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Abstract: The success of metro systems depends on effective multimodal solutions that bridge the
first-and-last-mile gaps. Both dockless bike sharing (DBS) and taxis are important feeder modes for
metros, which provide on-demand travel options with high flexibility and accessibility. Based on
one-week trip data of DBS and taxis during a concurrent period in Beijing, China, the paper aims
to compare the temporal-spatial distribution of two modes as first-and-last-mile connectors and
find out the socio-demographic and built-environment factors that impact their usage. K-means
clustering is implemented to visualize the spatial distribution of DBS and taxis around metro stations,
and the spatial lag model incorporating spatial autocorrelations of variables is developed. The
results show that people prefer to use DBS as a substitutable mode for bus services to serve first-mile
interchange in the morning. Also, less economically developed areas with a high density of branches
and fewer signalized intersections are more favored by DBS users, whereas people in the central areas
with high housing price and developed arterial road network tend to take a taxi, especially during
evening peak period. The study can offer the policy guidance to improve DBS services, and several
recommendations are suggested to ensure the sustainable development of DBS.
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1. Introduction

The metro transit system is fast, comfortable, reliable, and has good prospects for the development
in many cities by providing a high-capacity, medium-to-long distance travel service [1], and the success
of urban metro transit depends on effective multimodal solutions that bridge first-and-last-mile gaps
in the transportation network [2]. Walking and riding a bus are the most common modes for metro
transfer [3–5]. However, in the peripheral areas of a city where bus service is less robust and the
walking distance to the metro station is too long, bicycles and taxis account for higher proportions as
the transfer modes [6]. It is also reported that residents who live in suburban areas generate a large
number of trips and take taxis to the nearest metro station for maximizing travel efficiency and cost
effectiveness [7].

Many cities have developed a station-based bike sharing system (SBBS), which provides people
with a cheap, healthy, convenient, and sustainable transportation mode. SBBS promotes bicycle usage
and decreases the ridership of the personal automobile in the form of driving and taxis [8]. However,
the SBBS implementation is relatively unsatisfactory in some cities, and the main barriers are poor
accessibility to docking stations and lengthy registration process [9–12].

A new type of bike sharing called dockless bike sharing (DBS) developed in China in 2016, and
there were over 1600 information technology–based bike sharing systems worldwide with over 18.17
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million bicycles as of 2018 [13]. Compared with conventional SBBS and private bicycles, DBS users
can flexibly pick-up and drop-off the bicycle anywhere without worrying about pick it back. Then
the nearest bicycle can be found on demand with an application on mobile phones since all sharing
bicycles are installed microchips comprising GPS and sensors that can simplify locating and recording
routes. Moreover, people using DBS don’t need to take responsibility for maintenance and repair
compared with private bicycle. Also, people riding DBS do not worry about the theft of the bicycle
which used to be the serious concern of private bikes [14–16]. Consequently, DBS becomes prevalent
among people as a new type of bike sharing, providing fast and flexible mobility for commuting trips
during peak periods [17]. Furthermore, DBS is also found to be a widely accepted feeder mode for
metros and improve transit usage. DBS annual reports from two biggest bike sharing companies
indicated that nearly half of the shared bicycles are active around the metro stations in China and a
total of 51% of these bikes are parked within 500 m of metro station areas [18,19].

However, DBS operators deployed large amounts of equipment in cities in a short period of time,
which resulted in an increasing number of complaints about DBS fleets that were parked incorrectly
and destroyed the public rights-of-way [20]. Most of the local government policies thus changed from
the initially “neutral-positive” to “neutral-negative” and even “negative” toward DBS since the second
half of the year 2017 in China [21]. Simply and directly restricting the development of DBS may lead to
worse conditions in areas where metro transfer problems have been relieved by DBS.

Despite the differences between device type and using price, the modes of DBS and taxis share
some similar features. First of all, they are both significant feeder modes for metros in areas with
poor bus services. Second, finding an available device (bicycle or taxi) is required before a trip starts
(but without responsibility of ownership). Third, they are both very flexible and provide convenient
door-to-door service [22,23]. The major difference is that DBS is a sustainable mode, while the taxis
are not, so it will have important policy implications to help the urban transportation system become
more sustainable, as well as improve urban mobility and lower dependency on automobile travel.
Therefore, it will be very interesting to visualize the spatial distribution of people who use DBS
and taxis for metro transfer during peak periods, and further explore how socio-demographic and
built-environment variables impact the use of two modes. Drawing from the experience of Beijing,
hopefully, this paper can propose targeted policies accordingly to enhancing sustainable services of
DBS, as well as recommendations on transportation infrastructure planning, not only for China but
also for many other countries facing similar problems.

The remainder of this paper is organized as follows. Section 2 provides a brief overview of
relevant studies. Section 3 describes the case-study context, presents the data compilation and sample
information, and analyzes the spatial distribution of DBS and taxi usage. In Section 4, spatial lag
models showing the effects of the built environment on two transfer modes are developed, and the
results are presented. Section 5 presents a discussion of the findings. Section 6 presents the conclusions
and provides recommendations for policy implications and transportation planning, as well as some
limitations of the study.

