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Abstract: A 100% renewable energy-based stand-alone microgrid system can be developed by
robust energy storage systems to stabilize the variable and intermittent renewable energy resources.
Hydrogen as an energy carrier and energy storage medium has gained enormous interest globally
in recent years. Its use in stand-alone or off-grid microgrids for both the urban and rural
communities has commenced recently in some locations. Therefore, this research evaluates the
techno-economic feasibility of renewable energy-based systems using hydrogen as energy storage for
a stand-alone/off-grid microgrid. Three case scenarios in a microgrid environment were identified and
investigated in order to select an optimum solution for a remote community by considering the energy
balance and techno-economic optimization. The “HOMER Pro” energy modelling and simulating
software was used to compare the energy balance, economics and environmental impact amongst the
proposed scenarios. The simulation results showed that the hydrogen-battery hybrid energy storage
system is the most cost-effective scenario, though all developed scenarios are technically possible and
economically comparable in the long run, while each has different merits and challenges. It has been
shown that the proposed hybrid energy systems have significant potentialities in electrifying remote
communities with low energy generation costs, as well as a contribution to the reduction of their
carbon footprint and to ameliorating the energy crisis to achieve a sustainable future.

Keywords: hydrogen; renewable energy; power to hydrogen to power; hybrid battery-hydrogen
storage RE storage; stand-alone microgrid

1. Introduction

Renewable energy (RE) generation has become a national target for all countries towards global
sustainable development and greener future [1-3] e.g., solar, wind, wave, bioenergy, etc. The main
challenge in the integration of the RE into conventional energy systems is the vital necessity for
large-scale energy storage systems to overcome the variability of renewable resources [4,5]. The curtailed
renewable power and the fact of its intermittency is the biggest barrier delaying the transition towards
100% of renewable power penetration into the power systems [6]. The storage systems will need to
store and shift the RE generated power on different time scales, i.e., hourly, daily and seasonally [7,8].
The conventional energy storage systems like batteries, pumped-hydro, mechanical, etc. have their
own merits [5]. However, they all have technical challenges and limitations [5,9]. These limitations
raise the necessity for a new approach to store energy in an environmentally friendly way, large-scale
capacity and longer discharge duration [9-11]. Hence, the innovative idea of storing RE in an energy
carrier such as hydrogen, which is storable, transportable and utilizable has encouraged interest
worldwide recently [7]. Robust energy storage technology with an intelligent and integrated control
system is an urgent requirement today to increase the penetration of RE into the energy mix.
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A modern microgrid is an integrated energy system consisting of localised grouping of distributed
electricity generation with storage and multiple electrical loads [11,12]. It can be controlled as one
entity or grid, either standalone, completely separate from, or connected to, the existing utility grid [13].
The development of the microgrid has been largely dominated by energy demand-side management,
RE penetration and its integration into the utility grid [14,15]. In cases where it is not possible to connect
the microgrid to the utility grid for any reason such as the remote or isolated location, a stand-alone
microgrid (SAM) is an answer to the power supply challenges [16]. The authors of this research
envisioned that the SAM is a good starting point to transit from the classic trend of fossil-fuelled
powered systems to 100% RE powered systems.

The SAM is a low-voltage power system that supplies a specific localised area [17]. It comprises
local power generation systems with load demands, that can operate in islanded mode or off-grid [18,19].
In the transition to a 100% RE SAM system, hybrid distributed (decentralized) or centralized energy
generation and storage systems are used to meet the energy need [18]. The SAM is presented as a
viable and effective solution to the utilisation of renewable energy resources (RER), by minimizing the
problems associated with variability and intermittency of the renewables [16]. The main challenge
in a SAM system is the optimal sizing of the system components to make the system secure and
reliable while minimizing the capital and running costs [18]. Implementation of an optimal energy
management strategy is essential to optimize the techno-economic performance of the holistic hybrid
systems [16]. The development of artificial intelligence (Al) provides worthy optimization for modern
SAM operations, without relying on extensive long-term weather data and forecasts [20]. Renewable
energy storage systems (RESS) play a crucial role in maximizing the RER contribution to the SAM
energy balance. Such RESS solutions can be a hybrid combination of more than one technology
working together in a synergistic way [7,21]. However, the classic trend is to use a conventional diesel
generator (DG) as a backup or to meet the peak load in combination with RESS for the optimal energy
system component sizing to minimize capital cost [16,17,21-24].

