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Abstract: China has made some progress in controlling PM2.5 (particulate matter with an
aerodynamic diameter of ≤2.5 µm) pollution, but there are still some key areas that need further
strengthening. Considering that excessive prevention and control efforts affect economic development,
this paper combined an empirical orthogonal function, a continuous wavelet transform, and a
concentration-weighted trajectory method to study joint regional governance during key pollution
periods to provide suggestions for the efficient control of PM2.5. The results from our panel of data
of PM2.5 in China from 2016 to 2018 could be decomposed into two modes. In the first mode, the
pollution center was in central Shaanxi Province, and the main eruption period was from November
to January of the following year. As the center of this region, Xi’an should cooperate with the four
cities in eastern Sichuan (Nanchong, Guangan, Bazhong, and Dazhou) to control PM2.5, since the
eruption occurred in this area. Moreover, governance should last for at least two cycles, where
one cycle is at least 23 days. The pollution center of the second mode was in the western part of
Xinjiang. Therefore, after the prevention and control efforts during the first mode are completed,
the regional city of Kashgar should continue to build a joint governance zone for PM2.5 along the
Tianshan mountains in the east, focusing on prevention and control over two cycles (where one cycle
is 28 days).

Keywords: PM2.5; spatiotemporal variation; empirical orthogonal function; continuous wavelet
transform; backward trajectory analysis; joint governance region

1. Introduction

The occurrence of haze and severe PM2.5 (particulate matter with an aerodynamic diameter of
≤2.5 µm) pollution has attracted broad attention around the world. Increased PM2.5 concentrations
lead to a deterioration in human health [1], visibility [2], the regional climate [3], and economic
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development [4], causing urgent environmental problems that need to be solved. Developing countries
that are experiencing rapid urbanization suffer from severe PM2.5 pollution, and their inhabitants are
exposed to high PM2.5 concentrations. In January 2013, China suffered the most severe haze weather in
its history (since haze has been recorded). The concentration of PM2.5 in the Beijing–Tianjin–Hebei
region (the most polluted region in China) was as high as 500 µg·m-3, which is much higher than the
acceptable level of PM2.5 concentrations (0–35 µg·m-3) in China [5]: This caused widespread concern
across China. In 2013, the Chinese State Council released an Atmosphere Pollution Prevention and Control
Action Plan [6], which required that by 2017, the respirable particle concentration in prefecture-level
cities should be at least 10% lower than 2012 concentrations; moreover, the number of days with good
air quality should increase every year. To achieve this goal, local governments in China have taken
multiple measures. However, the high pollution levels in this severely polluted region do not breed
confidence. In the fourth quarter of 2018, there were still 27 cities with PM2.5 concentrations above
the “lightly polluted” level (75–115 µg·m-3). Pollution control and the prevention of PM2.5 still need
further strengthening.

As for studies on PM2.5 pollution, previous scholars have generally used descriptive statistical
analyses and combined spatial autocorrelation analyses to study a spatial cluster of annual PM2.5

concentrations [7–9]. However, concentrations change in space, which tends to change the means of
local areas. In heavily polluted regions, PM2.5 pollution is normally a superposition of pollutants from
different sources. A quantitative analysis can only determine the overall distribution of PM2.5 and the
influencing factors of PM2.5 pollution. When confronting a more specific situation, such as different
pollution statuses in one polluted area or the pollution situation at different times on a shorter time
scale, a metrology analysis is not suitable because short-term social and economic data are difficult to
obtain: This also means that prevention recommendations are not possible.

The local control and prevention of pollution mainly focuses on the relocation of heavily
polluted enterprises or on regulating cars. However, PM2.5 pollution does not only come from
local emissions, but is also influenced by meteorological conditions, such as wind direction and
speed [10]. Local governments cannot mitigate pollution by themselves. Some common policies
should be jointly developed by city governments in the most seriously polluted regions (instead of
in traditional administrative regions) [11]. Considering the differences in PM2.5 pollution levels and
the characteristics of agglomeration, governments should implement differentiated regional pollution
control strategies [7]: Prevention and control require cooperation [12]. Studies have already established
hierarchical policies based on differentiated socioeconomic development conditions and requirements
across Chinese cities [13,14]. Chen et al. [8] analyzed the socioeconomic factors of joint control using a
geographically weighted regression method, establishing a strategy of joint control. Zhang et al. [15]
built a PM2.5 network correlation model to identify and demarcate regions with strong temporal
intercorrelations using hourly PM2.5 concentrations. These studies, however, have only analyzed the
key aspects of joint control over PM2.5 from the perspective of society and economics: They have
not been focused on the sources of PM2.5. PM2.5 pollution is also closely related to atmospheric
transportation. If heavily polluted regions could adopt joint control strategies for the sources of
pollutants, the control of PM2.5 would be more efficient.

