NS = 1−

∑n
i=1(qo,i − qs,i)

2∑n
i=1

(
qo,i − qo

)2 (2)

WB = 100%× (1−

∑n
i=1

∣∣∣qo,i − qs,i
∣∣∣∑n

i=1 qo,i
(3)

R =

∑n
i=1

(
qo,i − qo

)(
qs,i − qs

)
∑n

i=1

[(
qo,i − qo

)2
] 1

2 ∑n
i=1

[(
qs,i − qs

)2
] 1

2

(4)

where qo,i is the observed discharge at the time step i, qs,i is modeled discharge at the time step i, qo is
the mean observed discharge, and n is the total number of time steps. With the calibrated parameters,
validation was performed using daily discharge data from the BYBLK and DSK stations.

3.2.2. Downscaling of Future Climate Scenarios

The global climate is a complex system; therefore, when global climate and regional models
(e.g., GCMs and RCMs) are used to model the climatic system, considerable simplification must be
conducted in the description of physical processes [51]. To incorporate the uncertainty of social actions,
a range of future greenhouse gases (GHG) scenarios is taken into consideration [12]. Multimodel
ensemble simulations using RCMs and GCMs have been shown to outperform individual models and
can be used to more accurately model a given property through the provision of a large sample size,
e.g., of a climatological mean of the frequency of a rare event [1].

Monthly precipitation totals and temperature were selected for intercomparison and assessment
of the performance of GCMs. For average annual precipitation, monthly precipitation, and mean
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monthly temperature, the similarities between the GCM and observational data are quantified in terms
of the root-mean-square relative error (RMSRE) and the relative bias (BIAS) which detail described in
Liu et al. [35]. Further, they are calculated by using the observed climate data at BYBLK station as the
referenced baseline. The period ranging from 1961 to 2000 was considered for the GCM control runs
(CN) as well as for the observation data at the BYBLK station. In general, the GCMs present acceptable
results; the mean annual temperature BIAS is 12.2%, and the RMSREs are less than 6%. For precipitation,
BIAS ranges from −36% to 98% at the yearly scale, and the RMSREs of annual precipitation exceeds
18%. The climate models are less reliable and consistent in predicting precipitation variations than in
describing temperature variations at the monthly scale.

In addition, extreme precipitation events may be the main cause of extreme flow, especially
in Summer. Therefore, we performed a comparison of the probability distributions to assess
the performance of the GCMs in simulating precipitation events [36,37]. For each GCM runs,
extreme precipitation sequence were extracted based daily precipitation series, and when the
precipitation bigger than 0.1 mm/day were selected as a wet day [35]. The cumulative distributed
functions of extreme precipitations are shown in Figure 2. The black line is calculated from
observed data from 1961 to 2000 at BYBLK station, and the grey lines are calculated from the
selected GCM extreme precipitation series. After examining the consistency between the GCM
monthly total precipitation and observation data at the BYBLK station, and also a comparison
of the probability distributions of extreme precipitation events, 15 GCMs with a total of
31 runs (i.e., CNRM-CM5_r1i1p1, EC-EARTH_12i1p1, EC-EARTH_r8i1p1, MIROC-ESM_r1i1p1,
MIROC-ESM-CHEM_r1i1p1, MPI-ESM-LR_r1i1p1, MPI-ESM-LR_r2i1p1, MPI-ESM-MR_r1i1p1,
MRI-CGCM3_r1i1p1, bcc-csm1-1_r1i1p1, bcc-csm1-1-m_r1i1p1, BNU-ESM_r1i1p1, CanESM2_r1i1p1,
CanESM2_r2i1p1, CanESM2_r3i1p1, CanESM2_r4i1p1, CanESM2_r5i1p1, CCSM4_r1i1p1, CCSM4_r2i1p1,
CESM1-CAM5_r1i1p1, FGOALS-g2_r1i1p1, GFDL-CM3_r1i1p1, GFDL-ESM2G_r1i1p1, IPSL-
CM5A-LR_r1i1p1, IPSL-CM5A-LR_r2i1p1, IPSL-CM5A-LR_r3i1p1, IPSL-CM5A-LR_r4i1p1, IPSL-
CM5A-MR_r1i1p1, MIROC5_r1i1p1, MIROC5_r2i1p1), were acceptable. In general, it is an ensemble
of the prediction results from different GCM (and the results from the same GCM with different initial
conditions, initialization method and perturbed physics [52].
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Changes in precipitation and temperature under the future climate were extracted from the
simulation results of the GCMs and applied to the observed records over the historical period at the
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BYBLK station. For temperature, a simpler delta approach was used, and the change in temperature
was described as the absolute difference between the future and control periods [38]. The daily
temperature in the future period can be calculated as follows:

TDO(k,i) = TO(k,i) +
(
TF(k) − TH(k)

)
(5)

where TDO(k,i) is the future temperature on the ith day in the kth month, TO(k,i) is the observed
temperature on the ith day in the kth month, and TF(k) and TH(k) are the mean temperatures predicted
by the GCMs in the kth month for the periods from 2041 to 2080 and from 1961 to 2000, respectively.

A large deviation was noted in precipitation predicted by the GCMs. A quantile perturbation
method (QPM) which proposed by Willems et al. [53] and improved by Liu et al. [38] was applied to
generate the daily precipitation series under future climate change scenarios in the period of 2041 to
2080. Detail description of the modified QPM can be found in Liu et al. [38].

The uncertainties of the projected precipitation and temperatures have been accounted for in this
study by making use of an ensemble modeling approach [20]. In relation to the baseline (i.e., 1961–2000),
all change signals of precipitation and temperature in future period by each GCM runs were extracted
statistically. Changes under each emission scenario and for all considered runs that passed the
performance evaluation were clustered into low, mean, and high levels before input into the SWAT
model. The low and high levels correspond to the minimum and maximum values of the changes,
respectively, and expresses the ranges of climate change uncertainty. The mean level corresponds to
the mean values of the changes. For hydrological impact simulation, the average tendency of multiple
GCMs was recommended [39]. Modeling results for daily maximum and minimum temperature and
mean precipitation from a multi-model-ensemble of 15 GCM combinations for four GHG concentration
pathways were employed to provide daily time series for the SWAT model.

3.2.3. Frequency Analysis of Extreme Floods

Fisher and Tipett [54] presented three extreme value distributions: the Gumbel distribution,
Fréchet distribution and Weibull distribution. Jenkinson [55] and Coles [56] improved the three extreme
value distributions as a three-parameter extreme value distribution, called the generalized extreme
value (GEV) distribution. The probability density function (PDF) was calculated as follows:

F(x) = exp

−[1 + ε
(x− µ
σ

)]− 1
ε

 (6)

[
1 + ε

(x− µ
σ

)]
> 0 (7)

where σ is the scale factor, µ is the location factor, and ε is the shape factor. The GEV distribution
includes three distributions. When ε = 0, ε > 0, and ε < 0, the GEV distribution could be described
as a Gumbel distribution, Frèchet distribution, and Weibull distribution, respectively. The advance
of the GEV distribution is that the unification of the three distributions can avoid shortcomings of a
single distribution.

For parameter estimation of the extreme distributions, maximum likelihood estimation (MLE)
was used. Compared with other parameter estimation methods, MLE can be applied for every
population, has good asymptotic behavior in the case of large sample, and obtains consistent and
effective parameters [57]. Suppose that {x1, x2, . . . , xn} is independent and identically distributed with
the probability distribution function F(x), the parameter estimation of the GEV distribution using the
MLE method can be obtained from the following log-likelihood function:

L(θ) = L(µ, σ, ε) = −n ln σ−
n∑

i=1

[
1 + ε

(xi − µ

σ

)]− 1
ε
−

(
1 +

1
ε

) n∑
i=1

ln
[
1 + ε

(xi − µ

σ

)]
(8)
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where θ = (µ, σ, ε); point (µ, σ, ε) reaches the MLE when the function reaches the maximum point.
In this study, numerical methods were used to solve the function.

