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Abstract: Global climate change and rapid industrial development have led to changes in streamflow
worldwide, and determining the relative contributions from climate variability and human activity
is important for water management. However, studies using attribution analysis to investigate the
streamflow in Taiwan are scarce. In this study, statistical methods are used to evaluate the changes
in streamflow in order to assess the variation in the hydrological environment of Taiwan. Four
river basins in Southern Taiwan were selected as the study area. The impact of climate variability
and human activities on the changes in the streamflow from 1980 to 2017 was quantified via the
hydrological sensitivity-based method and the decomposition method, which is based on the Budyko
hypothesis. The results from these two methods were consistent and demonstrated that the increase
in the streamflow of the four river basins was mainly attributable to climate variability. Streamflow
change was more responsive to precipitation because of the relatively larger value of the sensitivity
coefficients. This study provides a basic insight into the hydrological dynamics of river basins in
Southern Taiwan and may serve as a reference for related research in the future.
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1. Introduction

Climate change and human activities are the main factors that are currently influencing the
global hydrological cycle, the frequency and severity of extreme natural events, and the planning
of water resources [1]. The National Oceanic and Atmospheric Administration [2] found that the
impact from these two factors has been exceptional over the past three decades. Climate change affects
the spatial and temporal patterns of precipitation and evaporation and human activity modifies the
landscape, altering the hydrological processes [3,4]. These impacts are closely related to the availability
of water worldwide.

Of the different variables that affect the hydrological cycle at a watershed, streamflow is the
most important for understanding river regimes [5], as it reflects both variation in the climate and
patterns of water consumption. Li et al. [6] evaluated the variation that occurs in streamflow as
a result of various scenarios in the different regions within a basin. The results indicated that the
notable decline in upstream discharge and wet to dry periods was mainly attributable to human
intervention. Shao et al. [7] developed seven scenarios according to different land use and climatic
conditions in order to analyze the annual streamflow in a basin where both the climate and the land
use had changed significantly. The study indicated that climate variability had more of an impact on
streamflow than changes in land use. Xin et al. [8] quantified the intra-annual changes that occurred in
the streamflow of a basin that was suffering from significant anthropogenic influence on a seasonal
scale. The results demonstrated that the decline in streamflow that is directly attributable to human
activity is more pronounced during the irrigation season. Meng et al. [9] conducted attribution analysis
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on the streamflow variation in a typical landform transitional watershed and found that land surface
factor accounted for approximately 80% of the change in streamflow. Marhaento et al. [10] used
attribution analysis in a tropical catchment to test whether land use change is the main driver for
streamflow fluctuations. The results showed that an increasing settlement area and a decreasing
forested area are the main changes observed in land use and that these factors have a significant
impact on streamflow. These studies used data concerning the changes in streamflow to highlight
problems occurring within different hydrological systems and thus provide guidance for water resource
management. However, different objectives were under investigation in these studies and various
spatial and temporal scales were used, which led to different results. These discrepancies, together with
the inconsistent results in studies conducted in different areas, mean that it is increasingly important to
determine the contributions of climate change and human activities to changes in streamflow.

Many recent studies have used different methods with the objective of addressing the
above-mentioned issues [11–16]. A common approach used for examining streamflow is splitting the
period studied into a pre-period and a post-period [17]. Most of the literature produced has evaluated
the difference between two periods to quantify the contributions from climate change and human
activities to streamflow. The attribution methods that have been used in previous studies can be
classified into the following four groups: (1) methods based on hydrological field data, (2) approaches
using hydrological modeling, (3) conceptual approaches, and (4) analytical approaches [5]. These
approaches are described in the following paragraph.

Field data methods such as the paired catchment method are the oldest experimental approaches
used to analyze the effect of human activities on hydrological processes. However, finding similar
catchments in order to facilitate an accurate comparison is difficult [18]. Hydrological modeling is
calibrated and validated by using pre-period data in order to simulate the streamflow post-period. The
impacts from climate change and human activities to streamflow are thus quantified by calculating the
difference between actual and simulated data. Liu et al. [19] used the Variable Infiltration Capacity
(VIC) model to assess the respective and combined impacts of climate and land-use changes on
hydrology. Yang et al. [20] used the Soil and Water Assessment Tool (SWAT) model to identify the
dominant driving factors behind changes in runoff in the Qingliu River basin on multiple (monthly,
seasonal, and annual) scales. Although several hydrological models can be used to analyze changes in
streamflow, the parameters chosen to represent complex hydrological processes can lead to a high
level of uncertainty [21].

