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Abstract: The aim of this study is the application of advanced modeling techniques to identify
powdery mildew tolerant cultivars and reduce fungicides and energy consumption. The energy
savings resulting from the increased efficiency of the use of fungicides is an innovative aspect
investigated within the project AGROENER researching on energy efficiency. In this preliminary
study, investigations through phenotyping methods could represent a potential solution, especially if
they are used in combination with tools and algorithms able to extract and convert a large amount
of data. Twelve different grapevine cultivars were tested. The construction of an artificial model,
characterized by absolute optima of response to a pathogen (i.e., low values of disease incidence and
severity and first day of the pathogen appearance), allowed us to cover the potential variability of a
real dataset. To identify the cultivars that tolerate powdery mildew the most, two Soft Independent
Modeling of Class Analogy (SIMCA) models were built. The modeling efficiencies, indicated by
sensitivity value, were equal to 100%. These statistical multivariate classifications identified some of
these tolerant cultivars, as the best responding to the pathogen.

Keywords: powdery mildew; phenotyping; artificial dataset; viticulture sustainability; energy
efficiency; SIMCA

1. Introduction

In the last years, the most common grapevine (Vitis sp.) diseases have significantly increased
in Europe. This increase is partially due to the pathogen resistance developing over the years to
agrochemicals products [1] leading to a large use of conventional agricultural practices characterized
by high inputs of fuel (heavy machine use) and electricity [2]. Solutions leading to an increased
sustainability in viticulture are highly desirable, therefore, it is crucial to adopt environmentally
friendly methods able to reduce fungicides use and energy consumption. Therefore, in this context,
the development and implementation of high-throughput phenotyping methods represents a key tool
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to acquire large quantity of data under controlled environments [3,4]. Indeed, plant phenotyping is
the application of methodologies and protocols measuring plant structure or function, ranging from
cellular to whole-plant levels [5,6].

Epidemics caused by powdery mildew (Uncinula necator [Schw.] Burr., anamorph Oidium tuckeri
Berk.) has drawn much attention due to the economic deficits it causes in terms of decreased yield, vine
growth, winter hardiness, fruit and wine quality. Its primary infection has the need of at least 12–15 h
of continuous wetness at 10–15 ◦C. To limit these problems, the crop responses to the disease should
be investigated following both specific times and spatial scheduling according to the disease onset,
growth stage and pathogen development [7,8]. In addition, this pathogen is currently controlled with
repeated applications of fungicides leading to environmental pollution, resistant strains development,
residual toxicity, and increased pathogen pressure over long period of time. Nowadays, sustainability
is crucial within wine sector, as shown by the attention paid by the public opinion and sector operators.
The fungicide treatments increase production costs while negatively affecting the environment, product
quality and safety.

Therefore, recently, grapevines varieties resistant and/or tolerant to the most dangerous diseases,
such as downy (Plasmopara viticola) and powdery mildew, are gathering attention all over the producing
countries [9] to reduce the use of fungicide. To obtain durable field resistance, stacking resistance genes
with different mechanisms, seems to be the only viable solution to this pathogen [10]. Generally, these
scopes are achieved through the genetics of quantitative traits, e.g., the adaption to abiotic or biotic
stresses. Disease tolerant grapevine varieties are obtained by several generations of crossbreeds among
Vitis vinifera and not vinifera. These new varieties, with about the 95% of the initial genome of Vitis
vinifera, exhibited a high level of tolerance to downy and powdery mildew due to the resistance gene
not belonging to vinifera varieties. In this scenario, to identify a great number of genotypes, could be
advantageous but often a limited approach due to time and cost [11]. For these reasons, investigations
using high throughput phenotyping methods could be a reasonable solution. Those techniques must
include proper tools for data acquisition and appropriate algorithms to extract and to convert the large
amount of these information [12,13].

