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Abstract: This paper investigates outdoor thermal comfort in summer in commercial pedestrian streets
in Harbin, using meteorological measurements and questionnaire surveys (1013 valid questionnaires).
The results demonstrate that: (1) Thermal sensation has a lower range in an outdoor environment
with smaller sky view factor (SVF) and less fluctuation, while the thermal sensation vote (TSV) range
is more dispersed in an outdoor environment with larger SVF and more fluctuation; (2) In the urban,
high-density commercial districts in Harbin, the air temperature and solar radiation have a greater
influence on outdoor thermal sensation, while wind speed has less of an influence, and residents
in areas with less fluctuations are more sensitive to air temperature and solar radiation; (3) The
universal thermal climate index (UTCI) can accurately evaluate outdoor thermal comfort in Harbin
in summer, with a neutral UTCI value of 19.3 °C and a range from 15.6 to 23.0 °C; (4) The actual
acceptable thermal range is 16.8-29.3 °C, and this takes into account the psychological adaptation of
the residents, which provides a more practical reference value; (5) With reference to the psychological
adaptation, the outdoor thermal sensation of residents in early summer is about 0.5 TSV higher than
that in late summer. These results provide a theoretical basis and a technical reference for the design
of commercial pedestrian streets in severe cold regions.

Keywords: outdoor thermal comfort; commercial pedestrian streets; UTCI; severe cold regions

1. Introduction

With the current trend towards urbanization, global warming and the urban heat island are
attracting increasing attention, while heat loads and outdoor thermal stress in densely populated areas
are increasing [1]. Extreme weather conditions may lead to increased heat stress, resulting in physical
discomfort and even death [2,3]. A suitable outdoor environment not only improves the livability of a
city by facilitating a higher frequency of commercial and recreational activities but also reduces energy
consumption inside buildings by attracting people to spend more time outdoors. In summer, there
is a surge in the outdoor activities of residents from severe cold regions, and commercial pedestrian
streets are crowded. The outdoor thermal comfort level is of great significance in improving the
quality of external space and promoting regional economic development. Therefore, the question of
outdoor thermal comfort in commercial pedestrian streets in summer in severe cold regions demands
further attention.

Several scholars have shown that the human thermal sensation is closely related to outdoor
meteorological parameters, but this correlation varies in different climatic zones. For instance, Lin
et al. found in Taiwan that residents” thermal sensation had a strong correlation to air temperature
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and mean radiant temperature and a weak correlation with wind speed and relative humidity [4]. Lai
et al. found that the air temperature in Tianjin is the main factor affecting human thermal sensation,
followed by solar radiation and relative humidity [5]. In 2019, Xu et al. concluded that air temperature
and solar radiation are the main physical factors affecting outdoor thermal comfort in Xi'an [6]. In
the arid region, Ruiz et al. found the highest correlation between human body heat sensation and
temperature in Mendoza, Argentina [7]. In the Mediterranean region, Nikolopoulou found that
air temperature and solar radiation are the main factors affecting outdoor thermal comfort and the
utilization of space in Athens, Greece [8]. Aha Mahmoud found that each microclimate features
different effects of solar radiation and wind speed, which affected residents’ thermal perception in
Cairo, Egypt [9]. These results show that, in different climate zones, the factors that influence human
thermal sensation are different. Therefore, it is necessary to study the thermal sensation of the human
body and the characteristics of the outdoor thermal environment in the severe cold region to support
the design-decision making process for commercial buildings in this region.

Different spatial scales and forms have a certain impact on the outdoor thermal environment, and
this affects the human thermal sensation. The impact is most significant in complex urban street spaces.
Relevant studies show that urban canyons account for two-thirds of urban space and therefore play an
important role in radiation balance and outdoor thermal comfort [10,11]. In 2006, Johansson performed an
experimental study on street space of two different scales in two urban districts in Morocco, and the results
show that a compact block morphology is conducive to shading and improved outdoor thermal comfort
in summer but with reduced outdoor thermal comfort in winter [12]. In 2010, F. Bourbia et al. concluded
that, in a semi-arid climate, the higher the length-width ratio, the lower the street air temperature and the
lower the building surface temperature [13]. In 2014, Qaid et al. found that the average aspect ratio of
street spaces has a significant impact on the thermal environment comfort level [14]. According to the
simulation results from Xiao et al. on Guangzhou blocks in 2019, a street with a north/south orientation in
a point block with the canyon aspect ratio (H/W) above two provides significantly improved outdoor
thermal comfort at pedestrian height, while streets with east/west orientation are recommended for
arcades [15]. Elmira Jamei et al. summarized the effects of aspect ratio, street orientation, sky perspective
factor, local and neighborhood scale on the outdoor thermal comfort of streets and found that most studies
focus on hot and humid climates, hot and dry climates, Mediterranean climates, subtropical climates and
other areas [16], with little relevant research carried out in the severe cold regions of China, particularly in
urban commercial streets with complex spatial scales.