2. Literature Review

2.1. Metro Access with Cycling and Taxis

Existing studies on bicycle-metro intermodal transportation are extensive. Some scholars have
studied travel characteristics of bicycle–metro trips [21,24,25], bicycle parking problems at metro
stations [26,27], and bicycle–metro integration demand forecast [28,29]. The existing literature mainly
focused on the integration of SBBS with the metro. It showed that metro stations were critical
origin–destination (O–D) of SBBS trips [30]. Ji et al. [31] indicated that riding distance was negatively
associated with metro-bikeshare transfer demand of SBBS, especially in the suburbs. The density of bus,
bikeshare stations, and nearby metro stations showed different degrees of correlation with ridership in
different urban areas. Zhao and Li [32] found that the mixed land use and green parks around metro
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stations were related to high rates of bicycle transfer. However, a few existing studies on DBS focus
on metro transfer, Du and Cheng [17] established that 51.13% of users used DBS in accessing metro
stations. Zhou and Ni [3] found that good riding skill, non-motorized vehicle ownership, and metro
stations located in the urban fringe would promote transfer mode shift. Questionnaire survey is the
most widely used method for behavioral data collection. The advantage is that individual attributes
are available, but its greatest disadvantage is inadequate sample size and limited study generalizability.
In addition, Li et al. [33] collected DBS data in Nanjing City, China and applied K-means cluster to
analyze the temporal and spatial distribution features and the range of influence of DBS systems near
local metro stations. Nevertheless, the article lacks a deeper analysis of effects of the built environment
on DBS usage.

As a matter of fact, the big data by employing GPS tracking data of taxi has drawn more researchers
to examine the pattern and influencing factors of taxi ridership [34–38]. But only a few studies have
paid attention to the effects of taxi as feeder model for metros. Li, Dong, Shen, Lang and Ye [7] analyzed
the effect of the metro on the pick-up and drop-off locations of taxis. They found that the number
of taxi trips between other areas and metro stations in suburb areas has generally increased after
opening a new metro line. Kim [39] used cluster and classification methods to detect different ridership
characteristics. Metro and taxi data were analyzed simultaneously to indicate that taxi ridership
gathered in specific residential and business regions, which showed the hierarchical structure in Seoul.

2.2. Effects of the Built Environment on Bike Sharing and Taxis

The U.S. Department of Transportation has developed a framework that looks at Mobility
on Demand in five built environments, including spatial, temporal, economic, physiological, and
social [40]. However, many previous studies pay special attention to the spatial built environment.
Table 1 summarizes the related studies in the field of analyzing the effect of the built environment on
usage of bike sharing and taxis in terms of independent and dependent variables, data source, as well
as model selection. Note that all of the following research on bike sharing are all SBBS.

As shown in Table 1, the sociodemographic variables, metro station characteristics, public transit,
land use, and roadway infrastructure are the most frequently used types of independent variables.
For the dependent variables, the majority of studies use ridership or usage rate as the target variable,
assuming the wide applicability of these variables in studying SBBS and taxi issues.

In terms of the methodology, some studies have employed ordinary least square model (OLS),
linear mixed model (LMM) and negative binomial (NB) regressions to examine the relationship between
the built environment and ridership of bikes or taxis [30,34,41–44]. However, variables are usually
analyzed on basis of a community or a traffic analysis zone (TAZ). There may be a spatial relationship
between the observations, which means that variables in the neighborhood would affect each other.
This spatial relationship violates the basic assumption of OLS regression model [45]. Therefore, some
research has employed the spatial regression model that considered the spatial relationship, i.e. spatial
heterogeneity or spatial autocorrelation. Geographically weighted regression (GWR) approach is
advanced in capturing spatial heterogeneity of ridership and used in many studies [23,31,35,46].
But only a few studies considered the impacts of spatial autocorrelation on the relationship of the
built environment and SBBS ridership, for example, the generalized additive mixed model (GAMM)
proposed by Sun et al. [47] and the spatial lag model (SLM) used by Zhang et al. [48].
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Table 1. Summary of the built environment used in selected studies.

Bike Sharing Taxi

Sun et al.
[47]

Faghihimai et al.
[42]

Zhao et al.
[43]

Ji et al.
[31]

Wang et al.
[44] El-Assi et al. [41] Zhang et al.

[48]
Zhao and

Li [32]
Erdoğan et al.

[30]
Yang et al.

[34]

Qian and
Ukkusuri

[23]

Li et al.
[35]

Wei et al.
[46]

Independent variables

Sociodemographic
variables

Population • • • • • • • • • •

Age •

Income • •

Household density • •

Metro station
characteristics

Distance to CBD • • • • •

Elevated station •

Transfer station •

Terminal station •

Ridership of metro • • •

Public transit

Bus lines • • • ‘ •

Bus stops • • •

Bike stations • • •

Metro stations • • • • • •

Bus accessibility • •

Metro accessibility • •

Land use (POIs)