The aim of this preliminary study is to identify the most tolerant cultivars to pathogen (i.e., powdery
mildew) to reduce fungicides use and energy consumption through phenotyping approach in
combination with advanced modeling techniques. The scope is to compare twelve grapevine varieties
(i.e., ten disease tolerant grapevine varieties and two Vitis vinifera cultivars) to assess those better
tolerating the pathogen in terms of disease incidence, severity and first appearance. The concept of
phenotyping was addressed, both in field with visual assessments, and as reported by Araus and
Kefauver [12], with physical tools such as algorithms, software and data processing management. A
multivariate statistical approach allowed to create a metric index identifying the best tolerant cultivars
in terms of disease incidence, severity and pathogen first appearance. The energy savings resulting
from the increased efficiency of the use of fungicides is an innovative aspect investigated in the
AGROENER project based on energy efficiency.

2. Materials and Methods

2.1. Plant Material and Data Collection

In spring of 2016, the CREA (Research Centre of Viticulture and Enology), located in Velletri
(Central Italy, Rome), in collaboration with ARSIAL (Regional Agency for Development and Innovation
of Agriculture of Lazio), implanted ten Italian tolerant cultivars. The experimental vineyard CREA
is located in Velletri (Central Italy, Rome; 41◦ 40′ 12′’ N latitude, 12◦ 46′ 48′’ E longitude) at 332 m
above sea level. The trials were made in 2019 using ten varieties obtained by several generations of
backcrossing among Vitis vinifera and not vinifera, registered in the Italian National Grape Register
2015 [14], and two Vitis vinifera cultivars (i.e., Trebbiano Toscano (white grape) and Sangiovese (red
grape); Table 1). All the cultivars are conducted in trellised growing form with Guyot pruning system.
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Table 1. Cultivars and their parental grapevine analyzed in this study (form CV01 and CV12).

Label Cultivar Parental Grapevine Grape Color

CV01 Trebbiano Toscano / White
CV02 Fleurtai® Tocai friulano White
CV03 Soreli® Tocai friulano White
CV04 Sauvignon Kretos® Sauvignon White
CV05 Sauvignon Nepis® Sauvignon White
CV06 Sauvignon Rytos® Sauvignon White
CV07 Cabernet Eidos® Cabernet Sauvignon Red
CV08 Cabernet Volos® Cabernet Sauvignon Red
CV09 Merlot Khorus® Merlot Red
CV10 Merlot Kanthus® Merlot Red
CV11 Julius® Regent Red
CV12 Sangiovese / Red

The plant density was set with a 0.9 m spacing of rows and 2.3 m within the rows (4000 vines per
hectare) and was located on a south facing land. The randomized plot experiment was set as follows:
12 different cultivars (one row each), with three treatments, one “Untreated” and two treated with the
same fungicide but at different timings and number of applications (“Treated 1” and “Treated 2”) and
replicated three times within a plot of 50 m2 (50 plants for replicate).

All products were applied with a knapsack sprayer using compressed air as propellant. The sprayer
was equipped with a gun and calibrated to apply a homogeneous volume at a constant pressure. The
distance within the rows, the method of application, the equipment and the wind speed during the
applications guaranteed the absence of drift and the contamination of the other rows.

The vineyard was carefully inspected once a week (for 6 weeks), from setting to beginning of
ripening. The time of first appearance of powdery mildew lesions was detected. Random bunches
were visually assessed from each replicate of the different classes (Untreated, Treated 1 and Treated 2)
(for a total of 50 bunches per replicate).

The disease incidence was calculated as the total, minimum and maximum number of diseased
bunches of the total number assessed (50) for replicate. The mean, minimum and maximum number of
diseased grapes for each bunch (50 bunches per replicate), was also estimated to underline the disease
severity. For each bunch was determined the percentage area occupied by powdery mildew. Visual
assessments were carried out in accordance with the European and Mediterranean Plant Protection
Organization (EPPO) guideline regarding the evaluation of fungicide efficacy on powdery mildew
[PP 1/4(4)] [15].

Moreover, a phenological observation was performed. The phenological stages were observed
and defined in accordance with the international standard code BBCH [16].