One of the principal research methods to evaluate outdoor thermal comfort level is through
quantitative indicators. In order to select the most appropriate indicator for scientific evaluation,
several studies have been carried out on the outdoor thermal environment in different climate zones.
In 2017, Freitas et al. summarized 165 outdoor thermal comfort indicators that have been used to
simulate human thermal perceptions. Various thermal indicators were rated based on six factors,
including comprehensiveness, scope, complexity, transparency, availability and effectiveness, of which,
the universal thermal climate index (UTCI) was 27, the physiological equivalent temperature (PET) 26
and the predicted mean vote (PMV) 23 [17]. It has also been shown that the UTCI can be applied to the
evaluation of the thermal environment in different climates, seasons and latitudes, indicating that it is
applicable and has certain advantages in representing human body changes relating to meteorological
parameters in a sensitive manner [6,18-20]. However, most outdoor thermal comfort studies used to
evaluate the UTCI are focused on sub-tropical or temperate climate regions, and little attention has
been given to severe cold regions. Therefore, the accuracy of the UTCI in severe cold regions requires
further verification.

Previous studies on the outdoor thermal environment in severe cold regions focus on the
winter [21,22]. Designers examine how to minimize the effect of the cold winter winds through the
reasonable layout of building groups, but there is insufficient consideration for natural ventilation
and the outdoor thermal environment in summer. In addition, there are diverse business formats in
commercial districts, and some of these layouts have a heat exhaust effect on the outdoor space, thus
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affecting the outdoor thermal comfort levels. Therefore, this paper focuses on the outdoor thermal
environment of urban commercial pedestrian streets in severe cold regions in summer. By combining
meteorological measurements and a subjective questionnaire, this paper investigates outdoor thermal
comfort in a commercial pedestrian street in Harbin under different spatial scales. At the same time,
the suitability of the UTCI in severe cold regions in summer is verified, and values for the neutral
UTCI, neutral UTCI range and actual thermal acceptability range are obtained.

2. Methods

2.1. The Site

Harbin (125°42’-130°10" E, 44°04’-46°40" N) is located in the northeast of China. According to the
Koppen climate classification system, the climate in Harbin is Dwa, characterized by cold, dry snowy
winters and slightly hot and rainy summers [23]. Figure 1 shows the monthly mean temperature,
maximum temperature, minimum temperature and mean relative humidity in Harbin city from 1981
to 2010 (according to data from the official China Meteorological Administration website). The annual
average temperature difference in Harbin exceeds 40 °C, and the highest monthly average temperature
for the year occurs in July (27.8 °C), the lowest monthly average temperature occurs in January (—22.9
°C) and the monthly average relative humidity is between 48% and 78%.
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Figure 1. Monthly mean/maximum/minimum air temperature (T,) and mean relative humidity (RH)
in Harbin from 1981 to 2010.

The study site is located in an urban commercial district in Harbin (Figure 2). It consists of a
pedestrian street with a NW-SE orientation, three auxiliary streets with a NE-SW orientation and an
open square. This work considers the commercial pedestrian streets as the research objects. The length
of the NW-SE street is about 230 m. The two auxiliary streets on the north are about 105 m long, and
the auxiliary street on the south is about 120 m long. This area includes a high-rise office building, a
high-rise apartment and commercial buildings of different heights, with diverse functions and scales.
As a result, the outdoor environment in different locations varies greatly, and the shielding effect of
buildings on the site varies at different times during the day.

Figure 2. (a) Location of Harbin; (b) Field survey location.
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2.2. Field Survey

2.2.1. Meteorological Parameter Measurements

Measurements in this study were performed on eight occasions from June 15, 2019 to August
15, 2019. In order to obtain sufficient samples to cover the activity time of commercial crowds, each
measurement was set up from 9:30 to 17:30 on weekends, and a questionnaire survey was conducted
to assess the outdoor thermal comfort of the pedestrian shoppers. Four measuring points: A, B, C and
D were set up on the commercial pedestrian streets, distributed along the NW-SE pedestrian street and
one of the NE-SW auxiliary streets (Figure 3). The buildings on both sides of point A are a high-rise
office building and a high-rise commercial building, which are shaded for a considerable time. The
street width is 21 m, which is typical of a street canyon space. Point B is the square node in the street,
with greater width scale and strong solar radiation. Point C is located at the intersection of the streets,
and the height of the surrounding buildings is from 24 to 36 m. Point D is located in one of the NE-SW
auxiliary streets. This street is 7-m-wide, and the buildings on both sides are 24-m-high.

SVFa=0.222 SVFs=0.402

SVFc=0.388 SVFp=0.132

(a) (b)

Figure 3. Measuring points information: (a) measuring points distribution and (b) fish-eye images and
sky view factor (SVF) values.