Job-housing balance index
Land use mix types • •

Restaurants • • • •

Commercial Enterprises • • • • • •

Parks and greens • • • • • • •

Residential • • • • • • • • •

Office • • •

Shopping malls/Retails • • •

Schools • • • • • •

Airports •

Hospitals • • •

Tourists attractions •

Street intersections • •

Arterial road length • •

Roadway infrastructure
Branch road length • • •

Road networks density • • • •

Street light/trees •

Bicycle facility • • • • • •

others Parking availability • •

Data and methodology

Dependent variables Ridership Usage
rates Ridership Ridership Ridership Ridership & OD Ridership Mode

selection Ridership Pickup &
Drop-off

Ridership Ridership Ridership

Data source GPS data GPS
data GPS data Smart-card

data GPS data GPS data Smart-card
data

Survey
data GPS data GPS data GPS data GPS data GPS data

Model GAMM LMM OLS GWR OLS & NB OLS SLM MNL OLS OLS GWR GWR GWR



Sustainability 2020, 12, 2034 5 of 20

In summary, some knowledge gaps in the field are worthy of attention. Firstly, the existing studies
only focus on the behaviors of bike sharing and taxis for metro transfer separately. To the best of our
knowledge, previous study has not made comparison of the two modes for metro transfer, and most of
the existing studies concentrated on SBBS, which has different features with the recently developed
DBS. Secondly, most existing studies have relied on questionnaire survey data to analyze transfer
behaviors, which is inefficient and includes an inadequate sample of participants and larger areas.
However, DBS with the GPS chip gives researchers a chance to measure and compare both cycling and
taxi behaviors on a large geographic scale. Third, considering spatial autocorrelation is necessary for
DBS or taxi ridership, which can surely bring a more comprehensive understanding of trans-shipment
characteristics from a spatial perspective. Only a few study have investigated spatial autocorrelation
factors of this issue.

3. Materials and Methods

3.1. Case-Study Context

The case-study context of this study is Beijing, China, which contains 16 urban districts and 152
Jiedaos [49]. Jiedao is an administrative unit in China that covers an area about 10 km2. The city features
a total area of 16,410 km2 and 21.70 million citizens. Beijing has six ring roads, the area within the
Fourth Ring Road is generally defined as the urban area, and the area outside the Fourth Ring Road is
the suburban area [32]. By the end of 2016, 15 metro lines were running in Beijing, covering 275 metro
stations (recording the transfer stations of different metro lines as one, Figure 1). Meanwhile, All DBS
companies continually launched 2.10 million bicycles in Beijing, and Mobike occupied half of the bike
share market [50]. Meanwhile, Beijing has nearly 67,000 taxis.
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Figure 1. Beijing metro lines and stations.

3.2. Data Collection

3.2.1. DBS and Taxi Raw Data

Data used in the analysis comprises DBS trip dataset compiled from Mobike trip data and GPS
trajectory data of taxis during one workweek of May 2017 (May 10–16, 2017) in Beijing. During the
study period, the temperature in Beijing did not change much, the weather was sunny or cloudy, and
there was no rain.
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The Mobike dataset contains the order ID, bike ID, user ID, the start time of the trip, as well as
pairs of start/end locations with the geohashed code, which are required to translate into latitude and
longitude coordinates. There are a total of 1,830,100 O-D pairs in a week.

The taxi GPS data was collected with the interval of 1s, including the travel date, taxi ID, longitude,
latitude, travel speed, travel direction, and information on whether carrying other passengers. A
complete trip can be then recognized by connecting all points between the original and destination
points. A total of 283,631 O-D pairs of the taxi trips are collected in a week.

3.2.2. Built Environment Factors

This study mainly focuses on the effects of the socio-demographic and built-environment factors
around the metro stations, so we collect the 275 metro stations in Beijing. Socioeconomic values, metro
station characteristics, the bus transit accessibility, the motorization service, land use, and the roadway
infrastructure are also included.

The socioeconomic information is obtained from local authorities, including population density
and gender ratio, which are collected at the Jiedao level from the Beijing Statistical Yearbook of 2016.
The housing price is collected from the website of a housing agency (http://www.yunfangdata.com)
to reflect the economic level of a region [51]. Housing price is also considered in analyzing bicycle
ridership [31,52].

The metro station characteristics, including the location, the number of entrances, and so on, are
collected from the website of Beijing Subway (https://www.bjsubway.com). Note that at almost all
stations, passengers can be dropped off at the roadside nearby the entrances, and they can be picked up
either at roadside, or at a designated taxi waiting area nearby; while for the DBS users, they can easily
pick up or drop off bicycles at the sidewalks or bicycle parking areas nearby the entrances. Despite
of various public space design at different metro stations, examples are shown in Figure 2a–d, the
convenience of using taxis or DBS seems not be significantly affected by the public space design, so the
characteristics of public space design is not collected in the study.

1 
 

 
(a) Wu Kesong Station 

 
(b) Shi Lihe Station 

  
(c) Xi Zhimen Station (d) Hou Shayu Station 

 Figure 2. Examples of public space design at metro stations.

http://www.yunfangdata.com
https://www.bjsubway.com
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The data for the bus transit accessibility, the motorization service and land use data are generated
using Baidu Map’s Application Programming Interface® combined with Beijing’s traffic police data, as
well as the Beijing geographic information map of 2017. Moreover, the roadway infrastructure data,
including the length of arterial and branches, as well as the number of signal intersections, is collected
from the Beijing traffic police, the Beijing geographic information map and OSM map.