2.2. Climatic Data

Climatic data were taken from the ARSIAL weather station (RM10SPE, Cantina Sperimentale)
positioned at the experimental vineyard CREA located of Velletri (Rome). For a general view of the
weather conditions at the time of the treatments, the mean hourly wind speed at 10 m, the mean hourly
wind speed at 2 meters (collected with a manual anemometer), the total hourly leaf wetness, the total
hourly solar radiation, the mean hourly air temperature at 2 m and the mean hourly air humidity at
2 m of the days on which these treatments were carried out, was reported (Table 2). Each treatment
was carried out on the scheduled dates, at 07:00 a.m., and only when the weather conditions were
favorable (i.e., wind <3 m/s and absence of leaf dew (leaf wetness) [17].
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Table 2. Weather conditions at the time of the treatments (07:00 a.m.): treatment date, mean hourly wind speed at 10 m (m/s), mean hourly wind speed at 2 meters
(m/s; collected with a manual anemometer), total hourly leaf wetness (min), total hourly solar radiation (kJ/m2), mean hourly air temperature at 2 m (◦C) and mean
hourly air relative humidity at 2 m (%).

Treatment Date Mean Hourly Wind
Speed at 10 m (m/s)

Mean Hourly Wind
Speed at 2 Meters (m/s)

Total Hourly Leaf
Wetness (min)

Total Hourly Solar
Radiation (kJ/m2)

Mean Hourly Air
Temperature at 2 m (C◦)

Mean Hourly Air Relative
Humidity at 2 m (%)

13 June 1.1 0.1 0 1566 24.8 61
18 June 1.9 0.9 0 1530 24.2 59
25 June 2 1 0 1479 27.1 56
03 July 1.5 0.5 0 1432 27.8 49
12 July 1.6 0.6 0 1481 23.9 79
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To evaluate the powdery mildew spread, the general environmental conditions and meteorological
data of the assessment season (from 01 June to 31 July) were reported in Figure 1 (i.e., daily total rainfall
(mm), daily maximum and minimum temperature (◦C) at 2 m).
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Figure 1. General environmental conditions and meteorological data of the assessment season from
June to July: daily total rainfall (mm), daily maximum and minimum temperature at 2 m (◦C).

From Figure 1 it is possible to observe that June was dry and hot in the first part. In the second
part of June and during July the relative humidity and temperature were favorable to the disease
spread. In fact, from June, with the temperatures rising quickly there has been a rapid recovery of the
phenological development; flowering for example occurred about 20–30 days late, with respect to the
year before, but ended in less than a week. Even the phases from the grape’s growth, bunches closure
and beginning of ripening were completed in a few days.

2.3. Dataset Construction

To visualize information useful to build, and successively analyze the dataset with multivariate
statistical approach, two principal component analysis (PCA) were carried out. The PCA used the data
regarding the disease incidence (total, minimum and maximum number of diseased bunches of the
total number assessed) and the severity (mean, minimum and maximum number of diseased grapes of
each bunch) belonging to each untreated classes, for 3 replicates per cultivar, six collection times and
the first day of the pathogen appearance. Both the collection times and the first day of the pathogen
appearance were expressed as Julian date (157, 164, 172, 179, 186 and 197).

An artificial model was constructed to identify the pathogen (i.e., powdery mildew) tolerant
cultivars and therefore to reduce fungicides and energy consumption. The concept of artificial model
has been developed by Abramo et al. [18] and consists in combining fixed values of each variable
(qualitative or quantitative) to cover the potential variability of a real dataset in a combinatory
fashion. This dataset was composed by six independent quantitative and one qualitative variable.
The quantitative variables were for the disease incidence the diseased bunches (total and maximum
number on the total assessed) for six collection times; for the severity, the mean and maximum number
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of diseased grapes for each assessed bunch. The qualitative one was represented by the date (expressed
as Julian date) of the first appearance of the powdery mildew.

Table 3 reports the fixed values for each independent variable used for the construction of the artificial
dataset. These values were calculated on the optimum (low values of disease incidence and severity at a
late date for the quantitative variables and high appearance values at a late date for qualitative ones) and
on the base of these real observations, this dataset covered the most realistic range of observations. The
total combination of these fixed values determines a total of 126 artificial records. The table did not show
the constant values (i.e., the visual assessments without the pathogen appearance).