The sky view factor (SVF) refers to the ratio of the radiation received by a planar surface to the
radiation emitted by the entire hemispheric environment [24,25], and it is typically represented by
a dimensionless value between 0 and 1. The SVF is also related to urban environment geometric
parameters [16,26], which can be combined with influencing factors such as buildings, trees and
landscape to reflect the real space scale [27]. Several studies have pointed out that the SVF, which
is an appropriate parameter to describe urban geometry [28], is closely related to outdoor thermal
comfort [6,20,29-31]. To evaluate the spatial scale of each measuring point more comprehensively, the
sky view factor (SVF) is applied as a quantitative indicator for the different locations. It is found that
the SVF at each measuring point is significantly different, which proves that the selected measurement
points have significant variances and can therefore represent the spatial morphology of different
characteristics in the study area.

In the field measurement experiments, meteorological parameters, including air temperature (T5),
relative humidity (RH), globe temperature (Tg), wind speed (V,) and wind direction were measured.
Ta, RH and T were recorded using a Testo 480 (Testo SE & Co. KGaA, Titisee-Neustadt, Germany). V,
and wind direction were recorded using a Kestrel N5500 (Nielsen-Kellerman Co., Boothwyn, PA, USA).
All instruments comply with the ISO 7726 standard [32]. Table 1 details the sensors used to measure
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the meteorological parameters. All instruments were set up 1.5 m above ground level [6,20,33-35],
and the meteorological parameters were recorded every minute. In order to exclude the influence of
surrounding buildings on the measured data, all instruments were located a minimum of two meters
away from nearby buildings.

Table 1. Instruments used for measurement of meteorological parameters.

Parameters Symbol Instrumentation Range Accuracy
Air temperature Ta Testo 480 -20-70 °C +0.5°C
. 1 o +(1.0%RH + 0.7% measured value) (0-90% RH)
Relative humidity RH Testo 480 0-100% (RH)  _} 49,RH + 0.7% measured value) (90-100% RH)
Wind speed Va Kestrel N5500 0.4-40 m/s +0.1 m/s
Wind direction - Kestrel N5500 0-360° 1°
Globe temperature Tg Testo 480 0-120 °C +0.1°C

2.2.2. Questionnaire Survey

The subjective questionnaire designed for this study consists of two parts (Table 2). The first
part records personal information, including gender, age, location, activity level, clothing and time
of submission. The second part examines four aspects: the thermal sensation vote (TSV), the overall
comfort vote (OCV), the preference vote for each meteorological parameter and the thermal acceptability
vote. The thermal sensation vote (TSV) uses the modified ASHRAE 7-point scale (i.e., =3, cold; -2,
cool; —1, slightly cool; 0, neutral; 1, slightly warm; 2, warm and 3, hot). The overall comfort vote (OCV)
uses a 3-point scale (-1, discomfort; 0, neutral and 1, comfortable). The thermal acceptability vote
uses a 4-point scale (-2, extremely unacceptable; —1, unacceptable; 1, acceptable and 2, extremely
acceptable). The preference vote for each meteorological parameter also uses a 3-point scale (-1, 0 and
1 representing weaker/lower, unchanged and stronger/higher, respectively), reflecting the subject’s
need for different meteorological parameters. A total of 1013 valid questionnaires were collected.

2.3. UTCI

The quantitative index for outdoor thermal comfort selected for this study is the universal thermal
climate index (UTCI). This is based on the multiple node “Fiala” human physiology and thermal
comfort model and combined with the most advanced clothing model. It not only considers the general
urban population response to the actual environmental temperature through clothing adaptation
behavior but also takes into account the temperature change caused in the human body through the
adjustment of clothing, the distribution of the clothing over different body parts and clothing thermal
resistance and water vapor evaporation capacity affected by wind speed changes [36].

This study uses a calculator provided by the UTCI official website (www.utci.org) to calculate the
UTCI. The meteorological parameters input include air temperature (T,), relative humidity (RH), wind
speed at a height of 10 m above the ground and mean radiant temperature (Trt). The air temperature
(Ta) and relative humidity (RH) are directly obtained from the mobile weather stations. The wind
speed at 10 m height (V,10m) is obtained using Equation (1) using the wind speed values measured at
1.5 m to obtain the wind speed at 10 m height from the ground.

[0 4

Va1 = VaZ(%) ’ 1)

where V,; is the wind speed at a height of 10 m from the ground (m/s), V,, is the wind speed at a
height of 1.5 m from the ground (m/s), Z; is 10 m, Z, is 1.5 m, « is the wind speed correction index

with terrain variation and « in this study is 0.33 [37].


www.utci.org
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Table 2. Outdoor thermal comfort questionnaire adopted in this study.