3.3. Data Processing

Because metro transfer behaviors usually occur to commute during peak periods, we select DBS
and taxi transfer trips during peak periods from the dataset. There are some errors and redundant
information exist in the raw data, so we ran a series of processing steps described below, and the final
sample size of the dataset after filtering by each step is shown in Figure 3.Sustainability 2020, 12, x FOR PEER REVIEW 9 of 24                      
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Step 1: Select trips during peak periods on workdays.
Incomplete and abnormal trip trajectories in the DBS and taxi dataset are first cleaned up. Then,

peak periods in Beijing is defined that morning peak (MP) is from 7:00 to 9:00 and evening peak (EP) is
from 17:00 to 19:00 based on the Beijing Traffic Operation Report [53].

Step 2: Select trips with metro stations as origins or destinations from the results of Step 1.
According to some recent studies, for example, Li, Zhu and Guo [33] set a threshold of 100m

around the metro station to recognize DBS transfer trips, and Wu et al. [54] considered that DBS pick-up
or drop-off within 100 m of metro stations’ entrances were DBS-metro integration. What’s more, DBS
users are more likely to park and fetch bicycles as near as possible to the station entrance, while taxis
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cannot always make a stop very close to the entrance due to some road parking restrictions. Therefore,
different thresholds were set in the study for recognizing transfer trips for the two modes. That is,
origin/destination within 50 m and 100 m of the station entrance are used as transfer trips for DBS and
taxi, respectively. The study uses the toolbox ‘Dissolve’ in ArcGIS 10.2 ® to merge the all 50 m or 100
m buffers around entrances of a metro station into one buffer zone. Trips, which origins or destinations
are within the buffer zones around metro stations from the results of Step 1 are selected. The trips are
divided into two types, namely, to the metro (TTM) and from the metro (FTM).

Step 3: Select the metro transfer ridership from the results of Step 2.
We recognize all trips of DBS selected in Step 2 as the DBS transfer ridership. Step 3 aims to select

the metro transfer trips of taxis based on a transfer distance deduced from the DBS trips.
The study uses the toolbox “Network Analyst” in ArcGIS 10.2 ® based on actual road network

shapefiles to deduce shortest distances of DBS for metro access, because the DBS dataset does not
contain a sequence of intermediate GPS points between start and end locations, it cannot measure the
actual trip distances of bicycles.

Figure 4 shows the trip distances of DBS for metro access during peak periods. Trip distances
of TTM and FTM do not show significant differences. The median trip distances of all are about
1,200 m, which are consistent with the previous study. Reportedly, people travel 1,200 m or more
when using bicycles to access transit [55]. Additionally, All higher boundaries of trip distances are
approximately 3,000 m, which mostly concurs with the prior study that the majority of bicycle trips
connecting metro stations and homes or workplaces are between 1,000 m and 4,000 m [32]. Therefore,
the transfer distance is set as 3,000 m. Also, we will take 3,000 m as the radius of the buffer zones each
metro station to measure the built environment variables. Then, we calculate the trip distances of
taxi by the GPS trajectories and screen out the trips with travel distance within 3,000 m as metro-taxi
transfer ridership. Because we want to analyze those metro-taxi connections that compete with DBS.
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Figure 4. Trip distance distribution of DBS.

Transfer proportion and trip direction during MP and EP for two modes, respectively, as listed
in Table 2. There is a distinction in the characteristics of DBS-metro integration between MP and EP.
The proportion of DBS transfer ridership in DBS during MP is significantly higher than that during
EP, while taxis have no obvious difference. Additionally, the proportion of TTM and FTM in transfer
ridership during MP or EP is similar with DBS and taxis, indicating the consistency of the metro
transfer behaviors of two modes.
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Table 2. Temporal distribution of DBS and taxi transfer ridership during the study period.

DBS Taxi

Trip Time Transfer Ratio Trip Direction Ratio Transfer Ratio Trip Direction Ratio

Morning
Peak (MP) 17%

TTM 53%
13%

TTM 55%
FTM 47% FTM 45%

Evening
Peak (EP) 8%

TTM 48%
16%

TTM 46%
FTM 52% FTM 54%

Note: Transfer ratio refers to transfer ridership divided by trips during peak periods; Trip direction ratio refers to
transfer ridership in each direction (TTM/FTM) divided by transfer ridership.

3.4. Spatial Distribution of Two Modes

To summarize the DBS and taxi transfer ridership around the metro station and obtain a clear view
of the demand level of two modes during peak periods, four indicators, namely, TTM/FTM ridership
of DBS and taxis at MP/EP are used to cluster. K-means method is a cluster algorithm by iterative
solution, which can be useful for analyzing not only the big data of bicycle sharing but also other types
of research objects [56–58]. Table 3 shows the cluster results with cluster groups, proportions, and the
values of the cluster center of each group, and Figure 5a,b visualize the results.

Table 3. Cluster result of DBS and taxi transfer ridership at metro stations (N=275).