Table 3. Variables and fixed values (for each variable) used for the construction of the artificial dataset to
identify the pathogen (i.e., powdery mildew) tolerant cultivars in term of disease incidence (considering
total and maximum number of diseased bunches of a total number assessed for replicate), severity
(mean and maximum number of diseased grapes of each bunch) and first appearance (expressed in
Julian date). Table did not show the constant values (i.e., the visual assessments without the pathogen
appearance). The artificial dataset has been built adopting a full combinatory approach among all the
fixed values present in the Table obtaining a total of 126 records.

Disease Incidence Disease Severity

Data collection (Julian date)
186 197 186 197

Number of diseased bunches Mean diseased grapes per bunch
4 4 0 0.4
6 8 0.5 1
8 12 1 1.6

Maximum of diseased bunches Maximum diseased grapes per bunch
5 5 5 5
7 7.5 7 7.5

10 10

Date first appearance Date first appearance
180 180
185 185
190 190

2.4. Multivariate Statistical Analysis

To identify the most tolerant cultivars to the powdery mildew in term of disease incidence and
severity were built two Soft Independent Modeling of Class Analogy (SIMCA) [19–21] models (single
class modeling approach) [22,23]. These were created on the Artificial dataset and tested on the three
classes (Untreated, Treated 1 and Treated 2).

SIMCA, computed with the software V-Parvus 2010, is a collection of Principal Component
Analysis (PCA) models (NIPALS algorithm), one for each class of dataset (one in this case), after a
separate category autoscaling. SIMCA cross validates the PCA model of each class (training set),
splitting the data (evaluation set) into 4 contiguous groups (cross validation groups). In this case, the
modified model with expanded range was used in substitution of the first one introduced by Wold and
Sjöström [19]. The procedure to build the model was reported by Zanetti et al. [23]. The efficiency
was evaluated by classification (training set) and prediction (evaluation set) matrices, which reported
the percentage of correct classification for each considered class. SIMCA also expressed the statistical
parameters indicating the modeling efficiency. Unknown objects could be either classified into the class
or recognized as outliers. The modeling efficiency was indicated by sensitivity. This is the measure of
how well the model correctly identifies the cases really belonging to the class. The modeling power for
each variable, which represents the influence of that variable in defining the model, was expressed.

To visualize a metric index for pathogen tolerant cultivars, in term of disease incidence and
severity for the 12 cultivars analyzed, square SIMCA distances were linearized converting the mean
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and maximum values into a logarithmic scale and then translating them by adding a certain value
in order to have all positive values. To avoid overfitting, only 94 out of 126 artificial samples (75%)
were used to construct and cross-validate each SIMCA model. The remaining 32 samples together
with all the other classes samples have been used to test the performance of each SIMCA models.
The partitioning of the artificial datasets was optimally chosen with Euclidean distances, based on
the Kennard and Stone [24] algorithm that selects objects without a priori knowledge of a regression
model (i.e., the hypothesis is that a flat distribution of the data is preferable for a regression model).
The samples were class-modelled on the base of the two artificial models of SIMCA. The two trained
generalized regressions neural network (GRNN) were tested on 108 different samples (divided into
the 3 classes (36 samples for class) Untreated, Treated 1 and Treated 2) affected by powdery mildew
expressed as disease incidence and severity (external test) respectively, for the classification of the
tolerant cultivars for fungicides reduction purpose. The GRNN models’ performances on the external
test set were calculated.

3. Results

The results in this section were reported firstly for to disease incidence and then for disease
severity. Each of these two sub-sections presented the PCA, useful to visualize information to build,
and successively analyze the dataset with multivariate statistical approach. Subsequently, the SIMCA
to identify the most tolerant cultivars (shown in the table) to the powdery mildew creating an Artificial
dataset and testing the three classes (Untreated, Treated 1 and Treated 2) was shown. Finally, the most
important variables in terms of weight for the metric index SIMCA construction for pathogen tolerant
cultivars were displayed.

The importance to analyze both the disease incidence and the severity, concerns that these two
parameters provide a complementary global vision of the disease pressure, showing the efficacy of the
genetic resistance of the new varieties at the disease attack. The incidence shows the permeability of
the genetic defense against the disease, and the severity shows the ability of the disease to spread on
the bunches.