Questionnaire on Outdoor Thermal Comfort of Commercial Pedestrian Streets
Date:. /_ /__ Time: Gender: (1) Male (2) Female Age:
1. How long do you spend outdoors on average every day?
0-30 min/30 min—1 h/1 h-2 h/More than 2 h
2. The current position you are in:
Point A (Below the high-rise buildings)
Point B (Central point)
Point C (Intersection of Jianshe street and Youzheng street)
Point D (Youzheng street)
3. Your current clothing includes (multiple choices):

Upper: OVest D0Underwear OShort sleeve T-shirt OLong sleeve T-shirt OPullover OShirt
OSweater OJacket OThick coat OThin coat OCotton clothes ODown jacket
Bottom: OShorts OShort skirt OTrousers OLong skirt OSweat pants OWoolen pant OCotton pant
Footwear: OSandals OShoes OBoots OCotton-padded shoes OPantyhose OAnkle-length socks OSocks Olow-cut
liners socks

Others:
4. Your intensity in outdoor activities is:
(1) Light exercising (Tai Chi, look after children, brisk walking, etc.)
(2) Medium exercising (Jogging, etc.)
(3) Heavy exercising (High-intensity ball games, high-intensity ice sports, square dancing, etc.)
(4) Standing (Chatting, viewing, playing mobile phone, etc.)
(5) sitting (Chatting, playing mobile phone, reading, playing chess, outdoor dining, etc.)
5. Please describe your thermal sensation at present:
0-3 Cold 0-2 Cool 0-1 Slightly cool 00 Neutral 01 Slightly warm 02 Warm 03 Hot
6. Please describe your overall comfort level at present:
0-1 Uncomfortable 00 Neutral 01 Comfortable
7. Please describe your acceptable level for current thermal environment at present:
0-2 Extremely unacceptable 0—1 Unacceptable 01 Acceptable 02 Extremely acceptable
8. What changes do you expect from the following meteorological data at present:
Air temperature: OHigher OUnchanged OLower
Relative humidity: OHigher OUnchanged OLower
Wind speed: OStronger OUnchanged OWeaker
Solar Radiation: OStronger OUnchanged OWeaker

The mean radiant temperature (Tpt) is one of the important factors for the UTCI calculation.
This is defined as the uniform ambient temperature in an imaginary enclosure, where the radiant
heat transfer from the human body to an enclosure surface is equal to the nonuniform temperature
heat transfer to an actual enclosure surface [38]. The calculation of Tyt is performed to the ISO 7726
standard (ISO 1998) and expressed as:

4 1.10x108V,%0 i
Tinet = [(Tg +273) + ED#(Tg ~Ta)| -273, @)

where D is globe diameter (D = 0.15 m in this study) and ¢ is emissivity (¢ = 0.95 for a black globe).
3. Results and Discussion

3.1. Results of the Meteorological Parameter Measurements

Table 3 lists the mean value, maximum value and minimum value of the meteorological parameters
at each measuring point during the measured period. The lowest air temperature is 17.1 °C, the highest
is 39.4 °C and the range is 22.3 °C. The relative humidity fluctuates between 15.5% and 66.6%. The
lowest globe temperature is 19.4 °C, the highest is 50.5 °C and the range is 31.1 °C. The instantaneous
wind speed at 1.5 m varied between 0.00 and 15.01 m/s.
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Table 3. Average/maximum/minimum air temperature, relative humidity, globe temperature and
1.5-m-high wind speed (m/s) during the measurement.

T, O RH(%) Tg(°O) Vai.5m (m/s)

Average 27.3 45.8 28.4 2.48

A Max 35.1 66.6 41.0 15.01
Min 17.1 26.2 194 0.08
Average 31.8 36.9 36.5 1.91

B Max 39.4 61.0 50.5 8.03
Min 18.7 155 253 0.00
Average 29.3 47.5 31.3 1.76

C Max 35.0 66.0 43.8 9.19
Min 23.9 25.5 24.1 0.05
Average 28.9 479 29.7 0.56

D Max 36.0 66.3 43.3 5.96
Min 22.8 27.5 23.5 0.00

The meteorological fluctuations at each point have obvious differences. The minimum air
temperature (17.1 °C) and globe temperature (19.4 °C) occurred at point A, and the highest air
temperature (39.4 °C) and globe temperature (50.5 °C) were measured at point B. The reason was
that point A, with a small SVF value (SVF, = 0.222), was flanked by high-rise commercial buildings
and high-rise office buildings. The street had a high aspect ratio and was shaded for a long time.
Point B (SVFp = 0.402), located in the central square of the commercial district, is an open space with
considerable solar radiation and a fluctuating outdoor environment. The SVF values at point C and
point D are clearly different (SVFc = 0.388 and SVFp = 0.132), but there is less variation in solar
radiation at these points, resulting in relatively less fluctuations in the outdoor environment. Hence,
the trends in air temperature and global temperature are relatively consistent. The average wind speed
at each measurement point was relatively similar, with the average wind speed at point D being the
lowest (0.56 m/s), with the smallest range. It is worth noting that the maximum wind speed at point A
(Vmax = 15.01 m/s) was significantly different from other points. The high ratio of street height to width
allows the formation of canyon wind at point A, and the wind speed increases instantaneously. The
trends in relative humidity at each point are generally consistent. Air temperatures and solar radiation
at point B are higher than at the other three points. The wind speed at point A is more variable than
that at the other three points, and the changes in the meteorological parameters at point C and point D
are relatively limited. The results indicate greater fluctuations in the outdoor environment at point A
and point B with less fluctuations and more consistence at point C and point D.