From the available researches, it is evident that SAM with a high percentage of RE penetration and
hybrid RESS can be reliable, cost-effective and more sustainable compared to a 100% fossil-fuel-based
SAM [25]. Many countries around the world such as Australia, Bangladesh, India and South Africa
are currently doing in-depth research to deploy microgrid-based energy-efficient and reliable power
systems for rural or island communities [26-28]. Furthermore, hydrogen for electricity from fuel cells
(FC) has been established as viable in remote specialist applications, e.g., by Ballard in Canada [29,30],
and green hydrogen supplementation to fossil gas networks as a transition to low carbon gas is
underway, e.g., by ATCO Gas in Western Australia [31-33].

Hydrogen as an energy carrier introduces a new approach to store the excess RE in SAM/RESS,
with the merits of longer storage periods and ease of storage capacity expansion [16,34,35]. This system
is called power to hydrogen to X (X means different applications depending on the hydrogen utilising
pathway or end-use) [5,16,18,35-39]. The novel concept of power to hydrogen to power (P2H2P) is a
promising option for storing intermittent renewables and regenerating power when needed [7].

In this research, a remote community SAM has been proposed to identify the techno-economic
viability of a 100% RE-based system with hydrogen-battery energy storage. In Western Australia
(WA), there are dozens of remote stand-alone electricity grids that are beyond the State’s main utility
grid, the South West Interconnected System (SWIS) [40,41]. Currently, the typical arrangement of
remote towns and mining energy supply depends on fossil fuel (mainly diesel) energy resources,
which contributes to the significant levels of CO, and other Greenhouse Gas (GHGs) in our atmosphere.
Additionally, the cost of diesel fuel is high and keeps increasing due to transport and storage costs.
Thus, decarbonisation of the energy supply by utilising locally generated, clean and sustainable
renewable energy is essential for future energy cleanness and sustainability as well as energy security
and economic development. Hence, as a case study this research considers a remote location in the
regional North-West of WA.
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2. Previous Works

In recent years, many research studies on P2H2P systems have dealt with the energy management
systems, controller functions, technical challenges of RESS components, and economic analysis. Studies
such as Giorgio Caua et al. 2014 [19], L. Valverde et al. 2016 [20], Mauricio Higuita Cano 2017 [21] and
Yanfeng Liu et al. 2018 [11] examined the optimal scheduling of the RESS components to maximize the
benefit of the RE and minimize the investment cost. These research studies have concluded that an
energy management strategy is essential for the optimal utilisation of the P2H2P systems as well as the
optimization of the RESS. Mario Petrollese et al. 2016 [42] developed an intelligent control strategy for
the efficient management of microgrids with higher penetration of RER and different energy storage
systems including hydrogen. The key aspect was the design and development of the SAM system’s
controllers to execute the proposed energy management strategies, utilising a statistical approach, to
take into account weather and load forecasting uncertainties. Another research project was carried out
by Jianwei Li et al. 2017 [17] to design and test a hybrid energy storage system for primary frequency
control in SAM systems using a dynamic droop method. Many of the research projects in the field
of control of the SAM systems have focused on frequency and voltage control. The recent paper by
Kwang Woo Joung et al. 2018 [22] dealt with the lack of inertia in the SAM systems and proposed a new
decoupled frequency and voltage controller for DG, which can keep the grid frequency and voltage
magnitude constant. Yanfeng Liu et al. 2014 [43], have introduced a genetic algorithm-based method
for optimal components sizing and life-cycle considerations in SAM systems. The SAM systems have
been investigated for both developing and developed countries as well as for sub-tropical, tropical and
hot-arid climatic conditions to identify the techno-economic viability [27,44].

GM Shafiullah et al. [44] developed a SAM with solar photovoltaic (PV)/diesel/battery for a
small town called Cue in the Mid-West region of Western Australia, from which it is evident that the
integration of PV and battery storage with the existing diesel generators can play a significant role in
reducing energy generation costs, fuel consumption, and generators’ operating time. A percentage
of RE penetration (wind-PV) with a diesel backup hybrid power system in Saudi Arabia has been
investigated by Rehman et al. [45]. It has been seen that the system, with 35% renewable energy
contributions and 65% diesel power contribution, was the most cost-effective power system compared
to a diesel-only system [45]. Yashwant Sawle et al. 2018 [46] have evaluated various hybrid system
configurations using PSO, as compared to HOMER Pro software for the optimal cost of energy (COE).
However, the proposed scenarios did not include any P2H systems.