Backward trajectory analysis is an important method for analyzing the sources of air pollution.
Scholars have studied the regional transportation characteristics of atmospheric particles by analyzing
their air mass trajectories [16–19]. Existing research has focused on descriptions of long-term pollution
sources in a single region, which cannot distinguish between the air mass trajectory during a heavily
polluted period and the air mass trajectory during a slightly polluted period. Considering that policies
leading to PM2.5 decreases in China have been implemented without taking economic costs into
account (which might be unsustainable in the near future) [20], prevention should be primarily focused
on heavily polluted periods in key regions to find a balance between the control of pollution and
economic growth.
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As for studies of polluted periods, previous researchers have mainly analyzed changes in PM2.5

concentrations using statistical methods that include the year, quarter, or day to analyze variations in
the concentration of PM2.5 [7,9,15,21]. These researchers have used overall temporal information to
analyze the evolutionary features of PM2.5 based on a simple method, where temporal characteristics
of PM2.5 are evaluated with the assumption that the statistical properties of the time series do not
vary over time. These types of studies can only uncover intense periods of high PM2.5, ignoring
the pollution cycle. Because of that, pertinent suggestions for control cannot be given. Meanwhile,
PM2.5 concentrations have a complex cyclical variation with several short and long periods, which
makes it difficult to analyze the temporal changes in PM2.5 concentrations. The wavelet transform
method is a feasible and effective method for studying the laws of variation of air pollution time-series
indexes [22]. Temporal variations are expressed well, and mutated signals of the PM2.5 level can
be identified through wavelet analysis [23]. Using the wavelet method, Chen et al. [24] discovered
multiscale features that are indicated in the temporal evolution of PM2.5. Huang et al. [25] used the
wavelet transform method to obtain the characteristics of yearly changes and sudden changes in the
PM2.5 level. Liang et al. [26] utilized the wavelet approach to explore the potential association between
PM2.5 and influenza. In addition, the wavelet transform method is mainly used in PM2.5 concentration
predictions [27–31]. However, these studies have barely focused on the characteristics of periodic
changes in the PM2.5 concentration on a major scale.

The factors of time and space should both be considered in analyses of the period and location
of heavy pollution. The empirical orthogonal function (EOF) method was originally introduced in
meteorology as a method for extracting the dominant modes of spatial variability [32]: It has since been
applied in climatological [33,34], hydrological [35,36], and geophysical studies [37]. This method can
extract the main components of meteorological factors and temporal and spatial variations. This paper
decomposes PM2.5 concentrations and judges the pollution center through the PM2.5 concentration
distribution in different modes. Furthermore, it analyzes the counterpart time variation and cycle
patterns, giving the foundation for an analysis of joint governance regions and control cycles.

Due to limitations with monitoring conditions, previous studies on the spatiotemporal distribution
of PM2.5 have mainly focused on the Yangtze River Delta [38], the Pearl River Delta [39,40], the
Beijing–Tianjin–Hebei region [41], and other developed regions. Even if the scopes of these studies
were national, pollutants in the western regions were characterized as missing or unpolluted due
to missing data, which is not consistent with reality [7]. As the Chinese government has paid more
attention to PM2.5 issues, observation conditions across the country have improved. In 2013, there
were only nearly 800 monitoring sites in the country [15], but as of December 2018, the number of sites
exceeded 1600, covering the vast majority of the country. With these improvements in monitoring
conditions, the pollution problem in the western region—which had not been studied before—has
gradually come to light. Therefore, it is necessary to carry out a national PM2.5 analysis of temporal
and spatial variations according to existing conditions and to further expand previous research to
create more accurate PM2.5 studies in China.

First, this paper combines a spatiotemporal distribution of PM2.5 with an analysis of the
source of pollutants, studying the spatiotemporal distribution of PM2.5 concentrations in China
to identify seriously polluted areas and time coefficients. Moreover, we utilized a wavelet transform
to analyze key pollution periods using time coefficients. Finally, a backward trajectory analysis and
a concentration-weighted trajectory were utilized to study the joint prevention regions of seriously
polluted areas at heavily polluted times, providing suggestions for the efficient control of PM2.5. The
main contributions of this work are summarized as follows:

• The study of the spatiotemporal distribution of PM2.5 concentrations. We applied EOF
decomposition to the spatiotemporal distribution of PM2.5 concentrations, studying the time
coefficients and vectors of PM2.5 concentrations in different modes and analyzing the overall
average state and local variation of PM2.5. Thus, regions and periods of heavy pollution could
be determined.
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• An analysis of the duration of key prevention and control strategies. The time coefficient of
PM2.5 concentrations under different modalities was analyzed using a wavelet transform to judge
the length of time of serious pollution periods so as to provide suggestions for the duration of
prevention and control policies.

• An investigation into the areas of joint protection and control. On the basis of the duration of
key protection and control policies, PM2.5 pollution in major cities in heavily polluted areas was
analyzed using a backward trajectory analysis and a potential source analysis, with seriously
polluted areas selected as the research object.