3.2. Results of Outdoor Thermal Sensation Survey

3.2.1. Basic Data

Amongst the 1013 valid questionnaires, there were 47.98% male respondents and 52.02% female
respondents, providing a balanced proportion of males and females. During the survey period, “Light
exercising” (62.4%) was the primary activity, followed by “Standing” (26.6%). The activity levels are
converted to metabolic rates according to the ASHRAE 55 standard, with a calculated metabolic rate of
1.2 MET for standing and 2 MET for walking (Figure 4). According to the statistics for the clothing
status of the respondents and the clothing insulation value estimation table compiled to the ISO 7730
standard (2005) [39], the average clothing resistance of people in Harbin in summer is 0.41 clo, and the
individual differences in clothing resistance fluctuated between 0.22 and 0.82 clo, with changing trends
in the mean clothing insulation consistent with the mean air temperature (Figure 5). Therefore, gender,
clothing insulation and activity levels in the commercial pedestrian streets have a minor influence on
the subjects’ thermal sensation in summer.
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Figure 5. Variations in clothing insulation and mean air temperature during measurement periods.

3.2.2. Outdoor Thermal Sensation and Thermal Comfort

In terms of the outdoor thermal sensation, the distribution of thermal sensations reported by
respondents at each point is different (Figure 6). Overall, the main thermal sensation recorded in
summer is “Slightly warm” (37.1%), followed by “Warm” (30.4%). In terms of the thermal sensation
vote at each point, five different types of TSV were recorded at A, B and C, ranging from “Slightly
cool (TSV = -1)” to “Hot (TSV = 3)”, while only four were recorded at D, ranging from “Neutral
(TSV = 0)” to “Hot (TSV = 3)”. The TSV at A is evenly distributed between “Neutral (TSV = 0)”,
“Slightly warm (TSV = 1)” and “Warm (TSV = 2)”, with “Slightly warm (TSV = 1)” accounting for
the largest proportion (31.7%). The TSV distribution at B is quite different, with “Warm (TSV = 2)”
accounting for the largest proportion (34.5%). This could be due to the high SVF at point B, with
considerable exposure to direct solar radiation. The most common TSV recorded at points C and D is
“Slightly warm (TSV = 1)”, accounting for 40.5% and 51.7%, respectively. The proportion of “Slightly
cool (TSV = —-1)” and “Hot (TSV = 3)” recorded at points A and B, with more fluctuations in the
thermal environment, are significantly higher than for points C and D, which have less fluctuations in
the thermal environment. This is noticeable at point B with the largest SVE, where “Hot (TSV = 3)”
accounts for nearly 20% of measurements at this point. Although points A and C have the same TSV
range, the distribution of the TSV measurements at these points is quite different, and the trend at
point C is closest to the overall trend. Additionally, it is found that the thermal sensation has a lower
range in an outdoor environment with smaller SVF and less fluctuation, while the TSV range is more
dispersed in an outdoor environment with larger SVF and more fluctuation.
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Figure 6. The percentage of thermal sensation vote (TSV) at each point.

Overall comfort is influenced by many factors, such as the thermal environment, mood and
physiology. Figure 7 shows the percentage of subjects at each point voting for each overall comfort
level. Among the three points A, B and D, “Neutral” is the most frequent choice (52.0%, 42.4% and
55.0%), while “Comfortable” is the most frequent (43.0%) at point C, followed by D (28.7%). On the
whole, “Neutral” (47.3%) is the most common overall comfort vote in summer, and the percentage of
respondents reporting “Uncomfortable” is 22.4%. It is of interest that over 20% report “Uncomfortable”
at point A and point B, while at point C and point D, this drops to 14.8% and 16.3%, respectively. This
suggests that, in severe cold regions in summer, an outdoor environment with more fluctuation is more
likely to cause discomfort.
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Figure 7. The percentage of overall comfort vote (OCV) at each point.

It is seen that there is a strong nonlinear relationship between TSV and OCV. By calculating
the OCV mean value for each TSV interval and regression analysis with TSV (Figure 8), a binomial
Equation (3) can be obtained. Equation (3) shows that the most comfortable outdoor conditions can be
achieved when TSV = —0.2 in severe cold regions in summer.