Subodh Kharel et al. 2018 [47] developed a large-scale long-term grid-connected hybrid
battery-hydrogen system for the South Australia grid, which found the hydrogen-based system
to be cost-competitive compared to battery-only energy storage systems.

From the literature, it is evident that the SAM with DER plays a key role in managing energy
demand, future load growth, reducing energy costs and global warming. However, the prospects of
such systems mostly depend on geographical location, climatic conditions, availability of resources,
socio-economic factors, and economic and population growth of the community.

Despite a large amount of research in the literature regarding the techno-economic evaluation
of hybrid P2H2P, there is no research available to compare a 100% RE-P2H2P-battery hybrid RESS
systems with DG SAM systems. Therefore, this current research aims to investigate the potentialities
of a 100% RE-based SAM with hybrid energy storage systems for remote/rural areas, considering
cost-economic and environmental benefits using the HOMER Pro Microgrid Analysis Tool [24]. The aim
is to evaluate and compare hydrogen-based RESS scenarios with conventional DG powered microgrid
and battery-based RESS, for SAM to identify an optimum solution for a remote community.

Outcomes of this research will be a useful tool for power utilities and government bodies in
their planning for deployment of SAM with hybrid energy storage for rural communities to supply
power to the community, as well as to identify a hydrogen utilisation pathway. The proposed research
method can be used in any remote area or any islands to identify the techno-economic aspects for
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the deployment of a SAM considering indigenous parameters such as renewable energy resources
potential, community load profile, and cost of equipment for the individual areas.

3. Power to Hydrogen to Power System

The P2H2P system can act as an energy storage system similar to batteries but, using hydrogen as
an energy carrier that functions as the storage medium in the batteries [29,48,49]. The P2H2P systems
comprise three main components; the electrolyser, hydrogen storage and fuel cell (FC), as illustrated in
Figure 1.

Electrolyser ~ | Hydrogen Storage I Fuel Cell

(3] T

Figure 1. Power to hydrogen to power (P2H2P) system components. Pictures credit: https:
/nelhydrogen.com/product/electrolysers/ https://www.3dcadbrowser.com/download.aspx?3dmodel=
55633 https://www.energy.gov/eere/success-stories/articles/eere-success-story-fuel-cell-generators-
prove-they-can-save-energy-and.

The round-trip efficiency () of P2H2P systems is described in Equation (1).

TNRound-trip = MNElectrolyser * TStorage * TIFC 1

The energy management strategy, i.e., the controller’s operating algorithm, has an enormous
effect on the optimal utilisation of the P2H/P2H2P systems, i.e., electrolysers and fuel cells operating
hours, the number of starts/stops cycles and the components’ degrading rate [50,51].

Further, dealing with hydrogen can bring some new hazards which must be dealt with [52-54].
Hydrogen, like all fuels, is a flammable gas with relatively low ignition temperature, with higher
gravimetric energy content than most of traditional fuels, which at 2980 K is 120-141.8 M]J/kg compared
to 44 M]/kg for gasoline [7,11]. Additionally, hydrogen has the ability to escape through materials,
as well as having a destructive capability (i.e., hydrogen embrittlement), which requires additional
engineering controls to ensure safe utilisation [7,52]. However, the hydrogen handling, risk assessment,
regulations and policies these days have brought lots of attention in the literature [52-57]. The safety
and handling practices, codes and regulations are beyond the scope of this research study.

3.1. Water Electrolysis

Water electrolysis is defined as a process of splitting water into oxygen and hydrogen gas due to
the passage of a direct electric current (DC) [58—-60]. Renewable (green) hydrogen can be produced by
utilising RE resources via a water electrolysis pathway [58-60].

The electrolysis process is expressed in Equation (2) [61].

H,O - 2H, + O, AH° =286 kJ/mole (at 25 °C, 1 bar) ()

The three water electrolysis technologies most mentioned in the literature are [35,48,62]:
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e Alkaline water electrolysis (AWE),
e  Proton exchange membrane (PEM),
e Solid oxide electrolyte (SOE).

The PEM technology electrolyser was used in this research study for its merits of maturity and
suitability for the acceptable efficiency in partial and full load performing, as well as the fast response
to the input/output power fluctuation [35,48,63]. However, there are some challenges in utilising and
sizing the electrolyser, such as the H, production capacity, excess energy availability and the number
of start/stop cycles (up to 10,000 cycles before ultimate degradation [50]). Moreover, the maturity in
electrolysis technologies (electrolysers), has made the P2H systems a promising gateway towards the
hydrogen economy era [5,10,39,48,64-67].