The rest of this paper is organized as follows (Figure 1): Chapter 2 describes our data sources
and research methods. Chapter 3.1 presents a descriptive statistical analysis of the annual variation in
PM2.5 from 2016 to 2018, using EOF to decompose panel data of PM2.5 concentrations to identify the
periods of and areas with heavy pollution in different modes. Chapter 3.2 uses a continuous wavelet
transform to analyze the duration of key protection and control policies. Using the above-mentioned
pollution areas and prevention periods, Chapter 3.3 analyzes the joint prevention and control areas of
the research object from the point of view of air mass trajectory. Chapter 4 is the conclusion.
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2. Materials and Methods

2.1. Data Sources

2.1.1. PM2.5 Data

The PM2.5 data were collected from the PM25.in website [42] (estimated by the National Urban Air
Quality Real-Time Release Platform of China’s National Environmental Monitoring Center) [43]. The
β-ray decay method and the tapered element oscillating microbalance (TEOM) method are commonly
used as monitoring methods in China. Although these two methods are different in terms of measuring
the concentration of PM2.5 and although the TEOM is known to have seasonally dependent biases [44],
there is no evidence that China’s ground monitoring data are not valid. Therefore, this paper used the
(valid) ground monitoring data of PM2.5 concentrations released by official data sources, which are
widely used in academic research [8,15,24], without considering errors in the measurements.

This paper collected 24 h monitoring data from 361 cities in China, and daily and annual data
were obtained through averaging. The positions of the selected cities are shown in Figure 2. An inverse
distance weight algorithm [45] was employed to interpolate the PM2.5 concentration and a simulation
of the spatial distribution of pollution. The results, combined with geographic data, are presented in
ArcGIS 10.2.
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2.1.2. Backward Trajectory Analysis Data

The meteorological data, which were provided by the NCEP (National Environmental Forecasting
Center), were exploited in backward trajectory mode (GDAS1 (Global Data Assimilation System)
data). The meteorological element field included temperature, air pressure, relative humidity, ground
precipitation, horizontal and vertical wind speed, etc., from 2016 to 2018. GADS1 has the capability of
calculating trajectory directly using vertical wind speed, which is an advantage over other methods,
whose vertical wind speed is calculated indirectly by calculating the vertical integration of horizontal
wind speed divergence [46].

2.2. Method

2.2.1. Empirical Orthogonal Function

The empirical orthogonal function is a field analysis method widely used in the sphere of
geosciences. Its principle is to decompose the spatiotemporal element field into several spatial basic
modes and a linear combination of the time coefficient series, and then to objectively and quantitatively
analyze the spatial structure and time changes of the element fields. The panel data of m observation
points and n observations were expanded using the EOF and decomposed into the sum of the product
of the orthogonal space matrix V and the orthogonal time matrix T:

Xmn = VT =


v11 . . . v1n

...
. . .

...
vm1 · · · vmn




t11 . . . t1n
...

. . .
...

tm1 · · · tmn

. (1)

Equation (1) is multiplied on the right to get Equation (2):

XXT = VTTTVT = VΛVT, (2)
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where the superscript T represents the transpose of the matrix, Λ is a diagonal matrix composed of the
eigenvalues of the matrix, and V is a matrix composed of the matrix eigenvectors.

Therefore, the time coefficient can be obtained from Equation (3):

T = VTX. (3)

North’s Rule of Thumb assesses the uniqueness of EOF modes through assumptions of error

of the eigenvalues. When adjacent eigenvalues match the condition λ j+1 − λ j ≥ λ j(
2
n )

1
2 , these two

eigenvalues and their corresponding modes pass the sampling error test [47].
The variance contribution rate ρ of the eigenvalues and the cumulative variance contribution rate

of the first p eigenvalues are calculated as follows:

ρi = λi/
m∑

i=1

λi, (4)

pi =

p∑
i=1

λi/
m∑

i=1

λi. (5)

In the EOF, a set of eigenvalues, eigenvectors, and time coefficients represents a distribution mode.
The first few eigenvectors passing the significance test represent the maximum distribution structure.
The component of the eigenvector with the largest absolute value represents the intensity center. If the
positive and negative signs in the eigenvector are consistent, the eigenvector reflects the features with
the same change trend. If the component of a certain eigenvector is in a positive and negative phase
distribution, then this eigenvector represents two opposite distribution types. The time coefficient
represents the time variation characteristics of the spatial distribution form. When the time coefficient
is positive, the year is consistent with the distribution form represented by the eigenvector, and vice
versa. The larger the absolute value of the time coefficient is, the more significant the distribution form.
The variance contribution rate ρ reflects the degree to which a mode explains the whole. The higher its
cumulative value is, the more accurately the selected mode describes the overall situation.

2.2.2. Continuous Wavelet Transform

A continuous wavelet transform can clearly reveal the period of change hidden in nonstationary
time series and can reflect its change trend in different time scales. A continuous wavelet transform can
also extract multiple wave periods from the wave sequence at different scales to reflect its changing
trend, which is suitable for signal feature extraction [48]. The principle is to shift the mother wavelet
function ψ(t) after the translation b, and then to make an inner product with the signal f (t) for it to be
analyzed at different scales a, as follows:

ψab =
1
√
|a|
ψ(

t− b
a

), (6)

w f (a, b) =
1
√
|a|

∫
R

f (t)ψ(
t− b

a
)dt, (7)

where b = 1, 2, . . . , N. N is the number of datapoints (1096 in this paper). According to the literature [49],
for nonorthogonal wavelet analyses, one can use an arbitrary set of scales a to build a more complete
picture. It is convenient to write the scales as fractional powers of two:

s j = s02 jδ j, j = 0, 1 . . . , J, (8)