DBS Taxi

Low Medium High Very
High Low Medium High Very

High

C1 C2 C3 C4 C5 C1 C2 C3 C4

MPTTM 23 68 95 143 262 7 23 54 105
MPFTM 19 64 142 82 243 5 21 51 95
EPTTM 15 59 138 73 226 8 34 73 101
EPFTM 17 63 84 128 218 7 31 66 94
Number 117 102 25 26 5 143 99 27 6
Percent 42.5% 38.9% 7.3% 9.5% 1.8% 52.0% 36.0% 9.8% 2.2%

Overall, spatial distributions of DBS and taxi transfer ridership around metro stations are similar.
The majority of metro stations with very high and high ridership of the two modes are in typical
residential areas, working areas, and central business districts. Moreover, metro stations with high
usage of DBS can be divided into two types. One type has higher MPFTM and EPTTM (C3), which is
generally concentrated in working areas. The other type has higher MPTTM and EPFTM (C4), which
is grouped in the urban community with high-density residential housing. This is also consistent with
DBS-metro integration characteristics. However, metro stations with high taxi usage have no evident
distinction. On the contrary, Metro stations with low transfer ridership generally distribute in the
major area of outer suburbs.

However, there are two big differences in some areas. Notably, DBS transfer ridership is evidently
higher than the taxi transfer ridership in the southern and eastern Beijing, as shown in Figure 5. Spatial
distribution of DBS and taxi transfer ridership at metro station level: (a) DBS transfer ridership; (b) Taxi
transfer ridership. A possible reason for higher usage of DBS in the southern area is less economically
developed than the northern. In fact, there are large amounts of universities in northern Beijing, and
many companies are also established in the vicinity of educational resource-rich areas and gradually
form a large number of high-tech parks. Consequently, the economic development and the income of
residents in the north are higher than that in the south, and the economic activities are stronger.
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The results also show that the DBS usage is higher than that of taxis in the suburbs, especially
in the east. From the perspective of urban planning in Beijing, the sub-center of Beijing is near the
Sixth Ring Road in the east, where many government departments and agencies are located. Moreover,
central business district (CBD) of Beijing is near the East Fourth Ring Road. So residents in the east have
a large travel demand to CBD or the sub-center. However, the range of taxis is generally concentrated
within the Fourth Ring Road, so the DBS transfer ridership is relatively high in these areas.

3.5. Models

From spatial distributions of DBS and taxi transfer ridership, it is likely that the usage of DBS
and taxis are clustered over adjacent areas, indicating that the ridership between neighboring metro
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station areas will interact with each other. It is defined as spatial autocorrelation. Moran’s I test is a
common spatial variability test, which measures the spatial autocorrelation of each variable and can be
expressed as follows [59]:

I =
n∑n

i=1
∑n

j=1 wi j

∑n
i=1
∑n

j=1 wi j(yi −
_
y)(y j −

_
y)∑n

i=1 (yi −
_
y)2 (1)

where n is the number of spatial units; wij is the weight between location i and j; yi, yj represent the
selected attribute value at units i and j, respectively; and

_
y is the average of all observations.

The univariate Moran’s I is a coefficient between -1 and 1. If Moran’s I >0, it represents positive
spatial autocorrelation, and the larger the value is, the more obvious the spatial difference is. If Moran’s
I <0, it represents negative spatial autocorrelation. The smaller the value is, the larger the spatial
variation is. Otherwise, if Moran’s I = 0, it means the value is a spatially random distribution [60].

The strength of the spatial relationship between the spatial unit and its neighbor(s) can be
determined by the weighting matrix [61]. In this study, the weighting matrix is an 1100*1100 matrix.
The results of univariate Moran’s I of the DBS and taxi ridership are 0.586 and 0.641, indicating that the
dependent variables have positive spatial autocorrelation, which means the values of the ridership for
analysis are positively proportional to the spatial aggregation of metro stations.

Therefore, a spatial regression model is required to account for the spatial effects and analyze the
relationship between socio-demographic as well as built-environment factors and the metro transfer
ridership. To consider the spatial autocorrelation, a spatial lag model (SLM) is used in this study other
than the spatial error model, because the result of Lagrange Multiplier (lag) and Robust LM (lag) is
significant. Besides, SLM explains spatial autocorrelation in the dependent variable, which means that
the spatial lag term of the dependent variable is considered, and the model analyzes the neighborhood
effects or spatial externalities across the boundaries of spatial units [62].

The detailed model specifications are as follows:

y = ρWy + βX + εε∼ N(0, σ2I) (2)

where y is the vector of transfer ridership of DBS or taxis around metro stations, X is the matrix of
explanatory variables; Wy is the weighting matrix; β is the vector of regression coefficients; ρ is the
spatial autocorrelation coefficient; and ε is the error term.

4. Results

Spatial regression analysis is performed to further investigate the effects of built environment
factors on both DBS and taxi transfer ridership.

4.1. Variables

All potential explanatory variables are considered to eliminate the double-counting and correlation
between dependent variables and calculate the variance inflation factor (VIF). Commonly, variables
with VIF values greater than 10 are assumed to be multi-collinear variables [63]. So before establishing
the model, VIF values lower than 10 are shown in Table 4. Descriptive statistics for dependent and
independent variables.

4.2. Model Results

The variables, except for the ridership characteristics and metro station characteristics that
contain dummy variables, are log-transformed in SLM. Their distributions are positively skewed and
only contain positive values, thereby eliminating the unit limit of variables and converting them to
dimensionless and pure value. GeoDa® is used to estimate spatial lag models. Table 5 presents the
estimation results of SLM.
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Table 4. Descriptive statistics for dependent and independent variables.

Items Variable Description and Notes VIF Min Max Mean S.D.