3.2. Hydrogen Storage

There is a wide range of approaches for hydrogen storage liquified hydrogen, compressed gas or
material-based storage systems. In this research study, the physical-based compressed gas (i.e., 350 bar)
technology in durable tanks was proposed [68,69]. The literature reveals that this technology is the
most mature and economically viable hydrogen storage technology, as well as being suitable for the
scale and the purpose of the proposed scenarios [67,69].

3.3. Fuel Cells

Fuel cells are one of the most attractive and promising hydrogen utilising technologies, where
hydrogen combines with oxygen without combustion in an electrochemical reaction (reverse of
electrolysis) and produces electricity, i.e., red-ox reaction is occurring [70], as illustrated in equation
set 3, below:

Anode : 4H' + 4e~ — 2H,
Cathode : 2Hy0 — Oy + 4HT + 4e” ®)
Overall : 2H,O + H™ + 4e- — 2H, + Oy + 4H' + 4e”

4. Methodology

This study proposes the development of 100% renewable energy-based SAM systems with
hybrid energy storage for a remote community. The proposed system analyses the characteristics of
P2H2P systems, as well as the techno-economic potentialities of a P2H2P hybrid RESS. In this study
conventional DG and three 100% RE-based scenarios have been modelled, simulated and evaluated
using “HOMER Pro”, and their performances compared, based on performance metrics such as net
present cost (NPC), capital costs (CAPEX), operational costs (OPEX) and cost of energy (COE) to
identify the most optimum solutions for a remote community.

In order to upgrade this DG-SAM, a 100% RE system has been introduced in the form of
conventional solar PV farms and different types of energy storage systems.

Li-ion Battery and P2H2P systems were considered as energy storage systems, that not only provide
power in the absence of PV, but also help to overcome the problem of variability and intermittency of
renewable resources. The base case comprising two full capacity DGs was compared to the following
three scenarios:

e  Scenario 1 (S1): 100% solar PV-battery system.
e  Scenario 2 (52): 100% solar PV-P2H2P system.
e  Scenario 3 (S3): 100% solar PV and hybrid battery-P2H2P system.

All scenarios were simulated for optimal system component capacities and COE over the project
lifetime of 25 years in comparison to the conventional diesel generator scenario. The proposed system
model for all scenarios is illustrated in Figure 2. The environmental impacts (emissions) were compared
to show the reduction in the amount of emission, whilst all scenarios were developed to reliably and
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sufficiently deliver the energy demand, with the least cost of energy in each scenario. A hypothetical
case study has been used to develop, model and simulate energy balance in different proposed scenarios
(excluding the microgrid civil infrastructure development), as they are assumed to be the same in all
scenarios. Finally, selected simulation results have been presented for comparison and to demonstrate
the possibilities of these different scenarios.
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Figure 2. The proposed 100% hybrid PV-battery-hydrogen model.

4.1. Case Study; Hypothesis

A hypothetical remote community settlement in the North-West of Western Australia, comprising
100 dwellings (400 dwellers) and a few small commercial buildings and factories. A semi-residential
load profile, with a daily AC load of 2 MWh has been proposed. The residents get their fuel supply by
fuel tanker trucks which adds an extra cost to the diesel cost for the electricity generators. The diesel
fuel is assumed to cost two US Dollars per litre after adding the transport and storage cost [71].
The remote community settlement location, solar irradiance, temperature and weather data were
imported from NASA global data [72] into the Homer Pro software, as shown in Figure 3.
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Figure 3. The proposed remote community settlement location (18°11°43.0” S 125°33’55.5” E), solar
irradiance, temperature and the weather data, imported from NASA global data [72]. Map credit:

https://greenpowerlabs.com/western-australia-solar-map/.
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A stand-alone 100% RE microgrid has been proposed, which comprises solar PV farm and RESS
scenarios to deliver the energy requirements reliably. The RESS scenarios have been modelled and
simulated using input parameters and price assumptions available in Homer Pro [73]. The simulation
results were tabulated for a detailed comparison of capital costs (CAPEX), operation costs (OPEX),
cost of energy (COE) and emission reductions for all possible studied scenarios.