J = δ j−1 log2(Nδt/s0), (9)



Sustainability 2020, 12, 2019 7 of 23

where s0 is the smallest resolvable scale and J determines the largest scale. Here, δt represents the
sampling intervals of data in this paper, and s0 should be chosen so that the equivalent Fourier period
is approximately 2δt. For the Morlet wavelet, a δ j of about 0.5 is the largest value that can still give
an adequate sampling scale. Parameter values from the literature [49] were used here: δ j = 0.125.
Therefore, the smallest and largest resolvable scales could be calculated as 2 and 512, respectively. Note
that longer scales correspond to the most stretched-out wavelets. The more stretched-out the wavelet
is, the longer the portion of the signal to which it is being compared (and the coarser the signal features
measured by the wavelet coefficients) will be. In addition, a large scale also means a long period. The
time between the adjacent maximum and minimum of wavelet coefficients is almost 7 months when
the scale a is over 300 d (with similar data conditions) [24]. Because this article focuses on short-term
trends in PM2.5 concentration changes for efficient governance, the largest scale was set at 64, the same
as in the literature [49].

The complex Morlet wavelet, which is a single-frequency complex sinusoidal function, which has
symmetry, nonorthogonality, and an imaginary part [24], can simultaneously preserve the amplitude
and phase information of the sequence signal of PM2.5 concentrations. Therefore, a complex Morlet
wavelet was selected as the mother wavelet. The complex Morlet wavelet function is as follows:

ψ(t) = (π× fb)
−0.5e2i× fc×te−t2/ fb , (10)

where t represents time and fb represents the bandwidth controlling attenuation in the time domain
and the corresponding bandwidth in the frequency domain. Here, fb is the reciprocal of variance in
the frequency domain. An increase in fb will lead to the wavelet energy being concentrated around
the center frequency and will slow down the attenuation speed in the time domain. On the other
hand, a decrease in fb will accelerate the decay rate in the time domain and reduce the energy of the
frequency domain. Here, fc denotes the center frequency and affects the frequency value when the time
domain is converted into a frequency domain [24,50]. These two parameters can be adjusted to obtain
appropriate time–frequency resolutions. In this paper, we set the fb as 1 and the fc as 1.5, in accordance
with parameter settings from the literature [24] and parameter optimization from the literature [51].

Using the MatlabR2018a software platform, the wavemenu toolbox was selected to calculate the
wavelet coefficients. Meanwhile, the wavelet variance of the EOF time coefficient was analyzed to
find the main scale. Then, the coefficient modulus of the wavelet coefficients and the contour plots
of the real part were plotted to find the main oscillation periods and periods of time series at major
scales. The periodic variation of the real part of the wavelet coefficient on the main scale was the most
significant period of the time series.

A continuous wavelet transform can expand one-dimensional signals in both the time and
frequency directions to analyze the time–frequency structure of the data in detail and extract valuable
information. A continuous wavelet transform can not only provide the relative contribution of different
scales of the time series, but can also indicate changes in different scales, so it is very helpful for the
study of time series.

2.2.3. Backward Trajectory Analysis and Concentration-Weighted Trajectory

Here, we convey the calculation of the air trajectory first. The backward trajectory mode adopts the
Hybrid Single-Particle Lagrangian Integrated Trajectory Model (HYSPLIT) developed by the NOAA
(National Oceanic and Atmospheric Administration) [52,53]. The HYSPLIT model uses gridding
meteorological data to respond to emergencies in the atmosphere to diagnose issues and analyze the
climate. This mode is Lagrangian, as is Euler’s mixed diffusion mode: The processes of advection and
diffusion are calculated using the Lagrangian method, and the concentration is calculated using the
Euler Method [54]. HYSPLIT is considerably detailed in terms of the transportation, diffusion, and
settling of pollutants, and its highest simulation accuracy can last hours. Thus, HYSPLIT is widely
used in analyzing the source of pollutants and determining transmission and diffusion [55].
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MeteoinfoMap is a geographic information system application that analyzes and visualizes
multiple meteorological data formats [56]. Its plug-in, TrajStat, can use the backward trajectory analysis
software adopted by the HYSPLIT Lagrangian diffusion module [57]. On the basis of the results from
the EOF analysis, we selected cities with high pollution levels as the starting point and used the length
of time of severe pollution as the pushback time. The air mass movement path at 500 m of altitude (the
wind field at 500 m of altitude) can reflect the characteristics of the average flow field in the boundary
layer [16,17,19]. Therefore, the height of the simulation was selected as 500 m, and we calculated the
48 h backward trajectory every 2 h.

After that, a grid was established based on the area covered by the atmospheric trajectory, with
a resolution of 0.25◦ × 0.25◦. The concentration-weighted trajectory (CWT) was used to analyze the
source of pollution. The CWT is a mixed-trajectory receptor model that combines meteorological
trajectory nodes (residence time) and pollutant concentrations to trace their contributions to the
pollution of a recipient site [58]. After the study area was gridded, the CWT value of Grid (i, j) was
as follows:

CWTi j =
1

M∑
l=1

τi jl

M∑
l=1

clτi jl, (11)

where τi jl is the number of pollution trajectory nodes in the grid (i, j) in the area, and Cl is the pollutant
concentration of the trajectory. The higher the grid CWT value is, the greater the probability that the
pollution trajectory comes from that grid point.