Based on an experiment conducted in the US Midwest, a conceptual model was developed by
Tomer and Schilling [22] to distinguish the magnitude of the impact of climate change from that of
human activities. This method was applied in other areas around the world [1], but lacked the capacity
to quantify values accurately for many actual watersheds [23]. Another conceptual approach that
is often used in this field is the Budyko hypothesis [24], which is founded on the basic notion that
the ratio of actual evapotranspiration to precipitation (Evaporative Ratio) is a function of the ratio
of potential evapotranspiration to precipitation (Aridity Index). Thus, the contribution of climate
change and human activities on streamflow can be quantified by calculating changes on the Budyko
curve [25]. This approach has been used in many studies. Bai et al. [26] used the climate elasticity
method and hydrological model to distinguish the impacts of climate variability from those of human
activities on a decrease in streamflow, finding that variability in the climate was the main causal factor
for streamflow decline. They derived similar results from the two methods. Guo et al. [27] applied
hydrologic sensitivity analysis with a hydrologic model simulation and found that the decline in
annual runoff in the upper reaches of the Weihe River was mainly attributable to human activities.

The annual precipitation in Taiwan is 2.6 times greater than the global average, but because of the
uneven spatial and temporal distribution of rainfall, the actual amount of water available for use is less
than 20% of the total. Taiwan has therefore suffered water shortages for an extended period. According
to simulations carried out for the IPCC AR4 concerning future rainfall under different scenarios, the
streamflow in Taiwan is expected to decline in the near future, especially in the south [28]. Moreover,
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Taiwan ranks 56th among the 60 countries in the Climate Change Performance Index (CCPI) 2019
due to a lack of determination in implementing its Intended Nationally Determined Contributions
(INDCs) and its extremely poor performance in domestic climate policy [29]. Thus, the study of
factors affecting streamflow is important for management and regulation of water resources in the
future. Several studies have been conducted to investigate this topic. Lin et al. [30] developed an
integrated approach, comprising land use and hydrological models with statistical tests to simulate the
extrapolation of land use management practices and planning policies in northern Taiwan. However,
very few studies have focused on the use of statistical methods for evaluating the attribution of
variations in the streamflow. More studies that use attribution analysis are therefore required to gain a
better understanding of the hydrological environment of Taiwan in order to complement the lack of
such analysis in previous studies.

The objective of this study was therefore to quantify the hydrological response to natural and
anthropogenic factors in Southern Taiwan and to gather more insight into the hydrological environment.
Four river basins in southern Taiwan were selected for quantification of the effects of climate change
and human activities on streamflow. The hydrological sensitivity-based method and decomposition
method were used to compare the results of the quantifications. Finally, we tried to determine the
relationship between the changes in streamflow and the actual conditions. The findings made in this
study may serve as a reference for the regulation of water resources in the future.

2. Materials and Methods

2.1. Study Area

The study area is located in Southern Taiwan and is part of several administrative districts
including Chiayi County, Chiayi City, Tainan City, Kaohsiung city, and Pingtung County. The area
studied lies within a tropical monsoon climate zone with an annual mean precipitation of 2500 mm
and an annual mean temperature of 24 ◦C. The weather is influenced by typhoons and southwestern
monsoons in the rainy season (from May to October), whereas the location of the study area at the
leeward side of the northeastern monsoon means that less rain falls in this region during the dry season
(from November to April) [31]. The ratio of precipitation in the dry and wet season is approximately 1:9
in this area, which means that the weather is characterized by distinct wet and dry seasons. The four
basins in southern Taiwan that were selected as the study area are illustrated in Figure 1.

The four basins, namely Bazhang, Zengwen, Yanshui, and Erren River Basins, were selected
based on the available meteorological and hydrological datasets for the southern district. The area
covered by each basin is 83.15, 121.31, 146.46, and 139.62 km2, with an average elevation of 939.1,
98, 47.2, and 89.5 m, respectively. Each river basin lies above a particular hydrological station. The
average annual streamflow in Bazhang, Zengwen, Yanshui, Erren River Basin is 2417.5, 1520.2, 1357.3,
and 1723.4 mm, respectively. Several precipitation stations were also selected for use in this research.
The geographic distribution and other related information concerning the precipitation stations are
presented in Figure 1 and Table 1.
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Figure 1. Location of the study area and gauging stations.

Table 1. Data concerning the gauging stations used in this study.