Y = -0.126X* - 0.054X + 0.551 (R* = 0.976), )
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Figure 8. Correlation between overall comfort vote (OCV) and thermal sensation vote (TSV).
3.2.3. Effects of Meteorological Parameters on Outdoor Thermal Sensation

To understand the effect of meteorological parameters on human thermal sensation in severe cold
regions in summer, this study analyzes the correlation between each meteorological parameter (T,, RH,
Tg and Vi 51) and TSV (Table 4). The results show that all meteorological parameters have a significant
correlation to TSV, with air temperature and globe temperature having a positive correlation to TSV
and relative humidity and wind speed at 1.5 m having a negative correlation. The air temperature has
a slightly greater effect on TSV than globe temperature. This shows that air temperature and solar
radiation are the main factors affecting thermal sensation in this area in summer and wind speed has a
minor effect. However, these conclusions are limited to high-density commercial districts in severe cold
cities and cannot be extended to other urban functional areas. Therefore, more comprehensive surveys
are necessary to explore the effects of various meteorological parameters on the thermal sensation of
residents of severe cold regions.

Table 4. Spearman correlation statistics between thermal sensation vote (TSV) and various
meteorological parameters.

RH (%) T, (°C) Tg(°O Vi5m (m/s)
TSV -0.319 ** 0.577 ** 0.560 ** —0.129 **

** Correlation is significant at the 0.01 level (2-tailed).

For a more accurate analysis of the sensitivity of human thermal sensation to air temperature and
solar radiation, the mean thermal sensation vote value (MTSV) is calculated at every 1 °C interval of
air temperature and globe temperature at each point. This is used for correlation analysis of the air
temperature and globe temperature with the corresponding MTSV (Figure 9).
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Figure 9. Correlation analysis between air temperature and globe temperature and mean thermal
sensation vote value (MTSV).

According to R?, the air temperature and globe temperature in summer are significantly correlated
with the human thermal sensation at each point, and point B has the strongest correlation. The slope
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of the linear regression equation represents the sensitivity of the human thermal sensation to the
meteorological parameters. The order of sensitivity of the air temperature and globe temperature in
summer is C (SVFc = 0.388) > D (SVFp = 0.132) > A (SVF, = 0.222) > B (SVFp = 0.402), indicating that
sensitivity to air temperature and solar radiation is highest at point C, followed by point D. The slope
at point C is 4.93 and 4.75, respectively. This means that, at point C, in order to change human thermal
sensation by one point, the air temperature only needs a change of 4.93 °C or the globe temperature
a change of 4.75 °C. It can be concluded that the sensitivity of residents in severe cold regions to air
temperature and solar radiation in summer is more intense in areas with a stable outdoor environment
but has little relationship to the SVE. Xu et al. also used this method to explore the sensitivity of human
thermal sensation to air temperature and globe temperature in different landscape areas and found
that residents are most sensitive to thermal environment changes in unshaded areas in summer [6] but
only in landscaped regions without the influence of buildings.

3.2.4. Preference Vote of Meteorological Parameters

Human thermal comfort is not solely affected by a single meteorological parameter but by a series
of parameters. Figure 10 shows that subjects’ preferences for various meteorological parameters are
different at each point. The majority of respondents at point B desire lower air temperatures and
reduced solar radiation in summer. This is related to the large SVF value at point B. However, at
point A, this trend is not obvious, since point A is shaded for the greater part of the day, and the
demand for changes of solar radiation is not apparent. It is found that the subjects’ requirements for air
temperature and solar radiation are basically the same at all measurement points, which also explains
why the correlation coefficient between air temperature, globe temperature and TSV is relatively
close, as reported in Section 3.2.3. In terms of the pedestrian wind speed, the demands for wind to
increase at point D are the most obvious, and the higher the air temperature, the higher the desired
wind speed. Since the summer climate conditions are hot, increased wind speed increases the rate
of moisture evaporation from the skin and the rate of convection and heat transfer between the skin
and the surrounding air. In terms of relative humidity, the subjects” demands for humidity at each
point is not clear. It is of interest that more respondents expected the humidity to decrease at point A.
It may be because larger wind speeds accelerate the water vapor exchange between point A and the
surrounding areas, causing local humidification.

3.3. Outdoor Thermal Comfort Index

3.3.1. Correlation Analysis between MTSV and UTCI

The universal thermal climate index (UTCI) has become a common index for the evaluation of
outdoor thermal comfort and is regarded as one of the most comprehensive indices for calculating heat
stress in outdoor spaces [20], but its suitability in Harbin requires further verification. The mean TSV is
calculated for every UTCI degree interval in summer. For example, when exposed to 20 to 21 °C UTCI,
the mean thermal sensation vote of respondents is 0.4, so for 20.5 °C UTCI, the TSV is 0.4 on average.
The correlation analysis of UTCI and MTSV is carried out according to this method (Figure 11), and the
formula obtained from fitting is shown as Equation (4). The slope of the linear equation obtained is
7.381, which means that, as the UTCI changes by 7.381 °C outdoors in a severe cold region in summer,
the residents’ thermal sensation changes by one TSV scale.
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The determination coefficient (R?) represents the accuracy of the UTCI in predicting outdoor
thermal comfort levels in severe cold regions in summer. The higher the R? value, the higher the
prediction accuracy. The results reflect that the determination coefficient (R?) for the regression
equation between UTCI and MTSV is 0.931, with a good degree of fit, which indicates that the UTCI
can accurately evaluate outdoor thermal comfort levels in severe cold regions in summer.