When there are fewer trajectories within the grid, the residence time is shorter, so the x value is
higher and there is greater uncertainty. When ni j is less than three times its average value, we use the
following weight function to reduce the uncertainty [58–60]:

WCWTi j = Wi j ×CWTi j, (12)

Wi j =


1.00 3nave < ni j

0.70 nave < ni j ≤ 3nave

0.42 0.4nave < ni j ≤ nave

0.05 ni j ≤ 0.4nave

 . (13)

3. Results

3.1. Spatiotemporal Features of PM2.5 Concentrations

3.1.1. Descriptive Statistical Analyses

According to the PM2.5 concentration data from 2016 to 2018, the annual mean of the PM2.5

concentration across the country had a downward trend. The national average PM2.5 concentration
value was reduced by a total of 6.753 µg·m-3, representing 14.6% of the former value. The mean
value decreased from 46.15 µg·m-3 in 2016 to 43.76 µg·m-3 in 2017, and then declined to 39.39 µg·m-3.
As is shown in Figure 3, except for the North China Plain, southern Sichuan, and part of western
Xinjiang, the three-year average PM2.5 concentration value in most areas was less than 55 µ·m_3, which
indicates good-quality air. In 2016, heavily polluted areas (in terms of PM2.5 pollution) were mainly
concentrated in western Xinjiang, the Beijing–Tianjin–Hebei region, Shanxi, Henan, central Hubei,
central Shanxi, and west Shandong. In 2017, the concentration of PM2.5 in the Shanxi, Anhui, Guangxi,
Guangdong, Hainan, and Northern Xinjiang areas increased. At the same time, the PM2.5 concentration
in western Xinjiang dropped significantly. However, due to the high PM2.5 concentration in western
Xinjiang, although the decline was large, the air quality in Xinjiang was still worrying. Although
PM2.5 concentrations in most parts of the country were under control in 2018, PM2.5 concentrations in
western Xinjiang and Tibet continued to rebound slightly, and PM2.5 concentrations also increased in
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western Yunnan and northern Gansu, indicating that in these areas, regional PM2.5 prevention and
control policies were not effective. These results differ from previous studies of the PM2.5 distribution
in China (by Hu Line [41]).
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These research results should alarm the Chinese government: Although PM2.5 has been under
control in most regions of the country under current policies, PM2.5 pollution remains a major problem
in some regions. PM2.5 concentrations did not always continue to decrease over the three years.
Therefore, PM2.5 prevention and control work should focus on these problem areas by strengthening
control policies further, improving governance policies, and making PM2.5 governance more effective.

3.1.2. Heavily Polluted Areas and Periods

In order to further understand the spatial and temporal distribution of PM2.5 pollution and to
accurately determine the key areas and periods of PM2.5 governance, this paper used EOF analysis.
We employed a standardized matrix of monthly panel data of PM2.5 concentrations in 361 cities from
2016 to 2018. The characteristic vector of EOF expansion demonstrated the spatial distribution of the
PM2.5 concentration in each province. The maximum value center of all eigenvector fields indicated
the region that was the most sensitive to PM2.5 concentration changes. The eigenvectors of PM2.5

concentrations in China’s provinces converged quickly, with eight eigenvalues passing North’s Rule
of Thumb. The variance contribution rates of each mode were 41.70%, 10.77%, 6.56%, 4.72%, 3.63%,
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2.93%, 2.12%, and 1.78%. The contribution rates of the eigenvalue variance illustrated that the EOF
analysis results were ideal. Compared to the first two modes, the third mode and the subsequent
modes took up a small proportion of the EOF decomposition. Therefore, the first two eigenvectors
could be used to represent the spatiotemporal structure of PM2.5 concentrations.

The variance contribution of the first mode of EOF indicated the average state of the PM2.5

concentration from 2016 to 2018, representing the distribution field of PM2.5 concentrations in China.
In Figure 4, it can be seen that the first eigenvector had a consistently positive value, indicating that the
spatial variation trend of PM2.5 concentrations in the first mode was synchronous. The distribution
pattern of the eigenvector in the first mode was close to the mean distribution (Figure 3a). It can be
concluded that the first mode was the average state of PM2.5 concentration. The highest value area
was located in the middle of Shaanxi Province. The eigenvalues of North China, central Sichuan, and
parts of Xinjiang were also large. This indicates that the PM2.5 concentration fluctuated greatly in these
areas. When the time coefficient was positive, PM2.5 pollution was more severe. In other areas, the
eigenvalue was close to zero regardless of changes in the time coefficient, so the PM2.5 concentration
remained at a low level.
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From the distribution of the time coefficients in the first mode (Figure 5), it can be concluded that
the PM2.5 concentration change in the first mode had obvious seasonal characteristics. In the first and
fourth quarters of each year, most PM2.5 time coefficients were positive, and the maximum value each
year appeared around December, which means that the high-value area of the eigenvector in the first
and fourth quarters represented the PM2.5 pollution problem getting worse and the pollution being the
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most serious from December to January. In the second and third quarters, the time coefficients were
negative, so the PM2.5 concentration gradually decreased. The dashed line in the figure is the linear
regression of the time coefficients of the first mode, which had a downward trend, reflecting that in the
long term, the pollution problems in the areas where the PM2.5 concentrations changed after the first
mode were alleviated.
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According to the above analysis, in the first mode, the main pollution areas were Shaanxi, North
China, Sichuan, and Xinjiang, and central Shaanxi. The main pollution periods were the first and
fourth quarters of each year, and pollution was the most serious in December. Governments should
focus on the above areas and pollution periods.