The return period refers to the number of years between two floods, which is a key parameter for
studying flood problems. It is a measure of safety (the ‘inverse risk’). In combination with the method
of periodic maxima, the return period (PR) is calculated as the inverse of the population survival
distribution of the annual maxima:

RP =
1

1− F(x)
(9)

Figure 3 shows the comprehensive method by coupling the distributed hydrological model (SWAT)
and GCMs with a statistical frequency analysis.
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4. Results and Discussion

4.1. Calibration and Validation of the Hydrological Model

Totally 27 parameters were selected to participate in the calibration of the model. In order to
obtain the sensitivity information of each parameter in the model, the model was simulated 1000 times
to obtain the sensitivity information of the parameters. The results indicate that there were several
parameters that show high sensitivity, including the effective hydraulic conductivity in main channel
alluvium (CH_K2), groundwater delay (days) (GW_DELAY), snow pack temperature lag factor
(TIMP), saturated hydraulic conductivity (SOL_K) and temperature lapse rate (TLAPS). The T-states
of the CH_K2, GW_DELAY, TIMP, SOL_K, and TLAPS are 26.6, 13.7, 6.66, 5.79 and 2.35, respectively.
Moreover, the p value of the sensitive parameters are below 0.1 with the great significance. The modeled
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results match the observations well (Figure 4). The evaluation statistics for model performance are
listed in Table 1. During the calibration period, the NS values are 0.76 and 0.62 at the DSK and BYBLK
hydrological stations, respectively, the R values at the DSK and BYBLK stations reach 0.91 and 0.83,
respectively, and the WB varies between 3.44% and −5.12% at the DSK and BYBLK stations, respectively.
For the monthly scale, the model performances increase at both stations. The timing and volume
of the simulated flow peaks are slightly shifting and higher than the observed values. Following
the guidelines by Moriasi et al. [58], these simulation results can be considered acceptable. However,
the NS value for daily discharge simulation at the BYBLK station is a litter lower than the references
value (>0.65) according to Ritter and Muñoz-Carpena [59].
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Table 1. SWAT model performance for daily and monthly runoff.

Calibration (1998–2006) Validation (2007–2011)

EF R RE (%) EF R RE (%)

Monthly DSK 0.86 0.95 3.00 0.85 0.92 3.7
BYBLK 0.74 0.89 −6.32 0.71 0.86 5.88

Daily DSK 0.76 0.91 3.44 0.72 0.90 3.07
BYBLK 0.62 0.83 −5.12 0.61 0.77 4.66

4.2. Predicted Changes in Temperature and Precipitation

Under future climate change scenarios, both the magnitude and frequency of the precipitation
would change. The perturbation factor is the changes of precipitation or temperature time series
between the future and control period. For temperature, the perturbation factors defined as absolute
differences between future and control periods; for precipitation, they are defined as relative changes
(ratios of the values during future versus control periods). Figure 5 shows the mean monthly frequency
changes determined by the GCMs for different RCPs. The results indicate that, under the mean level,
the variation of rainy days in each month is the largest under the RCP2.6 scenario, ranging from −8%
to 6%; and the most moderate under RCP6.0 scenario, ranging from −1% to 2%. Under the RCP4.5 and
RCP8.5 scenarios, the change of rainfall days was found similar. The number of rainy days would
increase under RCP4.5 and RCP8.5 from September to the following January, and also would increase
from March to June; in February, July, and August, the number of rainy days would exhibit a moderate
declining of approximately 3%. Under the low and high levels, the changes of rainy day numbers
would be from −20% to −3% and 6 to 22%, respectively.
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Figure 5. Frequency changes in rainy days in each month for the four RCP scenarios relative to those of
the historical period determined by the 26 GCMs.

Figure 6 shows the precipitation data for the 0.01, 0.05, 0.1, 0.2, and 0.5 quantiles, which were
selected to illustrate the monthly quantile perturbations of precipitation intensity in the future period
relative to those of the history period. The results indicate that the rain intensities for different quantiles
are not obviously changed in summer; the changes in winter are significant. The intensity of extreme
precipitation (at the 0.01 quantile) in January under RCP4.5 is most significant, with an average increase
of 26%.
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The average monthly precipitations in the historical period and future climate change scenarios
(under low, mean, and high levels) show notable variations (Figure 7). For the mean level, the future
precipitation in the Kaidu watershed exhibits an increasing trend under all RCP scenarios, while monthly
precipitation presents a decreasing trend in spring (i.e., March, April, and May), autumn (i.e., September,
October and November) and winter (i.e., December, January, and February) and is almost unchanged
in summer (i.e., June, July, and August). When comparing the changes among the RCP scenarios,
the precipitation shows the largest change in the RCP8.5 scenario, while the RCP2.6 and RCP6.0 scenarios
keep similar rates of change. The mean changes in monthly precipitation are from 2.9% to 19.2%, −3.0%
to 26.1%, 0.2% to 19.0%, and −3.4% to 35% under RCP2.6, RCP4.5, RCP6.0, and RCP8.5, respectively.
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scenarios at the BYBLK meteorological station.