3.1. Disease Incidence

Starting from disease incidence, Figure 2 shows the biplot of the PCA exploratively performed
on total, minimum and maximum number of diseased bunches of a total number assessed (50) for
replicate for six collection times and on the first day of the pathogen appearance.

It is possible to observe as in correspondence with the lower values of PC1 (68.11% of explained
variance) are positioned the cultivars CV02, CV03, CV05, CV06, CV10 and CV11. These presented
the lower disease incidence values (total, minimum and maximum) representing the best cultivars
with respect to the cv at the higher PC1 values (CV04, CV07, CV08, CV09, CV12) in term of pathogen
tolerance. The CV01 has an intermediate position. This is also true for the date of appearances
that resulted the higher at the negative side of PC1. These cultivars resulted the best and, from a
phenotyping point of view, presented a low pathogen infection (few bunches affected) in a late date
(pathogen first appearance) with respect to the others.

Figure 3 shows the SIMCA model performed on total and maximum number of diseased bunches
of a total number assessed for the classification of disease incidence with a square critical distance equal
to 2.60 indicating that a sample belonged to a cultivar with a SIMCA distance lower than the critical
distance (i.e., 95% confidence interval) is considered having the best quality by the model. The disease
incidence is checked on the samples divided into the 4 classes: Artificial, Untreated, Treated 1 and
Treated 2. The modeling efficiency, indicated by sensitivity value, was equal to 100%. In fact, all
artificial samples, either in validation and internal testing, are included within the model. The samples
of the other classes (Untreated, Treated 1 and Treated 2) are partially overlapping.
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Figure 3. Soft Independent Modeling of Class Analogy (SIMCA) [13,14] histogram by frequency class
of the translated log squared SIMCA for disease incidence of powdery mildew datasets built on 12
cultivars of the four qualitative classes (Artificial, Untreated, Treated 1 and Treated 2) for 3 replicates in
six collection times. The dashed line represents the critical value (i.e., model boundary).

To better identify samples belonging to the cultivars with SIMCA distance values lower than
the critical distance (i.e., within the model graphically reported in Figure 3) for disease incidence
classification for the three tested classes (Untreated, Treated 1 and Treated 2). Table 4 reports these
values. These cultivars are the best performing in terms of tolerance to the pathogen.
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Table 4. Cultivars and relative Soft Independent Modeling of Class Analogy (SIMCA) distance lower
than the critical one (equal to 2.60) extracted in the analysis performed on total and maximum number
of diseased bunches of a total number assessed for disease incidence classification for the three classes
Untreated, Treated 1 and Treated 2.

Disease Incidence

Class Cultivar SIMCA Distance

Untreated

CV02 2.03
CV02 0.91
CV10 0.83
CV10 1.82
CV10 1.85
CV11 2.14

Treated 1

CV03 2.43
CV03 0.41
CV06 2.59
CV11 2.50

Treated 2

CV01 2.10
CV02 2.50
CV07 1.75
CV07 0.87
CV12 2.16

Table 4 highlighted that the CV02, CV03, CV06, CV10 and CV11 are the same best found in the
PCA (Figure 1).

Figure 4 shows the variables weight for the SIMCA construction in term of disease incidence.
The most important variables resulted to be the first day of pathogen appearance and the maximum
values of disease incidence in the Julian date 186 and 197. In this case, the model confirmed that for
tolerance scouting, the most influential variables are the first appearance and the maximum expression
of the pathogen (late dates) in terms of disease incidence.
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Figure 4. Weight variables extracted in the metric index construction of Soft Independent Modeling of
Class Analogy (SIMCA) for pathogen tolerant cultivars in term of the total and maximum number of
diseased bunches of a total number assessed for disease incidence classification.
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3.2. Disease Severity

Moving on to results relative to the disease severity, Figure 5 reports the plot of the PCA on mean,
minimum and maximum number of diseased grapes of each bunch for six collection times and on the
day of the pathogen first appearance.
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Figure 5. Principal component analysis (PCA) performed on the mean (Mean-), minimum (Min-) and
maximum (Max-) values for each cv (from CV01 to CV12; Table 1) for 3 replicates in six collection times
(157, 164, 172, 179, 186, 197) of the disease severity (50 bunches for replicate) and on the day of the
pathogen first appearance (appearance). Both the collection times and the day of the pathogen first
appearance were expressed as Julian date.