The second EOF mode reflected the spatial variation of regional PM2.5 concentration differences;
the spatiotemporal distributions are shown in Figure 6. Most of the eigenvalues exhibited in Figure 6
were close to zero, which meant that these regions contributed little to local pollution characteristics.
However, the eigenvalues in Western Xinjiang had large negative values, suggesting dramatic changes
in the PM2.5 concentration.

It can be seen from Figure 7 that the time coefficients had large negative values from February to
April each year, reaching a maximum on April 3, 2018. When looking at the eigenvectors of western
Xinjiang in the second mode, in areas where the eigenvector is negative, negative time coefficients
reflect a positive increase in the PM2.5 concentration. The greater the absolute values of the time
coefficients and eigenvalues are, the more severe the pollution is. It can be seen that the PM2.5 pollution
in the second mode was concentrated from February to April each year, and the pollution problem
was extremely serious, especially in April (when there was an eruption of severe pollution). PM2.5

governance in western Xinjiang should be strengthened during this period; the pollution problem in
April is especially worthy of more attention.
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3.2. Major Prevention Period

The PM2.5 pollution periods in different modes were analyzed above. Local governments should
focus primarily on severely polluted periods, especially in the western region of China, to strictly control
PM2.5 and further strengthen prevention and control efforts. However, considering the economic
costs brought on by strengthening prevention and control efforts, the periods that are the most
polluted should be of higher priority to be the most efficient. Since changes in PM2.5 levels also have
high-intensity periods, we suggest carrying out at least one complete control cycle for polluted periods.
Prevention during heavily polluted times is key to helping improve control efficiency. Therefore, a
wavelet transform was performed on the time coefficients in the two modes to further study what the
best prevention time periods were.

The variance of wavelet transform coefficients can determine the main scale of the wavelet
transform, which is plotted in Figure 8. The line chart represents the relative intensity of each scale
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in a time series. The scale at the corresponding peak is called the main time scale of the wavelet
transform, and the periodic oscillation at this scale is the most significant. It is clear from Figure 8 that
the wavelet variance of the time coefficients in the first mode had two distinct peaks corresponding to
the time scales of 37 and 23 d. The periodic oscillation of the time scale around 37 d was the largest,
which could mean that this is the main scale. In the second mode, the time scale of about 44 d had the
largest variance.
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The modulus value of the wavelet coefficient is a reflection of the distribution of the energy density
at different time scales, which corresponds to the period of change in the time domain. The larger the
modulus value of the coefficient is, the stronger the periodicity of the corresponding period or scale is.
A contour map of the modulus of the wavelet variation coefficient is plotted in Figure 9. The red area in
the figure indicates a large wavelet coefficient modulus value. The corresponding abscissa indicates a
time of strong oscillation, and the ordinate is the wavelet transform scale. As can be seen in the figure,
in the first mode, the strong period corresponding to the main scale (37 d) was from December 2017 to
January 2018. The strongest period in the second mode was from February to March 2016 (at 44 d).

Sustainability 2020, 12, x FOR PEER REVIEW 13 of 23 

 
(a) Mode 1 

 
(b) Mode 2 

Figure 8. Wavelet variation variance. The maximum value is plotted as a triangle. 

On the basis of the wavelet coefficient modulus and variance, the main scale of the time 
coefficient of changes in PM2.5 concentration in the two modes (and their corresponding time range) 
was found. The main scale was used in the frequency domain analysis to determine the time domain 
change at different frequencies, which has no practical meaning. Because we wanted to focus on the 
most polluted periods from 2016 to 2018, we selected the scale with the largest variance of wavelet 
coefficients and the time range of the corresponding maximum value of the wavelet coefficient 
modulus. In practical applications, other typical scales or periods can also be selected for analysis 
according to actual needs, or all periods corresponding to the main scales can be selected for a 
comprehensive analysis. This method is very flexible. 

 
Figure 9. Contour map of the modulus of the wavelet variation coefficient. 