4.2. Scenarios Description

The community load profile imported from Homer Pro software was used, as shown in Figure 4,
and has been scaled up to a daily AC load of 2 MWh and a peak load of 192 kW, which is assumed to
supply 100 dwellings. The capital and operating costs (CAPEX and OPEX) in US Dollars of all systems’
components and there specifications were imported from the Homer Pro library [11,73] and modified
according to the authors’ best knowledge. The CAPEX and OPEX of the system component were
adjusted to the near-real costs in the literature reviewed and the market. A Homer Pro simulator was
used to calculate optimal component sizes, to achieve the minimum COE in each scenario, to cover
the daily load and three days of autonomy. The studies scenarios (base case and three 100% RE) are
described below;

Stand-Alone Microgrid ~ Generator cap.: 200 kW Emissions [Homer Pro]
Base Case Capex: $100,000 each Carbon Monoxide (g/l) = 5.06
Diesel Generators X 2  Fuel curve slop: 0.225 /hr/kW Unburned Hydrocarbons (g/l) = 0.11
Fuel Diesel cost: $ 2/L estimated Particulate Matter (g/l) = 0.26
sy ookl (including sea transport) Nitrogen Oxides (g/l) = 26.23
Electric Daily Load Profile Load Type : AC Random Variability
Peak month: non Day-to-day (%) = 10
£ | I | | | | | | I | | | Daily average (kWh/d): 2000 Time step size: 60 Minutes
RETTRIARER AN | Peakkw) 192

Panel Type: Flat Plate PV MPPT lifetime = 15 years

SOLAR PV Peak month: July Ground reflectance = 20%
Efficiency: 18.7% No Tracking system
Temp. Coefficient: -0.39 Capex: $1000/kW Installed
Operating Temp.: 45°C Opex: $5/kWiyr.

Lifetime: 25 Years

‘] Battery Bank Type; Lithium-lon Capex: $700 /kWh (installed)
Nominal Voltage: 600 Opex: $10/kWhiyr
Volts/string Lifetime: 15Years

Roundtrip Efficiency: 90%

Electrolyser & Fuel Cell Type: PEM electrolyser Type: PEM Fuel Cell (PEMFC)
Life time: 15 years Life time: 60,000 hours
Proton Exchange Efficiency: 80% Efficiency: 75%
A Membrane (PEM) Water consumption: 10 I'Kg H, Water consumption: 10 I/Kg H,
u Capex: $2500/kW (Installed) Capex: $2500/kW (Installed)
Opex: $80 kW/yr Opex: $0.02 op hr
H2 Storage Tank Lifetime: 15 years Economics [Homer Pro]
N Capex: $1000/Kg H, Project lifetime= 25 years
[} Installed plus peripherals Discount rate= 8%
Opex: $10/kg H, Inflation rate= 2%
Pickre cust st semme e o s Compressed gas (350 bar) Currency= US Dollars ($)

Figure 4. Modelling inputs (load profile, components, parameters and costs) have been imported from
the Homer-Pro software library [73].

Base Case Scenario (BCS): The base case scenario is the classic trend for a stand-alone microgrid
which comprises two diesel generators (DG) (200kW each); one to follow the daily load profile and a
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second for full capacity back up DG. Hence, power is generated from the direct consumption of diesel
fuel only. The diesel generator parameters are summarised in Figure 4.

Scenario 1 (S1): A 100% RE system comprises solar PV and Li-ion battery bank with Cycle
Charging (CC) dispatch strategy. The simulation constraints were set to meet the load requirement for
more than 99.9% and to have a minimum of two hours of autonomy. This scenario model has been
simulated to the optimal COE, and system components size to the minimum NPC, using the same
simulator input parameters as shown in Figure 4. In reality, the system must provide sufficient hours
of autonomy, which require higher CAPEX and OPEX.

Scenario 2 (S2): A 100% RE-P2H2P system comprises a solar PV, electrolyser, hydrogen tank and
FC (proposed in lieu of a battery bank). The same simulation constraints of S1 were used. This model
is simulated to the optimal COE and electrolyser size, to convert the maximum amount of the excess
renewable energy into hydrogen. Additionally, the size of the hydrogen storage tank is optimized to
handle the daily generated hydrogen, plus three days of autonomy. The fuel cell size is optimized to
cover the full peak load of 192 kW. The specification and parameters of the P2H2P system components
are summarised in Figure 4.

Scenario 3 (S3): A 100% RE system comprises solar PV generation and a hybrid storage system,
which comprises P2H2P and a smaller capacity Li-ion battery bank. In this hybrid model, the size of
the battery is optimized to handle the peak load for a short period of time, while the P2H2P system
will act like a baseload generator with the optimal size to utilise the maximum excess energy in the
stand-alone microgrid system. The hybrid system is simulated and optimized for the least COE and
component sizes and optimal energy balance in the microgrid. The simulation constraints were the
same as in S1 over S2, while the same input parameters are shown in Figure 4, fed into the Homer
Pro simulator.