The temperature changes are positive and range from 0.2 to 0.6 ◦C/10 a at the BYBLK station
(Figure 8). The average monthly changes (mean level) range from 0.37 to 0.51 ◦C/10 a, 0.46 to 0.63 ◦C/10 a,
0.47 to 0.68 ◦C/10 a, and 0.64 to 0.85 ◦C/10 a under the RCP2.6, RCP4.5, RCP6.0, and RCP8.5 scenarios,
respectively. Notably, temperature will rise more in winter and summer than in spring and autumn.

Sustainability 2020, 12, x FOR PEER REVIEW 12 of 23 

 

Figure 7. Precipitation perturbation factors under the (a) RCP2.6, (b) RCP4.0, (c) RCP6.5 and (d) 
RCP8.5 scenarios at the BYBLK meteorological station. 

The temperature changes are positive and range from 0.2 to 0.6 °C/10 a at the BYBLK station 
(Figure 8). The average monthly changes (mean level) range from 0.37 to 0.51 °C/10 a, 0.46 to 0.63 
°C/10 a, 0.47 to 0.68 °C/10 a, and 0.64 to 0.85 °C/10 a under the RCP2.6, RCP 4.5, RCP6.0, and RCP8.5 
scenarios, respectively. Notably, temperature will rise more in winter and summer than in spring and 
autumn. 

 
Figure 8. Cont.



Sustainability 2020, 12, 2090 13 of 23

Sustainability 2020, 12, x FOR PEER REVIEW 13 of 23 

 

 

 
Figure 8. Temperature perturbation factors under the (a) RCP2.6, (b) RCP4.0, (c) RCP6.5 and (d) 
RCP8.5 scenarios at the BYBLK meteorological station. 

4.3. Climate Change Impact on Hydrological Processes 

4.3.1. Water Balance 

Annual streamflow in the Kaidu watershed ranges from 2.77 × 109 m3 to 3.19 × 109 m3 per year 
under future climate change scenarios. At both the DSK and BYBLK stations, under all RCP scenarios, 
annual mean runoff shows a clear decrease from 2041 to 2080. Generally, the annual runoff would 
change most significantly under the RCP8.5 scenario, stream runoff would decreases by 40% and 22% 
at the DSK and BYBLK stations, respectively. Minimal runoff changes would be found under the 
RCP2.6 scenario, annual mean runoff decreased by 21.1% and 14.7% at the DSK and BYBLK stations, 
respectively. 

Such hydrological variation is mainly related to the relative variation between 
evapotranspiration and precipitation. Xu et al. [12] found that small variations in precipitation may 
lead to large changes in streamflow from upstream rivers. In Liu et al. [38]’s research on the Yarkant 

Figure 8. Temperature perturbation factors under the (a) RCP2.6, (b) RCP4.0, (c) RCP6.5 and (d) RCP8.5
scenarios at the BYBLK meteorological station.

4.3. Climate Change Impact on Hydrological Processes

4.3.1. Water Balance

Annual streamflow in the Kaidu watershed ranges from 2.77 × 109 m3 to 3.19 × 109 m3 per year
under future climate change scenarios. At both the DSK and BYBLK stations, under all RCP scenarios,
annual mean runoff shows a clear decrease from 2041 to 2080. Generally, the annual runoff would
change most significantly under the RCP8.5 scenario, stream runoff would decreases by 40% and
22% at the DSK and BYBLK stations, respectively. Minimal runoff changes would be found under
the RCP2.6 scenario, annual mean runoff decreased by 21.1% and 14.7% at the DSK and BYBLK
stations, respectively.