A contour plot of the real part of the wavelet transform coefficient can reflect the change in the 
data at different transform scales. The ordinate of the densely arranged region at the center of the 
positive and negative values is the characteristic time scale of the wave sequence, and the abscissa is 
the periodic time frame of changes. In Figure 10, there are four red and blue local oscillation regions 
in the first mode and two local oscillation regions in the second mode. The two types of oscillations 
at different scales reflect different periodic changes. Each time the regions alternate between red and 
blue is a pollution period. The above analysis was carried out by selecting areas located in the main 
time scale and within the strong oscillating periods. The first mode (Figure 10a, the 37 d scale) 
experienced two pronounced concentration bursts between December 2017 and January 2018. In the 
second mode (Figure 10b), the cold- and warm-colored alternation regions were mainly concentrated 
in the period between February and April in 2016, with two cycles of strength and weakness on a 44 
d scale. It is worth noting that there was a slight increase in the concentration of PM2.5 before the 
eruption of the two modes, which indicates the beginning of a serious eruption of PM2.5 pollution, an 
important early warning sign for PM2.5 prevention. After the second eruption, the PM2.5 concentration 

Figure 9. Contour map of the modulus of the wavelet variation coefficient.

On the basis of the wavelet coefficient modulus and variance, the main scale of the time coefficient
of changes in PM2.5 concentration in the two modes (and their corresponding time range) was found.
The main scale was used in the frequency domain analysis to determine the time domain change at
different frequencies, which has no practical meaning. Because we wanted to focus on the most polluted
periods from 2016 to 2018, we selected the scale with the largest variance of wavelet coefficients and
the time range of the corresponding maximum value of the wavelet coefficient modulus. In practical
applications, other typical scales or periods can also be selected for analysis according to actual needs,
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or all periods corresponding to the main scales can be selected for a comprehensive analysis. This
method is very flexible.

A contour plot of the real part of the wavelet transform coefficient can reflect the change in the
data at different transform scales. The ordinate of the densely arranged region at the center of the
positive and negative values is the characteristic time scale of the wave sequence, and the abscissa is
the periodic time frame of changes. In Figure 10, there are four red and blue local oscillation regions in
the first mode and two local oscillation regions in the second mode. The two types of oscillations at
different scales reflect different periodic changes. Each time the regions alternate between red and blue
is a pollution period. The above analysis was carried out by selecting areas located in the main time
scale and within the strong oscillating periods. The first mode (Figure 10a, the 37 d scale) experienced
two pronounced concentration bursts between December 2017 and January 2018. In the second mode
(Figure 10b), the cold- and warm-colored alternation regions were mainly concentrated in the period
between February and April in 2016, with two cycles of strength and weakness on a 44 d scale. It is
worth noting that there was a slight increase in the concentration of PM2.5 before the eruption of the
two modes, which indicates the beginning of a serious eruption of PM2.5 pollution, an important early
warning sign for PM2.5 prevention. After the second eruption, the PM2.5 concentration decreased to
normal levels, and we defined the end of the second eruption as the end time of major pollution.
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The above analysis determined the main scales, strong oscillation periods, and cyclic changes
in the corresponding time coefficients. For the purpose of determining the PM2.5 pollution cycle in
different modes, the real part of the wavelet transform coefficients of different modes (with their main
scales) was drawn. A typical polluted period was calculated using the intervals between the PM2.5

concentration peaks. In Figure 11, the peak is the eruption time, the start is the short eruption time
before the intense eruption of pollution, and the end is the ending time of the major pollution period.
With these calculations, we could find out that the typical pollution time under the first mode was
between 27 November 2017 and 26 January 2018, the outbreak interval was 23 days, and there were
two intense pollution eruptions of PM2.5. Pollution in the second mode occurred between 27 January
2016 and 31 March 2016, the outbreak interval was 28 days, and there were two intense pollution
eruptions of PM2.5 here as well.

Autocorrelation was used to verify the wavelet transform results. The autocorrelation results from
the first and second modes’ time coefficients are shown in Figures A1 and A2, respectively. According
to the literature [61,62], the time differences between peaks can be calculated—we did that here to find
that there existed a long period of 22 days, a result very close to the wavelet transform results from the
first mode. Though the autocorrelation of the second mode was weaker than that of the first mode,
a long period of 25 days was found for the time coefficient of the second mode, which was only a
three-day difference compared to the wavelet analysis results. The autocorrelation results certified that
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the continuous wavelet transform method could find periods of time series from weak autocorrelation
and can be used reliably in PM2.5 concentration research.
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On the basis of the above results, Shaanxi, northern China, Sichuan, and some parts of Xinjiang
(whose PM2.5 performances were poor during the first mode) should commence their governance
between November and January of the following year (when PM2.5 pollution is severe). The governance
in these regions should last for two cycles after slight PM2.5 pollution occurs for the first time, and one
cycle should last for no less than 23 days. Governance in western Xinjiang should be strengthened in
terms of prevention and control (in the first mode) until March. There should be at least two cycles
during this period, and one cycle should last for 28 days.

3.3. Joint Governance Region

On the basis of the analysis above, we selected the cities of Xi’an and Kashgar for analysis. Both
cities were in the most polluted areas in both modes. Taking the most severely polluted period as
the calculation time, we used a backward trajectory of 48 h to analyze the major joint-governance
cities. The backward trajectory analysis and concentration-weighted trajectory conditions are shown
in Table 1.

Table 1. The backward trajectory analysis and concentration-weighted trajectory conditions.