5. Results and Analysis

Optimal system performance and sensitivity analyses have been carried out with HOMER Pro
to evaluate the performances of a SAM with PV/battery, PV/P2H2P and PV/P2H2P/battery systems.
Table 1 shows selected simulation results to give an outlook of all the proposed scenarios for upgrading
a classic Diesel Generator (DG) stand-alone microgrid to a 100% RE hybrid stand-alone microgrid.
The options are to integrate the 100% solar PV generation with battery RESS and/or the P2H2P system
to reduce COE and eliminate emissions.

Possible feasible combinations are identified, based on the given constraints and inputs, and
based on their CAPEX, OPEX, NPC and COE, whereby all scenarios have been analysed and revealed
the following;

The techno-economic comparison of all scenarios in Table 1 revealed that the BCS is the lowest in
capital investment, but the highest in NPC over the project lifetime. However, it is the highest COE
in the long run for the project life of 25 years, as shown in Table 1. Moreover, this BCS results in the
highest pollution (610 metric tons CO, per year), due to the diesel fuel and absence of renewable
energy (0% renewable fraction) in the energy generation system, as shown in Table 1.

In Scenario 1 (S1), a model of 100% renewable energy (solar PV) and a battery bank were simulated,
and the results are tabulated in Table 1 to compare it to all other scenarios. The simulation results
showed that eliminating the emissions and diesel fuel supply requires higher CAPEX, but lower COE
(48.6% diminish) over the 25 years of the project lifetime. COE for this scenario is US $0.394, compared
to US $0.665 in the BCS.
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Table 1. Simulation selected results for all scenarios.

Results/Scenarios Base Case Scenario (BCS) S1 S2 S3
Optimised Solar PV—direct electric current (DC) Bus (kW) X 1708 1047 953
DG1 Capacity(kW) 200 X X X
DG2 Capacity (kW) 200 X X X
Li-ion Battery Capacity (kWh) X 1700 X 300
System Component  Fuel Cell (FC) Capacity (kW) X X 200 100
Electrolyser Capacity (kW) X X 250 250
H; Tank Capacity (kg) X X 300 200
Converter Capacity (kW) X 200 200 200
Net Present Cost (NPC) (millions of $) 6.27 3.74 447 3.23
Simple Payback Vs BCS (yr) BCS 6.26 6.7 494
Economics Discounted Payback Vs BCS (yr) BCS 791 8.39 6.01
Cost of Energy (COE) (lifetime of 25 years) ($) 0.665 0.394 0.474 0.342
Capital Costs (CAPEX) (millions of $) 0.20 2.96 2.53 2.30
Operational Costs (OPEX) ($/yr) 469,741 58,841 149,880 72,032
Renewable Energy (RE) Frac (%) 0.0 100.0 100.0 100.0
RE System Cap. Short (%) 0.00 0.099 0.045 0.052
Excess Elec (%) 5 74.9 352 33
Excess Elec (kWh/yr) 39,000 2,394,702 803,313 696,087
DG1 Operating (hours/yr) 8760 X X X
DG 1 DGI1 Fuel 231,186 X X X
DG1 O&M Cost ($/yr) 262.8 X X X
DG1 Fuel Cost ($/yr) 462,373 X X X
FC Operating (hours/yr) X X 8757 4282
FC Prod. (kWh/yr) X X 322,991 325,479
Hydrogen FC H, Fuel (kg/yr) X X 14,200 12,839
FC O&M Cost ($/yr) X X 35,028 8564
H; Tank Autonomy (kg) X X 277 177
H, Tank Autonomy @) (hr) X X 120 80
Battery Autonomy (hr) X 16.3 X 2.88
Battery Battery Nominal Capacity (kWh) X 1700 X 300
Battery Usable Capacity (kWh) X 1360 X 240
Emissions CO; kg /yr 610,004 0 0 0
GHGs Emissions NOx /yr 6066 0 0 0
Emissions SO, kg /yr 1517 0 0 0

M FC consume 0.0391 kg of hydrogen per kWh (as per Homer Pro simulator [73]).
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The optimization towards the minimal COE and battery size, as well as to ensure the system
stability and reliability, required a large solar PV generation capacity of 1.708 MW, which leaves
over 74.9% of excess electricity. Additionally, the RESS autonomy is 16.3 hours, which needs more
investment in the battery capacity, to reduce the wasted excess energy, and increase storage autonomy.