River Basins Hydrological
Station Area (km2)

Precipitation
Station Record Years

Bazhang Chukou 83.15

Dahushan 1980–2017
Xiaogongtian 1980–2017

Longmei 1989–2017
Toudong 2002–2017

Shipanlong 2002–2017
Fenchihu 1994–2017

Zengwen Tsochen 121.31
Zuozhen 1989–2017

Nanhua 1980–1992,
2000–2017

Yanshui Hsinshih 146.46

Hutoupi 1981–2017
Qiding (WRA) 1980–2017

Xinshi 1993–2012
Qiding (CWB) 2014–2017

Mazumiao 2014–2017
Shanshang 2014–2017
Guanmiao 2014–2017

Erren Chungte bridge 139.62
Gutingkeng 1980–2017

Mucha 1980–2017
Niuchoubu 2008–2015

WRA represents data from the Water Resources Agency; CWB represents data from the Central Weather Bureau.
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2.2. Methods

2.2.1. Data Processing

The precipitation (P), evapotranspiration (E), and potential evapotranspiration (PET) were
examined to identify the effects of climate change and human activities on streamflow (Q) in the
basins from 1980 to 2017. The data concerning the precipitation at each station were obtained
from the Central Weather Bureau (CWB) and the Water Resources Agency (WRA) in Taiwan. The
evapotranspiration and potential evapotranspiration were acquired from the Global Land Evaporation
Amsterdam Model (GLEAM). The underlying rationale for this method is to maximize the recovery
of information contained in current satellite observations of climatic and environmental variables
concerning evaporation. Through a set of algorithms, GLEAM provides datasets cataloging the
evapotranspiration, bare-soil evaporation, interception loss, open-water evaporation, and sublimation
on a 0.25◦ latitude-longitude regular grid with a daily temporal resolution [32,33]. The streamflow
data considered in this study were computed via use of the water balance equation [34]. Generally,
the water balance equation is expressed as follows:

P = E + Q + ∆S (1)

where P, E, and Q are precipitation, evapotranspiration, and streamflow, respectively, and ∆S represents
the change in water storage. ∆S can be assumed as zero in the long term (10 years or more) [35].
Before applying the data, all variables were aggregated from daily to yearly values. The annual
precipitation was estimated using the Thiessen polygon method [36], which was based on the data
from several of the stations in each river basin. To understand the trend of each hydrological variable,
the Mann–Kendall test [37,38] was used in the preceding operation. The Pettit test [39] was used to
detect abrupt points in the streamflow time series.

2.2.2. Budyko Framework

Evapotranspiration is an important variable in the evaluation of the hydrological dynamics of
river basins. The annual evapotranspiration in the water balance equation (Equation (1)) is determined
from the annual precipitation and the potential evapotranspiration. Budyko [24,40] assumed the
evaporation ratio (the ratio of actual evapotranspiration to precipitation) to be function F of the Aridity
Index (the ratio of potential evapotranspiration to precipitation). Thus, the relationship between the
two variables can be expressed as follows:

E
P
= F

(PET
P

)
(2)

where PET is potential evapotranspiration. If PET/P > 1, the evapotranspiration is limited by water
supply (arid climate), whereas if PET/P < 1, the evapotranspiration is limited by energy supply (humid
climate) [41]. Table 2 outlines the equations that were derived from this hypothesis for the purpose of
this study. The value Ø in Table 2 is the ratio of potential evapotranspiration to precipitation (PET/P).
The parameters used in these functions can therefore be utilized to represent the characteristics of the
watershed (vegetation, soil, topography, and climate). Two boundary conditions are satisfied by each
equation: when PET/P→0, E/P→0, and when PET/P→∞, E/P→1.
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Table 2. The different equations used in this study based on the Budyko Hypothesis.

Model Function Parameter

Schreiber [42] 1− e−∅ -

Ol’Dekop [43] ∅tanh
(
∅−1

)
-

Budyko [44]
√
∅tanh(∅−1)(1− e−∅) -

Turc [45]; Pike [46] 1/
√

1 +∅−2 -

Fu [47] 1 +∅− (1 +∅m)1/m m

Zhang et al. [48] (1 +ω∅)/
(
1 +ω∅+∅−1

)
ω

Milly [49]; Porporato et al. [50] exp(γ(1−∅−1))
−1

exp(γ(1−∅−1))−∅−1
γ

Wang and Tang [51] 1+∅−
√
(1+∅)2

−4∂(2−∂)∅
2∂(2−∂)