Dependent variable
DBS transfer ridership Number of bicycles at the buffer zone of the metro station (numbers) 2.00 304.00 55.47 106.45

Taxi transfer ridership Number of taxis at the buffer zone of metro station (numbers) 1.00 169.00 21.20 61.19

Ridership Characteristics
Trip time: EP/MP =1 if the transfer ridership is during EP, =0 if the transfer ridership is during MP 1.00 0 1.00 0.50 0.50

Trip direction: FTM/TTM =1 if the transfer ridership is from the metro (FTM), =0 if the transfer ridership is to
the metro (TTM) 1.00 0 1.00 0.50 0.50

Socioeconomic values

Population density Density of jiedao population at 3000 m buffer zone (numbers/km2) 3.93 209.22 75025.47 11813.86 11406.55

Gender ratio: male Proportion of male population in jiedao at 3000 m buffer zone (percent) 1.93 0.48 0.62 0.53 0.03

Housing price Average housing price at 3000 m buffer zone (yuan/m2) 3.90 27406.00 135258.00 76023.46 24805.06

Metro station characteristics

Located in urban area =1 if the metro station is in urban area, other =0 3.81 0 1.00 0.52 0.50

Contain hot commuting lines =1 if the metro station contains the hot commuting line (the average daily
passengers of the metro line is more than 323,100), other =0 1.45 0 1.00 0.45 0.49

No. of metro lines Number of metro lines in the station (numbers) 1.31 1.00 3.00 1.21 0.43

No. of entrances Number of entrances in the station (numbers) 1.25 1.00 12.00 4.12 1.79

No. of nearby metro stations Number of other metro stations at 3000 m buffer zone (numbers) 6.97 1.00 21.00 9.08 5.07

Bus transit accessibility
No. of bus stops Number of bus stops at 500 m buffer zone (numbers) 1.34 1.00 14.00 8.51 2.35

Length of bus lines Length of bus lines at 3000 m buffer zone (km) 3.05 41.25 501.39 22.17 103.69

Motorization service No. of parking lots Number of vehicle parking lots at 3000 m buffer zone(numbers) 6.47 23.00 680.00 250.38 180.30

Land use

No. of residences Number of residence communities at 3000 m buffer zone (numbers) 5.54 15.00 438.00 231.17 119.56

No. of offices Number of offices at 3000 m buffer zone (numbers) 7.40 36.00 4673.00 1192.00 1062.93

No. of commerce Number of commerce at 3000 m buffer zone (numbers) 8.65 29.00 8585.00 3003.60 2096.64

No. of schools Number of schools at 3000 m buffer zone (numbers) 6,67 8.00 245.00 144.82 70.84

No. of parks Number of parks at 3000 m buffer zone (numbers) 3.85 0.00 61.00 20.37 13.03

Roadway infrastructure

Length of arterial roads Length of arterial roads at 3000 m buffer zone (km) 4.47 24.95 403.83 146.31 76.92

Length of branches Length of branches at 3000 m buffer zone (km) 8.16 35.69 249.04 138.96 38.49

No. of signalized intersections Number of signalized intersections at 3000 m buffer zone (numbers) 1.59 4.00 39.00 8.21 18.57
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Table 5. Results of SLM.

DBS Taxi

coeff. z-Value P Value coeff. z-Value p Value

Constant 2.003** 2.409 0.016 0.273 0.371 0.710

Ridership Characteristics

Trip time: EP/MP −0.063*** −4.982 0.000 0.179*** 10.448 0.000
Trip type: FTM/TTM −0.107*** −5.540 0.000 −0.010 −0.631 0.528

Socioeconomic values

Population density 0.0246 0.757 0.448 0.080*** 2.155 0.003
Gender ratio:male −0.703 −1.327 0.184 −1.675*** −3.511 0.000

Housing price −0.396*** −3.066 0.002 0.196* 1.712 0.086

Metro station characteristics

Located in urban area 0.007 0.205 0.837 0.054*** 3.277 0.001
Contain hot commuting line 0.104** 1.993 0.046 0.071*** 3.381 0.001

No. of metro lines 0.083*** 3.605 0.000 0.016 0.707 0.480
No. of entrances −0.073 −1.283 0.199 0.108* 1.676 0.093

No. of nearby metro stations −0.154* −1.725 0.085 −0.327*** −4.016 0.000

Bus transit accessibility

No. of bus stops −0.141* −1.775 0.076 0.191*** 5.609 0.000
Length of bus lines −0.188*** −2.714 0.006 −0.046 −0.749 0.454

Motorization service

No. of parking lots 0.035 0.419 0.675 0.429*** 5.511 0.000

Land use

No. of residences 0.312*** 2.928 0.003 0.206** 2.177 0.029
No. of offices 0.224*** 4.154 0.000 0.131*** 2.771 0.006

No. of commerce −0.069 −0.750 0.453 −0.610*** −7.076 0.000
No. of parks −0.071* −1.770 0.078 0.012 0.267 0.710

Roadway infrastructure

Length of arterial roads 0.005 0.059 0.952 0.156*** 4.677 0.000
Length of branches 0.527** 2.023 0.043 −0.091* −1.819 0.068

No. of signalized intersections −0.259*** −2.702 0.007 0.165** 2.611 0.010

Wy 0.556*** 27.811 0.000 0.519 *** 24.237 0.000

Log likelihood −341.888 −208.573
AIC 727.777 461.147
R2 0.725 0.758

Note: A smaller P value means the corresponding variable is significant, p < 0.01 ***, p < 0.05 **, p < 0.1 *.
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The result shows that SLM models can explain the data, as indicated by statistically significant
predictors, relatively high R2 values (0.725 and 0.758). Thereby it suggests that the models have high
goodness of fit and good explanatory power, considering the small number of samples. In addition,
the ρ of Wy is statistically significant, which indicates that the dependent variables have an obviously
high degree of spatial autocorrelation.