Location Start Time End Time Calculated Time Grid Area

1 Xi’an
(34.27◦N, 108.93◦E) 2017.12.3 2018.1.26 55 days 28.00◦N~53.00◦N,

73.00◦E~120.00◦E

2 Kashgar
(39.47◦N, 75.98◦E) 2016.1.27 2016.3.31 65 days 30.00◦N~50.00◦N,

50.00◦E~89.00◦E

Here, the atmospheric trajectory image and CWT values reflect the effect of grid points on the
PM2.5 levels of the analyzed city. The larger the grid value is, the more serious the impact of PM2.5

pollution on the city. In order to better identify major pollution sources, only high-value CWT grids in
China are plotted, which are shown in Figures 12 and 13. The CWT diagram of all grids is shown in
Figures A3 and A4.
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In Figure 12, it can be seen that Nanchong, Guangan, Bazhong, and Dazhou in the eastern Sichuan
Province had the greatest impact on PM2.5 pollution in Xi’an. During the most polluted winter, PM2.5

in eastern Sichuan passed through Ankang, Hanzhong, and Shangluo in southern Shaanxi Province
and reached Xi’an, exacerbating PM2.5 pollution. In addition, Weinan, Yanan, and Yuncheng in the
northeast were also sources of PM2.5 pollution in Xi’an. Therefore, prevention and control strategies in
Xi’an should not be limited to local governance, and joint governance should be carried out between
the above cities to control pollution more effectively.

The sources of severe pollution in Kashgar are shown in Figure 13. The PM2.5 concentration in
Kashgar was most influenced by the eastern region, which had heavy pollution. The grids of these
trajectories were distributed along the Tianshan Mountains, starting from Bayingol and reaching
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Kashgar via Aksu, Aral, Tumshuk, and North Kashgar. Therefore, Kashgar should create prevention
and control strategies for the urban agglomerations along the Tianshan Mountains.

4. Conclusions

This paper analyzed joint governance regions and key governing cycles in China through the
EOF and backward trajectory analysis. The EOF decomposed PM2.5 concentration panel data into
space vectors and time coefficients. The time coefficients reflected the changing trends in pollution
distribution. After transforming the time coefficients using wavelets, we could obtain the pollution
periods of the main time scales and could determine key governance periods using the real parts of the
wavelet coefficients. A space vector indicated the distribution of PM2.5 pollution, which helped identify
areas with serious pollution problems. Then, we selected the main cities in these areas and analyzed
their sources of pollution during key governance periods to determine possible joint prevention areas.
The conclusions can be summarized as follows:

• From a nationwide point of view, the overall PM2.5 pollution in China improved from 2016 to
2018, but the improvement was limited. PM2.5 remains a serious problem in Xinjiang and North
China. This finding is different from previous studies that have claimed that China’s PM2.5

pollution is strong in the east and weak in the west. National PM2.5 concentration panel data were
decomposed using the EOF, resulting in two modes. The first mode reflected the average state of
PM2.5 pollution in China. Seriously polluted areas included northern China, western Sichuan,
and parts of Xinjiang. The most polluted areas were in central Shaanxi Province. Pollution in the
first mode had significant seasonal characteristics, indicating that pollution in the first and fourth
quarters was serious and that the pollution degree decreased in the second and third quarters.
The second mode reflected the local pollution characteristics of the Xinjiang region, indicating
that there was severe pollution from February to April.

• Major prevention periods during the two EOF modes were studied using a continuous wavelet
transform. This showed that the first mode had a typical oscillation, with a scale of 37 d, from
November to January of the following year, and the main oscillation scale of the second mode
was 44 d, from February 2016 to April 2016. In the areas where PM2.5 pollution was in the first
mode, prevention and control strategies should be carried out from November to January of the
following year. After a small eruption in pollution occurs, prevention and control should be
implemented for a period of no less than 23 days. After the end of the control cycle in the first
mode, management and control of PM2.5 pollution in the second mode should be strengthened
for at least two cycles until March, where one cycle is 28 days.

• This paper took Xi’an and Kashgar as examples to analyze joint governance regions based on
pollution trajectories. In addition to local control, PM2.5 control strategies during winter in Xi’an
should include joint control with Nanchong, Guangan, Bazhong, and Dazhou in eastern Sichuan.
PM2.5 control in winter in Xi’an should also be coordinated with Ankang, Hanzhong, and Shangluo
in southern Shaanxi to alleviate the problem of pollution sources in the south. Meanwhile, Xi’an
should work with Weinan, Yanan, and Yuncheng to solve the problem of pollution sources in
the northwest. For Kashgar, it is necessary to establish a PM2.5 joint governance area along the
Tianshan Mountains to the east, with a focus on joint governance with the northern cities of
Kashgararea, Tumshuk, Aksuarea, and Aral in the east.

The method proposed in this paper can be used to analyze the joint governance regions and
periods of PM2.5 pollution in key cities across the entire country, and it can also be used in smaller
areas, such as provinces or cities. The method is simple, feasible, and has universality. However, due to
the many factors affecting the concentration of PM2.5 and the limited space of this paper, the important
influencing factors of PM2.5 pollution prevention and control were not analyzed, which should be the
focus of further research.
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