∂

2.2.3. Distinguishing between the Impact of Climate Change and Human Activity on Streamflow

The Budyko model has been used in numerous studies focusing on long-term water balance
and large river basins, but it is also effectively applicable for use with smaller basins [52]. The
Budyko–Zhang equation [48] has been applied previously for the evaluation of the relative contribution
of climate variability and human activities to streamflow change. Different curves were observed on
the plot when the value of parameterωwas changed. According to previous research, the difference
between the mean annual streamflow during the post-period (Qpost) and the mean annual streamflow
during the pre-period (Qpre) can be used to represent the total change in the stream discharge (∆Q), and
∆Q is a combination of climate change (∆QC) and human activity (∆QH) [53]. ∆Q can be expressed as

∆Q = Qpost −Qpre = ∆QC + ∆QH (3)

The method used to quantify the impact from these two factors on streamflow is described in the
following section.

2.2.4. Decomposition of the Budyko Type Curve

Wang and Hejazi [25] proposed a method that can be used to determine the proportions of
streamflow changes that are caused by climate variability and human activity. The original Budyko
hypothesis states that natural watersheds follow the Budyko curve. The decomposition method
therefore assumes that if a watershed exhibits changes without direct human impact, the data point
that is due to climate change will still move on a single curve (PET/P). A change in the horizontal
direction on the Budyko curve is influenced solely by climate change, while a change in the vertical
direction is caused by both human activity and climate change (see Figure 2, the change from A to B
can be divided into A to C and C to B). Thus, the anthropogenic contribution can be expressed with

∆QH = Ppost

(
E′post

Ppost
−

Epost

Ppost

)
(4)

where Ppost is the precipitation during the post-period, Epost/Ppost is the evaporative ratio during the
post-period, and E’post/Ppost is the evaporative ratio calculated using the same aridity index in the
pre-period. The contribution from climate change (∆QC) can then be calculated using Equation (3).
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2.2.5. The Hydrological Sensitivity Method

The hydrological sensitivity method was used to compare the results of the quantitative analysis.
The hydrological sensitivity method assumed that the change in mean annual streamflow was the
summation of the change in mean annual precipitation and the potential evapotranspiration, as seen in
the following expression [54,55]:

∆QC = α∆P + β∆PET (5)

where ∆QC, ∆P, and ∆PET describe the changes in streamflow, precipitation, and potential
evapotranspiration, respectively; and α and β are the sensitivity coefficients of streamflow to
precipitation and PET, which are expressed using [56]

α =
(
1 + 2∅+ 3ω∅2

)
/(1 +∅+ω∅2)

2
(6)

β = (1 + 2ω∅)/(1 +∅+ω∅2)
2

(7)

whereω is the parameter mentioned in Table 2 and Ø is the ratio of potential evapotranspiration to
precipitation (PET/P). The anthropogenic contribution (∆QH) is thus evaluated using Equation (3).

3. Results

3.1. Time Series Analysis

3.1.1. Temporal Trends in Precipitation and Evapotranspiration

Before quantifying the variation in streamflow, the trend of each related hydrological variable
needs to be understood. According to time series analysis, no significant trend was observed in
the precipitation and evapotranspiration during the study period. Figure 3 shows the changes in
these two variables in each river basin from 1980 to 2017. The aridity index (PET/P, the ratio of
potential evapotranspiration to precipitation) was greater than 1 in each year, which indicates that the
evapotranspiration in these four river basins was limited by energy supply during this period.
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Figure 3. Time series of annual precipitation and evapotranspiration in each river basin.

3.1.2. Temporal Trend of Streamflow

Streamflow, which is the main hydrological variable analyzed in this study, can be calculated
using the water balance equation (Equation (1)). Figure 4 shows the time series of the streamflow
in the four basins from 1980 to 2017. The statistic Z from the Mann–Kendall test in the Bazhang,
Zengwen, Yanshui, and Erren River Basins was 1.48, 0.88, 1.06, and −0.12, respectively. No significant
trend was observed at a significance level of 0.05 in any of the river basins. The rate of change in the
streamflow of the Bazhang, Zengwen, Yanshui, and Erren River Basins was 35.7%, 23.9%, 39.2%, and
−6.8%, respectively. An abrupt point was detected in 2004 using the change-points detection method.
Thus, the study period can be divided into two periods—1980 to 2003 (pre-period) and 2004 to 2017
(post-period).
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3.2. The Budyko Curve