Such hydrological variation is mainly related to the relative variation between evapotranspiration
and precipitation. Xu et al. [12] found that small variations in precipitation may lead to large changes
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in streamflow from upstream rivers. In Liu et al. [38]’s research on the Yarkant watershed, which is one
of the other upstream catchments of the Tarim Basin, the amount of water dissipated by evaporation in
the basin exceeds the amount of snow storage and streamflow to the lower reaches. Figure 9 presents
the relative variations in annual average precipitation, ET and surface runoff at the subwatershed
monitored by the BYBLK station and the entire Kaidu watershed, which is monitored by the DSK
station. Generally, the changes in the water balance are more significant under the RCP4.5 and RCP8.5
scenarios and are relatively smaller under the RCP2.6 and RCP6.0 scenarios (Figure 9). The climate
impact on annual mean precipitation is not substantial. The relative variations in annual precipitation
range from 0.57% to 2.42% in the Kaidu watershed and from 0.60% to 2.49% in the area monitored
by the BYBLK station. However, the annual mean ET shows a large increasing trend. The relative
changes in ET range from 22.7% to 33.0% over the entire watershed and from 3.1% to 22.8% at the
BYBLK subwatershed level. Therefore, water resources at both subwatershed and watershed scales
will decrease.
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Notably, there are large uncertainties in runoff assessment due to the uncertainties in GCM
emission scenarios and the structure and parameters of hydrological models [60]. Zhang et al. [41]
found that the uncertainties due to emission scenarios, parameters of the hydrological model, and
the extreme flow distributions might be much smaller than the GCM uncertainty. In this study,
only uncertainties from GCMs and emission scenarios were investigated, and the results proved that
the uncertainty originating from the GCMs is larger than that related to the different emission scenarios.
Moreover, when compared with the previous study by Liu et al. [35], large uncertainties from ET
calculations are found due to different structures between the MIKE SHE and SWAT models, although
annual precipitation and temperature showed similar relative changes under the IPCC AR4 and AR5
emission scenarios. With similar changes in precipitation and temperature, ET changed from 5% to 10%
in Liu et al. [35]’s study. However, in this study, the change in ET reached 20% to 30%, and the mean ET
ranges from 182.1 to 266.5 mm/year, which agrees with the observed ET in the Kaidu watershed [43].

4.3.2. Monthly River Flows

Since the seasonal variation in discharge is essential for flood control and water assignment,
the monthly change in discharge was reviewed at both stations. For the DSK station, monthly river
flows decrease in most simulated scenarios (Figure 10a). Significant reductions can be found in winter
(i.e., December, January, and February), autumn (i.e., September, October, and November), and the
summer (i.e., June, June, and August). The largest decrease in discharge reaches 50.3% under RCP8.5.
Increases in simulated monthly runoff can be found during the snow melt period (i.e., April and May).
The largest increase in monthly discharge is as high as 7.4% under the RCP8.5 scenario, and the increase
of monthly discharge also found in May under RCP2.6 and RCP4.5 scenarios with the change rates of
6.5% and 5.3%.
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Variations in the monthly discharge at the BYBLK station differ from the downstream DSK station
(Figure 10b). Generally, monthly streamflow increases under most simulations. Moreover, the BYBLK
station has relatively higher increases than the DSK station. Monthly runoff would increase from 3.0%
to 60.5% in winter and autumn, and from 27.5% to 78.3% in summer. During the snow melting period,
positive impacts (from 8.3% to 59.0%) occur primarily in March and April, while negative impacts
(from 2.7% to 20.9%) are found in May and June.

Variations in seasonal distribution of river runoff are mainly due to the relative change in snow
accumulation and melting. Figure 11a shown that the climate change impact on annual mean snowfall
decreases in the future period due to significant temperature increases. However, the relative changes
over the entire Kaidu watershed are larger than that in the BYBLK subwatershed. Mean annual
snow storage decreases continuously in the Kaidu watershed primarily because of the decrease in
snowfall resulting from the rising temperatures. The decrease occurs mainly in summer, from June
to September. Compare with the snowfall from 1961 to 2000, the changes in annual snowfall in the
Kaidu watershed would be −19.2%, −21.4%, −24.2%, and −26.4% under the RCP2.6, RCP4.5, RCP6.0,
and RCP8.5 scenarios, respectively, and those in the BYBLK subwatershed would be −17.7, −19.4%,
−22.3%, and −23.8% under the RCP2.6, RCP4.5, RCP6.0, and RCP8.5 scenarios, respectively. Thus,
despite the higher temperatures, precipitation in the form of snow continues to occur, although less
frequently, in winter.
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BYBLK subwatershed.