Y = 7.381X + 19.313 (R? = 0.931), (4)

3.3.2. Neutral UTCI and Neutral UTCI Range

Generally, the temperature where people feel neither hot nor cold is defined as the thermoneutral
temperature [40], when MTSV = 0, UTCI is neutral, and the UTCI range of the MTSV (-0.5, 0.5) is
neutral. According to the above regression Equation (4), the neutral UTCI is 19.3 °C, and the neutral
UTCI ranges from 15.6 to 23.0 °C.

The neutral UTCI and neutral UTCI range in Harbin are compared with the values for six other
climatic regions (Table 5). The neutral UTCI in Nagoya is clearly higher than that in other regions,
followed by Guangzhou and Hong Kong. In the cold regions of China, the neutral UTCI and neutral
UTCI range in Xi’an and Tianjin also have clear differences. The neutral UTCI range in Tianjin is
narrower than that in Xi’an. This is probably due to the large variability of the climatic conditions
in Xi’an, causing residents in Xi’an to become more tolerant to the changeable climate conditions.
The neutral UTCI and neutral UTCI ranges in Umed and Harbin, which have the same main climate
type [23], are also significantly different. When considering the significant seasonal differences in
the severe cold regions, it is only the neutral UTCI and the neutral UTCI range in summer that are
compared in each climatic region. Although the neutral UTCI of Nagoya is higher than that in the other
climatic regions in summer, the neutral UTCI range is the lowest, indicating that Nagoya residents
have a better ability to adapt to the warmer environment but with a smaller band of perception of the
neutral UTCI. In comparison with Guangzhou and Hong Kong, Harbin has a larger range of neutral
UTCI in summer, because both Guangzhou and Hong Kong are located in hot summer and warm
winter areas, accompanied by relatively small climatic changes through the year. Therefore, the neutral
UTCI ranges are both narrow. However, the climate fluctuation in Harbin is large throughout the
year. Local residents have been living in these climatic conditions for a long time, and the long-term
thermal experience may change the thermal expectation [41,42]. Therefore, residents in Harbin show
strong adaptability to climate changes. In comparison with Umed, which has the same main climate
type as Harbin, it is found that the mean air temperature in summer in Harbin is higher than that in
Umesg, resulting in a lower neutral UTCI temperature for residents in Umea. The above results confirm
the existence of obvious thermal adaptation phenomena in different climatic regions. The neutral
UTCI and neutral UTCI range in different regions are affected by climatic factors, indicating that it is
necessary to study the subjective perception of the outdoor thermal environment in each climatic zone
and expand the sample size in each city.

Table 5. Neutral UTCI and neutral UTCI range in different climate regions. MTSV: mean thermal
sensation vote.

. R Neutral UTCI Neutral UTCI .
City, Country Climatic Zone c0) Range (°C) Seasons Calculation Methods
Habin, China (this study) Dwa 19.3 15.6-23.0 Summer MTSV and UTCI linear regression
MTSV and UTCI linear regression &

Xi’an China [6] Cwa/BSK 231 18.5-29.6 Summer/Winter . .
Probit regression
Tianjin, China [5] Dwa/BSK 17.5 13.6-21.3 All year MTSV and UTCI linear regression
Guangzhou, China [43] Cfa 26.0 24.0-28.1 Summer MTSV and UTCI linear regression
Hong Kong, China [35] Cwa 27.1 23.3-30.8 Summer MTSV and UTCI linear regression
Nagoya, Japan [44] Cfa 34.0 32.2-35.9 Summer MTSV and UTCI linear regression

Umed, Sweden [45] Dfc 144 11.5-17.2 Summer MTSV and UTCI linear regression




Sustainability 2020, 12, 1876 15 of 19

3.3.3. Thermal Acceptability Range

Based on the method proposed by De Dear and Fountain, this study defines the thermal sensation
beyond the range of (-1,1) on the TSV scale as “predicted unacceptable votes (PUV)”. In the
questionnaire, the thermal unacceptability vote by the respondents is defined as “actual unacceptable
votes (AUV)”. Thermal acceptability range refers to the temperature range that at least 80% of the
subjects find acceptable and, therefore, only 20% of the subjects find unacceptable [46]. In the study, the
thermal unacceptability rate for each degree UTCI interval is calculated, and the correlation between

“actual unacceptable votes (AUV)”, “predicted unacceptable votes (PUV)” and UTCI, respectively, is
performed (Figure 12), with quadratic polynomial fitting Equations (5) and (6) obtained.