Additionally in this case, in correspondence with the lower values of PC1 (71.41% of explained
variance) are positioned the same cultivars of the previously exposed PCA (i.e., CV02, CV03, CV05,
CV06, CV10 and 11). These presented the lower disease severity (mean, min and max) values
representing the best cultivars with respect to the cv at the higher PC1 values (CV04, CV07, CV08 and
CV09). The CV01, also in this PCA, is middle positioned on the axis.

The date of appearances resulted the highest at the negative side of PC1. This means that the
best pathogen tolerant cultivars are those presenting, on a late date compared to the others, the least
number of infected grapes.

Figure 6 reports the SIMCA model performed on mean and maximum number of diseased grapes
of each bunch with a square critical distance equal to 2.59. Additionally in this case, the modeling
sensitivity was equal to 100% (all artificial samples, either in validation and internal testing, were
included within the model).

To better define the best cultivars in term of pathogen tolerant, Table 5 reports samples with
SIMCA distance values lower than the critical distance (i.e., within the model graphically reported in
Figure 6) for disease severity classification and the three classes (Untreated, Treated 1 and Treated 2).
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Figure 6. Soft Independent Modeling of Class Analogy (SIMCA) [13,14] histogram by frequency class
of the translated log squared SIMCA for disease severity of powdery mildew datasets built on 12
cultivars of the four qualitative classes (Artificial, Untreated, Treated 1 and Treated 2) for 3 replicates in
six collection times. The dashed line represents the critical value (i.e., model boundary).

Table 5. Cultivars and relative Soft Independent Modeling of Class Analogy (SIMCA) distance lower
than the critical one (equal to 2.59) extracted in the analysis performed on mean and maximum number
of diseased bunches of a total number assessed for disease severity classification for the three classes:
Untreated, Treated 1 and Treated 2.

Disease Severity

Class Cultivar SIMCA Distance

Untreated

CV02 1.8
CV02 1.4
CV03 2.3
CV03 2.4
CV10 1.2
CV10 1.9
CV10 2.1
CV11 1.7

Treated 1

CV02 2.57
CV03 2.56
CV03 1.67
CV06 2.45
CV06 2.17
CV11 2.27

Treated 2

CV01 1.61
CV01 2.21
CV02 2.22
CV07 1.65
CV07 1.56
CV09 2.32
CV09 2.51
CV12 2.20
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Table 5 confirms the PCA results for CV02, CV03, CV06, CV10 and CV11.
Figure 7 shows the weight variables for the SIMCA construction in term of disease severity. As for

the disease incidence model, the variables most important resulted to be the first pathogen appearance
and the maximum values of disease severity in the Julian date 186 and 197.
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Figure 7. Weight variables extracted in the metric index construction of Soft Independent Modeling of
Class Analogy (SIMCA) for pathogen tolerant cultivars in term of the total and maximum number of
diseased bunches of a total number assessed for disease severity classification.

4. Discussion

In this study, ten disease tolerant grapevine varieties were tested. These were obtained by several
backcrossing between Vitis vinifera and not vinifera, registered in the Italian vine variety catalog 2015
(Table 1) and two Vitis vinifera cultivars (i.e., Trebbiano Toscano and Sangiovese) to identify the most
tolerant to powdery mildew and consequently to observe the agronomic behavior of these vines.
These were introduced in a south and warm environment, as “Castelli Romani” (Central Italy, Rome).
The scope is to compare all these cultivars, regardless of their genetic origin, to visualize those that best
tolerate the pathogen in terms of disease incidence, severity and first appearance. The importance
to analyze both the disease incidence and the severity, concerns that the incidence could provide an
index of how many bunches per cultivar are infected while severity, verifying the percentage of grapes
affected in each bunch, could provide a valuable tool to contain the disease [25]. During the experiment,
no climatically accident occurred. The climatic conditions gave a delay to the powdery mildew disease
appearance: May was cold (in particular during the night), meanwhile June was dry and hot in the
first part and only in the second part of the month and during July the moisture and temperature were
favorable to the disease spread. In addition, during this last period, there was little rain. Willocquet
and Clerjeau [26] reported as the spread of spore dispersal occurred during a period of consecutive
days with no rain.