Increased temperatures lead to earlier occurrence of snow melting, indicating an increasing
trend in monthly streamflow in spring; the monthly mean streamflow in June, July, and August
decreases because of the reduction in rainfall and relatively larger ET increments in summer. Drastically
decreasing snowfall and earlier snowmelt results in less snow available for melting in summer and
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autumn months. As shown in Figure 11b, the mean annual snowmelt declines sharply under the future
climate change scenarios. The changes in annual snow melt in the Kaidu watershed are from −18.69%,
−20.5%, −23.4%, and −25.2% under the RCP2.6, RCP4.5, RCP6.0, and RCP8.5 scenarios, respectively,
and are from −17.8%, −19.6%, −22.5%, and −24.0% under the RCP2.6, RCP4.5, RCP6.0, and RCP8.5
scenarios in the BYBLK subwatershed, respectively. Similar results were found by Liu et al. [34,35].

4.3.3. Extreme Flows

As shown in Figure 12, the SWAT model predicts that the peak flows would almost decrease
under all RCP scenarios. The changes in extreme discharge are roughly from −26.6% to −2.5% at the
DSK station and from −36.5% to 1.8% at the BYBLK station. At the BYBLK station, the model detects
only a positive change in the peaks with a return period of 20 years under RCP6.0. Generally, changes
in extreme flow are largest under the RCP4.5 scenario and show smaller changes under the RCP2.6
and RCP6.0 scenarios.
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Figure 13 shows the changes in monthly maximum daily discharge at Figure 13a the DSK station
and Figure 13b the BYBLK station under future climate change. The results indicated that, at the
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DSK station, monthly maximum daily discharge would increase in April, July, August, September,
and October; the largest discharge increment can be found in April, and the change rate would be
56%, 97.0%, 88.8%, and 97.7% under the RCP2.6, RCP4.5, RCP6.0, and RCP8.5, respectively. At the
BYBLK station, the increase of monthly maximum daily discharge is mainly found in March, April
and October, and the change rate ranges from 15.3% to 31.0%, 30.2% to 53.1%, and 17.2% to 22.6%,
respectively. The monthly extreme flow would decrease in winter, late spring, and early summer
months at both stations, and the most significant negative change would reach 30% at the DSK station
under the RCP8.5 scenario.
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In flood control operations, the frequency and magnitude of peak flows are the most important
details for designing a dam or reservoir [7]. Therefore, time series of the annual maximum discharge
were generated to describe the extreme values of the GEV distribution. Subsequently, the frequency of
extreme flows was analyzed. Table 2 presents the values of three parameters of the GEV distributions,
the type of the GEV distributions and related statistical values of the peak flow series. At the DSK
station, time series of peak flow are represented by a Gumbel distribution (type I of the GEV distribution)
under the RCP4.5 and RCP8.5 scenarios, and can be described by a Frèche distribution (type II of the
GEV distribution) under the RCP2.6 and RCP6.0 scenarios. For the BYBLK station, peak flow series are
fitted by a Gumbel distribution under the RCP4.5 scenario, while the series match a Frèche distribution
under the RCP2.6, RCP6.0 and RCP85 scenarios.
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Table 2. Parameter estimation, the type of GEV distribution and related statistical values of the peak
flow series.