The idea of storing RE in the form of hydrogen was evaluated via two scenarios, to compare the
pros and cons of utilising hydrogen energy towards the rapidly emerging hydrogen economy era.
Thus, Scenario 2 (S2), as a combination of the solar PV and P2H2P system, was modelled and simulated
in comparison to BCS and S1. The simulation of P2H2P RESS revealed that full-size hydrogen-based
RESS is not the most cost-effective solution when compared to S1. However, storing RE in the form of
hydrogen is more effective than the battery system (S1) in reducing curtailed excess RE by (56%), due to
a bigger hydrogen production capacity (electrolyser). Therefore, less solar PV capacity is required for
the similar energy balance of the stand-alone microgrid, as shown in Table 1 (51 and S2). Additionally,
P2H2P systems have more energy autonomy in the form of stored excess compressed hydrogen in the
tank, which can be increased significantly by increasing the production and storage capacities, i.e.,
the electrolyser and H; tank. The COE in both scenarios (S1 and S2) are still diminished significantly
in comparison with BCS and emissions are completely eliminated.

Whilst hydrogen-based RESS is a promising innovative approach, there are some techno-economic
challenges, such as the high capital of the system components and partial full load inappropriateness.
Additionally, using the FC as an inertia keeper in a stand-alone microgrid will need the FC to be
kept in hot mode, i.e., the FC will provide only a small fraction of the energy supply but will do
so continuously.

Due to the results of S1 and S2, a hybrid battery-hydrogen RESS was proposed, modelled and
simulated to evaluate its techno-economic viability. Scenario 3 (S3) comprises a smaller capacity battery
and a P2H2P. The evaluation of S3 showed that it is the most cost-effective system for 100% RE-based
SAM. Moreover, this hybrid battery-hydrogen RESS model (S3) shows a very promising discounted
payback period of 6.01 years and COE reduction of 48.6% vis a vis the BCS, compared to a reduction of
40.8% when only battery RESS was used, as shown in Table 1. Furthermore, the 100% RE-based SAM
in S3 curtails only 33% of the RE generation, compared to 74.9% in the S1. The system autonomy in S3
is 80 hours in the form of stored hydrogen (177 kg H;) as shown in Figure 5, compared to 16.3 hours
only, in the case of S1.

Quantity jalue nit

—~ 25 —

*9:?’ Hydrogen storage capacity 200 kg

> Energy storage capacity 6,667 kWh

= Tank autonomy 80.0 hr I I

£ I
&

) —— S S — ——

> ¥ S iz S
Hydrogen Tank level (kg H,)
250
© J
= [ 1 | 1 | ]
s l f . = == I ]
S ===
Y
=
= 1
0 +—— —_—
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Figure 5. The hydrogen monthly tank level and frequency of occurrence.

Hence, the discounted payback period for S3 is 6.01 years, which is 22.8 months shorter than the
S1 discounted payback period. The S3 hybrid system payback periods in comparison to the BCS with
cost sensitivity of the hydrogen system components (Electrolyser and FC), as well as the diesel cost,
are plotted in Figure 6.
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Figure 6. S3 payback periods with FC, electrolyser capital and diesel cost sensitivity.
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Moreover, the battery bank with the DC-AC converter in the proposed S3 hybrid system can be

used to ensure the SAM power quality, i.e., the frequency and voltage control [12,74].

Figure 7 is an example of a few days’ plot during December of the SAM system components
simulator integration and operation of the S3 hybrid system. The hourly simulation shows that the
combination of the solar PV, battery discharge and the fuel cell output power can always meet the peak
load (>99.9%). The graph demonstrates the contribution of the hydrogen fuel cell in the power supply
for long hours, during the daily cycle of the S3 model for the proposed SAM system. The accumulation
of the stored hydrogen level in the tank is at a high level and increasing (around 200 kg Hy), as December
is the highest solar daily radiation month of the year, with 8.3 kWh/m?/day [72] in the N-W of WA,

as shown in Figure 3.
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Figure 7. The stand-alone microgrid (SAM) system components’ operations of S3 hybrid system

(December).
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The accumulated hydrogen in the storage tank shifts the excess RE seasonally to the low daily
radiation periods, which is June in the N-W of WA. This is the main advantage of using hydrogen to
store excess RE energy for longer periods than batteries only, as shown in Figure 8.
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Figure 8. The SAM system components’ operations of S3 hybrid system (June).