As reported by Williams and Ayars [27], grapevines are one of the world’s most economically
important horticultural crops. In recent years, much effort has been made to challenge the rapid
increase of the most common pathogens (e.g., powdery and downy mildew), that create serious
consumption in terms of production [4]. As reported by Willocquet and Clerjeau [26], grapes powdery
mildew conidia are not easily removed under natural conditions, forcing a great use of preventive
fungicides against this pathogen to limit the spore dispersal and deposition.

In this context, precision crop protection strategies, such as phenotyping, result in potential
reduction in pesticide use potentially reducing the energy consumption as well, the relative economic
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expense and the whole ecological impact of the agricultural crop production system [28]. Nowadays,
agricultural pathogen research programs need to phenotype a great number of samples for several
traits during the pathogen growth cycle [29]. This challenge to phenotype multiple traits and large
populations is necessary for a prompt action aimed at reducing the use of fungicides. Due to its
objective importance, intensive researches are currently moving on automated high throughput plant
phenotyping [30,31].

Phenotyping, including physical tools, algorithms, software and data processing environment,
could represent a feasible solution to identify a great number of samples saving time and costs.
The knowledge of crops behavior in response to a given pathogen, is an excellent preventive strategy to
reduce spraying costs and the negative effects of spraying [32]. Breeding studies to improve tolerance
and resistance were initiated just to reduce the use of these fungicides in new cultivars.

For this work, the application of the phenotyping method represents a potential solution to reduce
fungicides and energy consumption, by comparing a great number of different grapevines phenotypes
and anticipating, in the future, several targeted defense strategies allowing a lower use of fungicide
and the consequent lower energy loss (e.g., reduced fuel consumption). In these terms, the construction
of an artificial dataset characterized by absolute optima from the point of view of response to the
pathogen (i.e., low values of disease incidence and severity at late date for the quantitative variables
and high appearance value at late date for qualitative one) allowed to cover the potential variability
of a real dataset in a combinatory fashion. In this preliminary study, the statistical multivariate
classification performed by SIMCA identified some of these tolerant cultivars (for the disease incidence:
Fleurtai, Merlot Kanthus and Julius; for the disease severity: Fleurtai, Soreli, Merlot Kanthus and
Julius), following the indications provided by the artificial dataset, as the better responding to the
powdery mildew (for both incidence and severity disease). Moreover, the PCA shows as the Vitis
vinifera (Trebbiano Toscano and Sangiovese) cultivars presented a lower tolerance compared to those
selected for this scope. The observations made in field have been confirmed by the classification carried
out through SIMCA.

The acquisition of phenotypic data in grapevine research is almost exclusively restricted to the
field and done by visual evaluation [3]. To evaluate whether the algorithms are appropriate to convert
the data extracted from the matrices into target traits, in this preliminary study, phenotyping was used
both in terms of tools and platforms, and to include the amount of processing information. In addition,
when field phenotyping represents the principal research aid, as in the present case, it must include
proper characterization of the environmental conditions and spatial variability of the trials [12].

5. Conclusions

This study represents a tool to improve yield and product quality by detecting the most tolerant
vine cultivars. These grape varieties resistant to the most dangerous diseases, reduce damages in terms
of powdery mildew incidence and severity. In addition, the reduction of the use of fungicides allows
an integrated viticulture management, and a decrease of the use agricultural machinery, improving
energy efficiency. Nowadays, only breeding programs represent the solution to improve pathogen
tolerance and resistance. The use of phenotyping concerning the pathogen visual assessment and the
multivariate data analysis applied in this study could be a valid preliminary support. This methodology
can be applied to future agricultural practices where treatments with fungicides are considerable.
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