For the characteristics of DBS and taxi transfer ridership, the result shows that people prefer to use
DBS at MP, whereas the probability of selecting taxis to metro transfer increases during EP. Moreover,
it indicates that people prefer to take DBS to the metro station rather than from the station. However,
taxi passengers are more inclined to use taxis during EP, and the direction of the trip (TTM or FTM)
has no effects on the taxi transfer ridership.

Socioeconomic values are related to different DBS and taxi transfer ridership. Evidently, population
density is positively correlated with taxi transfer ridership. Females are also found to be more willing
to ride a taxi, whereas the effect on DBS is insignificant. In addition, a 10% increase in housing price
results in a 3.96% decrease in DBS usage and a 1.96% increase in taxi transfer ridership.

As for the characteristics of the metro stations, the stations located in the urban area have a
statistically significant effect on the use of taxis. A station with more metro lines or hot commuting lines
attracts more passengers to metro stations using transfer modes. What’s more, the number of nearby
metro stations negatively affects the DBS and taxi transfer ridership. One interesting result is that the
number of entrances show positive effects on taxi usage, while its impacts on DBS is insignificant.

The development of bus transit and motorization services is also an important factor that influences
the selection between the two modes. Obviously, people are more likely to use DBS as the transfer
mode in areas with a low density of bus lines. Additionally, when the access of bus stops at 500 m
around the metro station has different influences on the two modes. When the number of bus stop is
lower, people are less likely to use DBS, indicating that DBS and bus are substituted modes for each
other as the feeder mode for metros. However, taxis and bus are not seem to have this relationship.
Also, a higher parking lot access level, representing higher motorization service level, is more likely to
be connected with higher taxi transfer ridership.

In terms of land use, the results show that more residences and offices within the 3,000 m buffer
zone of the metro station generally have higher DBS and taxi transfer ridership. The number of
residences has more influence on the DBS than on taxi transfer ridership. A 10% increase in residences
results in a 3.12% increase in the DBS usage but only a 2.06% increase in taxi transfer ridership.
Moreover, a 10% increase in offices leads to a 2.24% increase in DBS transfer ridership and 1.31%
increase in taxi transfer ridership. The number of public and green parks negatively affects the
DBS usage.

Roadway infrastructure has significantly different impacts on taxis and DBS. The density of
arterial road has a positive influence on the passengers’ preference to use taxis as a transfer mode.
However, the density of branches plays a negative role in taxi usage but encourages more DBS usage.
The number of signalized intersections negatively affects cycling but increases taxi usage.

5. Discussion

The study explores the effects of the socio-demographic and built-environment factors on using
DBS or taxis as a transfer mode to/from the metro station. With the combination of the spatial distribution
results of transfer ridership and the model results, some key points are discussed as follows.

Firstly, trip time and direction have different effects on the metro transfer of DBS and taxi. More
specifically, DBS mainly serves TTM during morning peak period. A similar result has been confirmed
in another recent research that SBBS system mainly serves as first-mile connector in the morning [21].
However, taxis serve more at evening peak in both directions. One reason for this finding might is that
people mainly focus on time reliability of transfer mode during morning peak period because they are
not willing to be late for work. In addition, more people cycle to metro stations from home rather than
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the other direction in the morning. It may attribute to the density of metro stations being relatively
high in working areas, and the distance between the metro station and workplaces is walkable.

Secondly, the land use of metro station areas affects the integration between metro and DBS/taxis.
The taxi transfer ridership near large residential areas and typical workplace in the suburbs is low
due to the following two reasons. One is that the taxi service area is generally concentrated in the city
center; another reason is that the economic level of the suburbs is lower. The taxi fare is 13 yuan within
3 km, and 2.3 yuan per kilometer for the excess, while DBS is only 1 yuan per hour. Obviously, DBS has
the advantage of low price. Moreover, the higher house price usually indicates higher income and
better life quality of local residents living around the metro station [31]. Therefore, DBS serves more
around large residential areas and typical workplace in both center areas and suburban areas. The
result is supported by the studies, which means that rail stations in suburban areas will attract more
bicycle trips than those in urban areas [8,64]. Thus, migrants in suburbs may be more likely to take
DBS as an economic transfer mode.

Thirdly, the transport infrastructure and service plays a critical role in transit passengers to select
DBS or taxis as a transfer mode. It is commonly observed in SBBS trip data that the transfer ridership of
the metro station is negatively related to bus and other metro stations nearby [31]. In the area with poor
bus accessibility, DBS can play a complementary role in the bus service due to its low-cost and reliable
service, as mentioned in the previous report [13]. The previous study of several North American cities
also indicated that bike sharing may serve prominently as first-and-last-mile connectors in areas with
less intensive transit networks [8].