Gauge Station Maximum Daily Runoff Main Parameters Fitted Distribution
Statistical Value

µ σ ε K-S R

DSK

Base line 339.51 97.33 0 Gumbel 0.112 0.92
RCP2.6 290.17 69.63 0.240 Frèchet 0.066 0.97
RCP4.5 261.43 88.41 0 Gumbel 0.195 0.94
RCP6.0 279.22 73.15 0.261 Frèchet 0.108 0.87
RCP8.5 264.20 90.10 0 Gumbel 0.189 0.95

BYBLK

Base line 105.90 46.44 0 Gumbel 0.272 0.93
RCP2.6 104.53 28.12 0.269 Frèchet 0.053 0.96
RCP4.5 84.78 40.55 0 Gumbel 0.201 0.87
RCP6.0 90.39 31.74 0.360 Frèchet 0.159 0.88
RCP8.5 103.27 27.99 0.275 Frèchet 0.106 0.87

The designed floods at various return periods under the four RCP scenarios show distinct
differences (Table 3). Based on historical records, the 5-, 10-, 20-, 50- and 100-year floods are 482 m3/s,
560 m3/s, 643 m3/s, 738 m3/s and 800 m3/s at the DSK station, respectively, and are 175 m3/s, 206 m3/s,
250 m3/s, 286 m3/s and 316 m3/s at the BYBLK station. However, variations in the design floods will be
obviously different under future climate change scenarios. Generally, the future design flood would
decreases from approximately 1% to 22% at both stations. However, at the BYBLK station, the design
flood with 50- and 100-year return periods would increase under the RCP2.6 and RCP6.0 scenarios;
the design flood with a 100-year return period at the DSK station would increase under the RCP6.0
scenarios. The changes in the design floods under the RCP4.5 and 8.5 scenarios are higher than those
under the RCP2.6 and 6.0 scenarios.

Table 3. Comparison of design floods (m3/s) under historical and future climate change scenarios.

Gauge Station Scenario
Return Period (Years)

5 10 20 50 100

DSK

Base line 482 560 643 738 800
RCP2.6 412 503 596 713 739
RCP4.5 387 455 521 593 667
RCP6.0 406 513 599 721 810
RCP8.5 376 466 527 589 679

BYBLK

Base line 175 206 250 286 316
RCP2.6 152 191 229 269 310
RCP4.5 139 172 208 233 279
RCP6.0 157 203 251 325 386
RCP8.5 155 200 233 276 328

5. Conclusions

This study investigated climate change impacts on future streamflow and peak flows using SWAT
and GEV statistical analysis in the Kaidu watershed. SWAT was calibrated for the Kaidu watershed and
the BYBLK subwatershed and reproduced the daily and monthly runoff reasonably well. Due to the
uncertainty among GCMs, the average ensemble of 15 GCMs was employed to assess the hydrological
impact under future climate change.

In the Kaidu watershed, the numbers of rainy days would be increased in most winter and spring
months, and would be decreased in summer months under all RCP scenarios. The changes of monthly
rainy days under the RCP2.6 scenario may have the largest range from −6% to 5% at the mean level.
The rain intensities for different quantiles would not obviously change in summer, while the changes in
winter would be significant. Mean annual precipitation in the future would exhibit an increasing trend
under the four RCP scenarios. In addition, the mean changes in precipitation would be from 1.2%
to 50%, 0.5% to 61%, 0.2% to 46%, and 1.0% to 78% under the RCP2.6, RCP4.5, RCP6.0, and RCP8.5
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scenarios, respectively. The temperature changes would be positive, and the mean monthly changes
would range from 1.86 to 2.57, 2.31 to 3.16, 2.35 to 3.49, and 3.20 to 4.23 degrees under the RCP2.6,
RCP4.5, RCP6.0, and RCP8.5 scenarios, respectively.

Under all RCP scenarios, annual mean runoff would decrease, and the rates of decrease are largest
for RCP8.5 (i.e., 40%). A significant reduction in streamflow can be found in winter (i.e., December,
January, and February), autumn (i.e., October and November) and the beginning of summer (i.e., June).
The largest decrease in monthly discharge would reach 50.3% under the RCP8.5. Increases in simulated
monthly runoff will be found in early April to May, and discharge increases in April will be obviously
higher than those in other months. The changes in annual maximum daily discharge are roughly
from −26.6% to −2.5%; monthly peak flow would increase significantly in early spring, and would
decrease in winter, late spring, and early summer months. In addition, design floods in the future
(i.e., 2041–2080), which were simulated by the SWAT model with downscaled historical GCM data,
would decrease by 3% to 20% compared to those in the historical period (i.e., 1961–2000). Generally,
under the impact of future climate change, the flood intensity in the study area would decrease and
the extent of the drought would intensify.
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