According to the basic assumption made in this study, the difference in streamflow between the
post-period (Qpost) and the pre-period (Qpre) represents the total change in stream discharge (∆Q).
∆Q is the combination of climate change (∆QC) and human activity (∆QH). After determining the
change point for each streamflow series, the differences between the pre-period and the post-period
were evaluated. Table 3 summarizes the change in streamflow between the pre-period (1980–2003) and
the post-period (2004–2017). A change of approximately 40% was observed in the streamflow of the
river basins studied, except for the Erren River Basin. The Budyko–Zhang equation was selected to fit
the hydrological variables, and the different values for the parameter ω in each equation represent
different curves on the plot. As shown in Figure 5, the curves for the three river basins (Bazhang,
Zengwen, and Yanshui) sloped upwards from the pre-period to the post-period, but the opposite was
seen in the direction of the curve for the Erren River Basin. A decrease was observed in parameter
ω for the Bazhang, Zengwen, and Yanshui river basins between the pre-period and the post-period.
The change inω for the Bazhang, Zengwen, Yanshui, and Erren river basins from the pre-period to
the post-period was 0.87 to 0.58, 0.83 to 0.68, 1.12 to 0.9, and 0.89 to 1.02, respectively. Ning et al. [57]
found that an increase in this parameter may result in increase in the vegetation, which leads to
the increase in evapotranspiration and a reduction in the annual runoff from a watershed. Thus,
changes in the parameterω in each basin are critical for the quantified analysis that is conducted in the
following section.

Table 3. Summary of the changes in streamflow during the study period.

River Basins Mean Streamflow in
Pre-Period (mm)

Mean Streamflow in
Post-Period (mm) Change (%)

Bazhang 1928.84 2787.62 45
Zengwen 1122.92 1566.9 40
Yanshui 807.11 1150.85 43

Erren 1151.97 1347.57 17Sustainability 2020, 12, x FOR PEER REVIEW 10 of 16 
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Zhao et al. [41] used methods similar to those used in this study to quantify the relative
contributions from climate variability and human activity to explain streamflow changes in four
sub-catchments of the Wei River Basin (WRB) in China. Similar changes were seen in parameter
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ω to those observed in this study, and it was found that both climate change and human activity
reduced streamflow in the WRB. Identifying the change in the parameter ω for each river basin is very
important to achieve the objectives of this study. Zhang et al. [48] proposed that the higher the value of
parameter ω, the more abundant the vegetation cover. Therefore, changes in the actual vegetation
should reflect the changes observed in the parameterω in the Budyko–Zhang equation. To confirm
the differences inω for the Erren River Basin, the normalized difference vegetation index (NDVI) was
used to represent the actual situation for further evaluation. The NDVI ranges between −1 and 1,
with higher values indicating denser vegetation cover. Figure 6 presents the NDVI for the four river
basins. The changes in the NDVI of the Bazhang, Zengwen, Yanshui, and Erren River Basins were
−18%, −32%, −34%, and 22%, respectively. The variation in the NDVI verified the results of this study.
In the Erren River Basin, the NDVI increased as parameterω increased, but the opposite was seen in
the other basins. This result proves that the parameterω in the Budyko–Zhang equation can reflect
the variation in actual vegetation cover and indicates that this method can be used to understand the
vegetation conditions in the different areas in Taiwan without having to obtain data directly.
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Figure 6. The variation in the normalized difference vegetation index (NDVI) for the four river basins.

3.3. The Effects of Climate Variability and Human Activity on Streamflow

The basic concept of the decomposition method is to evaluate the movement of the Budyko curves
(Equation (4)) presented in Figure 5. The hydrological sensitivity method is also a method that can be
used for quantification. By calculating the parameter α and β (Equations (6) and (7)), the contribution
of climate change (∆QC) to streamflow can be quantified. Table 4 shows all the parameters used in
this method. The absolute value of the streamflow sensitivity coefficients of precipitation is greater
than that of potential evapotranspiration (PET), revealing that the change in streamflow was more
responsive to changes in precipitation than to changes in PET in these regions.

Table 4. Parameters used in the hydrological sensitivity method.