Fourthly, the roadway infrastructure seems to be significantly important for DBS and taxi usage.
A dense network with a high proportion of branches and less signalized intersections is more favored
by DBS, contrary to that by the taxi users. This finding is partially consistent with Lin et al. [65]’s study
of SBBS conducted in Tokyo. Bicyclists may feel safer and more convenient with less vehicular traffic
and less waiting time at intersections, thereby promoting DBS as a transfer mode. Moreover, many
community entrances and exits are on branches, and people may prefer to branches due to shorter trip
distance with less traffic pressure during peak hours.

In summary, the features of metro transfer serviced by DBS during peak periods can be classified
into three categories in accordance with the above analysis, as follows:

(1) People tend to use DBS to metro stations in the morning.
(2) People living in less economically developed suburban areas use DBS as transfer mode to and

from metro stations.
(3) The high density of branches with a smaller amount of signalized intersections is favored by

DBS users.
However, the usage of taxis as the metro transfer mode during peak periods has the

following features:
(1) People prefer to use taxis in the evening.
(2) People working in economically developed areas in the central city are willing to take taxis as

the metro transfer mode.
(3) The high density of arterial roads and low density of branches with more signalized intersections

promotes taxi users.

6. Conclusions and Recommendations

Based on one-week trip data of DBS and taxis during a concurrent period in Beijing, the paper
aims to compare the temporal-spatial distribution of DBS and taxis around metro stations and find
out socio-demographic and built-environment factors impacting their ridership. To the best of our
knowledge, it is the first time that the study compares the usage of DBS and taxis as transfer modes for
metros, and implements SLM to find out the similarities and differences of effects of built environment
factors on their selection.
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It has been found that both DBS and taxis are more likely to serve as the transfer mode in the
areas with a higher number of residences and offices, fewer metro stations nearby. However, DBS is
more preferred to serve TTM at morning peak in residential neighborhoods with lower housing prices,
fewer bus lines, less signalized intersections and more branches. On the contrary, metro stations with
taxis-metro integration are more concentrated in the city center with high housing prices, the high
density of arterial roads and signalized intersections, especially at evening peak.

DBS has the potential to achieve critical public policy objectives. For instance, relieving traffic
congestion, decreasing vehicle usage, reducing single-occupant vehicles, providing flexible access to
public transit underserved people, and so on. Several findings of this study are worthy of attention in
ensuring sustainable development of DBS programs. Although the results are drawn from Beijing’s
case, they provide general implications for other cities facing with DBS programs.

First of all, with the increase of DBS worldwide, different types of impacts may occur as DBS
extends into different types of cities. Based on our findings, policy toward DBS should be cautiously
made by the policymakers to leverage positive impacts and tame negative impacts in cities that have
intensive metro networks and systems. The differentiated policy can be considered for areas with the
different built environment. For example, DBS can be encouraged in large residential areas, especially
those in the suburbs without high-quality, fixed-route public transportation service. This conclusion
is also confirmed by American cities [66]. Since DBS benefits residents as a complementary mode of
bus services and provides affordable and reliable connections between metros and home/workplace.
Meanwhile, the city center with higher accessibility of transit and less parking space for bicycles is
better to limit the over-spreading of DBS.

Secondly, a better cycling environment is essential in achieving DBS-metro integration. A
bike-friendly environment within metro station areas can play a positive role in promoting cycling
as a metro transfer mode [67]. As being pointed by Vandenbulcke et al. [68], the comfortable bicycle
infrastructure can possibly provide cyclists with a sense of personal safety, which offsets the pressure
of traffic volume. Since length of arterial roads with bicycle lanes may not promote the DBS-metro
integration. Protecting road rights and reserving road space for cyclists should be taken into significant
consideration. Moreover, the number of parks has negative impact on DBS ridership in model results.
The reason is that most greens and parks in urban areas in China prohibit DBS from going through,
which leads to the detour, potential injuries, and waiting for traffic lights on roads with mixed traffic.
Accordingly, opening greens and parks for DBS is recommended, and special bicycle lanes inside that
are required to ensure the leisure and recreation of city residents without hindering the travel of DBS.

Thirdly, DBS operators need to dispatch devices and rebalance fleets in time to ensure proper
device densities and service equity during peak periods, especially for residential areas at morning
peak. Because people prefer to use DBS to metro stations in the morning. Moreover, City curbs
have become increasingly crowded due to the chaos of DBS fleets during peak hours, so curb space
management that allocates curb space and rights-of-way for parking and cycling needs to be addressed
in transport planning and management.

Though the results are of significance, several limitations of this study must be noted. On the
one hand, the typical measurement of land use, which usually measures the square of each land-use
type, is not used in this research due to the lack of land use data. However, the study comprehensively
considers population density and POI data as a substitution. On the other hand, the study only uses
the data of Mobike, not including data from other DBS companies. In fact, Mobike accounts for
more than half of DBS usage in 2017 [18], so our results are convincing. Besides, the study provides
the directions for further investigation. Ride hailing service (e.g. Didi Chuxing, etc.) is preferred
to be incorporated into comparison if relevant data is available. Also, the big data combined with
corresponding questionnaire survey data can be analyzed subsequently to understand the attributes
and requirements of individuals. Besides, the impact of local cycling cultures on DBS-metro integration
can be analyzed in the future.
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