During the low solar radiation month, i.e., June, in this case shown in Figure 3, the average
solar daily radiation falls to 4.08 kWh/mz/day [72] in the region. The worst-case scenario is plotted in
Figure 8, which shows that the average of the lower hydrogen level in the tank varies between 60-80 kg
H; (also shown in Figure 5), which is around 18-24 hours’ system autonomy (0.0391 kg H;, per kWh).
However, the yearly simulation of the proposed model shows an average of 177 kg H,, which provides
around 80 hours of autonomy, as shown in Table 1.

The PEM electrolyser feed water (demineralised) consumption is reported at 10 litres per kg Hp
according to the product datasheet by the manufacturer “Nel hydrogen” [75]. Therefore, the proposed
system requires 356.3 litres of pure water per day. The PEM electrolysers typically require a higher
water purity than alkaline electrolysers [76]. The water purification process consumes 3-5% of the
energy stored in the produced hydrogen [77]. Hence, water purification can utilise the excess RE,
which can be done when it is available and stored in a pure water tank.

The energy balance and components” working hours have been optimised using the Homer Pro
software. However, the stable and constant power supply can be controlled by a case-specific designed
energy management system and the battery to optimize electrolyser and FC working hours, to reduce
the operating cost and enhance its lifetime. The major cost of S3 CAPEX was incurred by the P2H2P
components, the COE to the electrolyser and FC cost, hence, a sensitivity analysis has been conducted.
From Figure 9, it can be seen that COE increases with the increase of FC and electrolyser capital cost.
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Figure 9. The COE and CAPEX to the electrolyser and FC initial costs sensitivity.

However, the classic trend of cost reduction of the hybrid battery-hydrogen RESS component
increases the cost-effectiveness of such hybrid systems as a promising pathway towards 100% RE
stand-alone microgrid systems. Additionally, having the energy stored in the form of hydrogen makes
the system more resilient and introduces more possibilities to utilise stored hydrogen in other forms of
energy, i.e., town gas supply and e-mobility sector.

This hypothetical case study has been conducted relying on actual RE resources available in the
proposed region of North-West WA, Australia and near-real capital costs of the system components.
The community daily load profile has been imported from the Homer-Pro library, assuming it is a
near-real profile in the remote communities in WA. However, any change in the average daily load
profile will have a minor effect compared to the immense effect of any change in the peak load period
and amplitude. Hence, this case study model can be replicated within a similar load and peak load
profile in the region. Changing the region or the daily load profile can use the same proposed model,
but needs to re-simulate the model according to the new input parameters.

6. Conclusions

In this research, a set of 100% renewable energy (RE)-based scenarios were defined, modelled and
simulated for a proposed stand-alone microgrid (SAM) system. A battery-based, a hydrogen-based
and a hybrid combination of battery-hydrogen-based Renewable Energy Storage Systems (RESS) were
evaluated and compared with the conventional DG-based SAM system. The evaluation of all proposed
scenarios demonstrated that the hybrid battery-hydrogen-based RESS system (S3) is a promising
innovative approach for 100% renewable energy-based SAM systems. The simulation of this hybrid
system revealed that it has the least NPC and COE along the project lifetime of 25 years. Additionally,
it curtails less excess energy in comparison with the battery-based storage system, as well as extending
the system autonomy in the form of stored hydrogen. The promising discounted payback period of
six years makes this system a highly prospective and cost-effective option for the transition towards
100% RE SAM systems. The proposed and evaluated model can be replicated within a similar load
profile and RE resources available, but it needs re-simulation according to any change in the input
data. More evaluation is required for optimal utilisation of excess RE and the possibility of utilising
the stored hydrogen in an energy-water-waste nexus way of thinking, e.g., using the excess RE for
drinkable water by reverse osmosis and using some of the stored hydrogen as direct fuel for heating,
cooking and transport.
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RE Renewable Energy AWE Alkaline Water Electrolysis
SAHM  Stand-Alone Hybrid Microgrids PEM Proton Exchange Membrane
RER Renewable Energy Resources SOE Solid Oxide Electrolyte
RESS Renewable Energy Storage System n Efficiency

P2G Power to Gas CAPAX Capital Cost

P2H Power to Hydrogen OPEX  Operating Cost

P2H2P  Power to Hydrogen to Power NPC Net Present Cost
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