River Basins ω Ø (PET/P) α β

Bazhang 0.72 0.40 0.93 −0.68
Zengwen 0.75 0.59 0.86 −0.55
Yanshui 1.01 0.69 0.81 −0.50

Erren 0.96 0.59 0.86 −0.58

Finally, the quantitative results are given in Figure 7. The two methods of quantification exhibited
similar results for the four river basins. Climate change accounts for more than 80% of the streamflow
change observed in all river basins. Unlike that of the other river basins, human activity was found to
cause a decrease in the streamflow of the Erren River Basin. This was probably a result of the opposite
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directional change of parameter ω. Consequently, climate change was found to be the most influential
factor affecting streamflow change in the river basins investigated in this study.Sustainability 2020, 12, x FOR PEER REVIEW 12 of 16 
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4. Summary and Discussion

4.1. Rationale for Using the Water Balance Equation to Calculate Streamflow Data

In this study, the streamflow data is calculated using the water balance equation (Equation (1)).
However, this method is seldom used in related published research. According to the Budyko equation
discussed in Section 2.2.2, all the hydrological variables that were investigated in the study should
satisfy the water balance equation over a sufficiently long time. Thus, using a method that is similar
to this study could help ensure that the variables in the study are consistent with the water balance.
Teuling et al. [34] used water balance to calculate the long-term average streamflow and simulated
the distribution of green and blue water fluxes at high-resolution (1 km2) in Europe. By combining
the Budyko model, land use data, and meteorological variables, the study determined the spatial and
temporal differences in each hydrological variable and the main factors affecting streamflow change.
Furthermore, the results of the hydrological sensitivity method indicated that the streamflow was
more responsive to changes in precipitation than to changes in potential evapotranspiration, which
is consistent with the results of previous studies [58,59]. The water balance equation is therefore an
appropriate method for acquiring streamflow data. Future research should examine different temporal
scales and factors that affect the temporal variability in streamflow.

4.2. Confirmation of the Change of Parameter ω

The change in parameter ω for each basin shows that the hydrological environment in the
four basins was influenced by a combination of climate change and human activity. In this
study, NDVI was adopted to confirm the results of the Budyko framework. He et al. [60] used
the Budyko–Choudhury–Yang equation to evaluate the characteristics of runoff and attribution
identification as a basis for formulating climate change strategies and the rational utilization of water
resources, and found that the impact of underlying surface parameters increased after abrupt changes
in the runoff. If the topography and soil conditions in the underlying surface of the watershed are
relatively stable, change in the vegetation is one of the main factors that influences changes at the
surface. The NDVI can therefore be used as an “indicator” for vegetation growth. The same pattern of
change was observed in the parameters studied and the NDVI from the pre- to post-period, which
means that the parameters increase as NDVI increases. This result agrees with the definition of the
parameterω in the Budyko equation. Based on the study mentioned above, it is therefore appropriate
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to use NDVI to compare changes in the parameters of a watershed. He et al. [61] also analyzed
the trend in the variation of the NDVI to find areas in which the amount of vegetation present had
increased, which was then used to decide the main factors reducing runoff. The increase in the amount
of vegetation in the area and attribution analysis with the Budyko equation meant that the conclusion
became more robust and showed consistency with many previous studies in a similar area [62]. For
further study, further investigation of the trends found using NDVI is necessary in order to obtain
clearer results.

5. Conclusions

Four river basins in southern Taiwan were selected and analyzed to determine the contribution
from climate change (∆QC) and human activity (∆QH) to their streamflow from 1980 to 2017. The
hydrological sensitivity-based method and decomposition method were used, based on the Budyko
hypothesis, generating consistent results. The hydrological sensitivity method found that changed in
streamflow are more sensitive to changes in precipitation than to changes in potential evapotranspiration.
The decomposition method showed that human activity led to a decrease in the streamflow of the
Erren River Basin. Moreover, climate variability in the river basins was the main factor affecting the
changes in streamflow. Changes in the parameterω can be verified using NDVI in the areas studied.

Quantification of the impact from natural causes and anthropogenic activity on streamflow in
Southern Taiwan remains a challenge because of limitations in the data. Several assumptions were
therefore made in this study to obtain complete results—(1) changes in water storage were neglected
over the long-term period and (2) the pre-period is used to represent the natural conditions of river
basins, meaning that the environment is not particularly affected by any of the factors studied. The
results of this study may have been more accurate if these factors were considered, but they have little
influence on the interpretation of Budyko curve analysis. Thus, investigation of the influences from
water storage and adequate definition of the pre-period are recommended for further discussion in
future studies. Climate change remains an important factor for the planning and management of water
resources in Southern Taiwan in the future. Comparing actual basin conditions with statistical analysis
is beneficial for developing environmental policies. The results of this study provide a preliminary
basis for the regulation of hydrological regimes.
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