Percentage of PUV : Y = 0.00365X> — 0.15968X + 1.90330 (R* = 0.838), ©)

Percentage of AUV : Y = 0.00359X% — 0.16557X + 1.96748 (R2 = 0.894), 6)

OUTCI - AUV
OuUTCI - PUV

1.00+

0807

0.607

0.40

Percentage of Thermal Acceptability

0.20

000

UTCl

v

Figure 12. Correlation between “actual unacceptable votes (AUV)”, “predicted unacceptable votes
(PUV)” and UTCI, respectively.

According to the Equations (5) and (6), it can be concluded that the predicted thermal acceptable
range in summer in severe cold regions is 18.4-25.3 °C, while the actual thermal acceptable range is
16.8-29.3 °C. The actual thermal acceptable range is wider than the predicted thermal acceptable range,
and the predicted thermal acceptable range is fully contained in the actual thermal acceptable range.
Meanwhile, the neutral UTCI range is not fully contained in the actual thermal acceptable range. This
shows that, in summer in the severe cold region, people can accept a hotter outdoor environment, and
the residents’ acceptance of the outdoor thermal environment in summer is not only dependent on the
perception of the outdoor thermal environment but is also affected by other factors. Xu et al. suggest
that these might be psychological factors [20], so a specific investigation is conducted in Section 3.3.4.
According to Section 3.2.2 and when TSV = —0.2, the UTCI is 17.8, and the most comfortable outdoor
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environment can be achieved. The UTCI value corresponding to this condition is in the actual thermal
acceptable range. In conclusion, the actual thermal acceptable range has a higher reference value when
designing commercial pedestrian streets in severe cold regions.

3.3.4. Psychological Adaptation

The perception of outdoor thermal environments is affected by thermal adaptation, which can
be divided into three categories: physiological adaptation, psychological adaptation and behavioral
adaptation [40]. This section explores the influence of psychological factors on outdoor thermal
sensation based on Section 3.3.3. To quantify the influence of the psychological adaptation on the
outdoor thermal sensation of residents of severe cold regions in summer, the regression models for UTCI
and MTSV in early summer (the first month of the summer) and late summer (the last month of the
summer) (Figure 13) are compared, and the regression Equations (7) and (8) are obtained, respectively.

Early summer: Y = 0.133X — 2.368 (R2 = 0.870), ?)
Last summer : Y = 0.122X — 2.639 (R = 0.808), ®)
O Early summer

O Late summer

MTSV
n

0

UTClI

Figure 13. Regression equations between UTCI and MTSV for early and late summer.

According to the regression Equations (7) and (8), in early summer, the MTSV value is slightly
higher than the MTSV value in late summer, with a difference of about 0.5 on the TSV scale. This means
that, at the same UTCI condition, residents in the severe cold regions feel warmer in early summer.
This suggests that residents in severe cold regions experience psychological adaptations to hot weather
when facing similar warm climate conditions for a long time. The results demonstrate the influence of
the psychological factors mentioned in Section 3.3.3 on outdoor thermal environment perceptions.

4. Conclusions

This study investigates outdoor thermal comfort in urban commercial pedestrian streets in Harbin.
Through the measurement of meteorological parameters and a questionnaire survey of residents’
outdoor thermal comfort in summer, subjective and objective data for the outdoor thermal environment
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in commercial pedestrian streets of different spatial scales are obtained. The data analysis provides the
following conclusions:

1.  In summer, “Slightly warm” (TSV = 1) is the most common thermal sensation reported by
residents in severe cold regions, and the outdoor thermal sensation is related to the different
spatial scales. According to this study, the distribution of thermal sensation in severe cold regions
in summer is tighter in areas of the outdoor environment with smaller SVF and less fluctuation,
while the distribution is more dispersed in areas with larger SVF and greater fluctuation.

2. This study shows that the effects of air temperature and solar radiation on outdoor thermal
sensation is greater than that of wind speed in urban high-density commercial districts in severe
cold regions in summer. Residents of severe cold regions are more sensitive to changes in air
temperature and solar radiation in areas with a stable outdoor environment.

3. Itis confirmed that the UTCI can accurately evaluate outdoor thermal comfort levels in severe
cold regions in summer. In comparison with Guangzhou, Hong Kong and Nagoya, the neutral
UTCI in Harbin is lower and the range of neutral UTCI is wider, because residents in Harbin are
more able to adapt to larger fluctuations in the outdoor environment.

4. Residents of severe cold regions show psychological adaptations to the outdoor thermal
environment in summer. The MTSV value in early summer is slightly higher by about 0.5
on the TSV scale to that in late summer.

5. This work shows that the actual thermal acceptable range in summer in severe cold regions
is 16.8-29.3 °C, which is wider than the predicted thermal acceptable range. In addition, in
comparison with the neutral UTCI range, the actual thermal acceptable range takes into account
the psychological adaptation of residents of severe cold regions to the outdoor environment,
which is therefore of more practical reference value.
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