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Abstract: Moving to Industry 4.0 involves the collection of massive amounts of data and the
development of big data applications that can ensure a quick data flow between different systems,
including massive amounts of data and information collection from smart sensors, and sending them
to cloud applications that allow real-time data monitoring and processing. Securing and protecting
the transmitted data represents a big issue to be discussed and resolved. In the paper, we propose
a new method of data encoding and encryption for cloud applications using PNG format images.
The proposed method is described in comparison with one of the classical methods of data encoding
and transmission used currently. The paper includes a case study in which the proposed method
was used to collect and transmit data from an automated waste collection system. The results show
that the proposed method represents a secure, fast and efficient way to send and store the data in the
cloud compared to the methods currently used. The proposed method is not limited to being used
only in waste management but can be used successfully for any type of manufacturing system from
smart factories.

Keywords: Industry 4.0; database; waste management; cloud; smart sensors; Industrial Internet
of Things

1. Introduction

The Industry 4.0 paradigm is based on sensors, machines, workpieces and IT systems being
connected along the value chain. These connected cyberphysical systems can interact with one other
using Internet-based protocols and analyze data to configure themselves and adapt to changes [1]. In
the Industry 4.0-oriented approach, simulations are used extensively in specific plant operations. The
digital twin of the manufacturing or processing architecture will become a part of the manufacturing
plant design [2]. This digital twining will provide a diagnosis of the system performances in different
manufacturing scenarios based on simulations including machines, products, and humans [3]. In this
paradigm, operators test and optimize the machine settings during the manufacturing process in the
virtual world, thereby driving down machine setup times. Manufacturer’s sensors and machines are
networked and make use of embedded computing using digital twining in order to introduce changes
in the manufacturing scenarios [4]. All structural elements of the manufacturing architectures are
enriched with embedded computing and connected to communicate and interact both with one another
and with centralized controllers as necessary [5]. Products are identified by radio frequency codes, and
workstations are informed about the manufacturing steps that must be performed for each product
to perform the specific operation. Transforming manufacturing devices in smart products requires a
rethinking of design. As intelligent, connected devices, which are increasingly embedded in broader
systems, manufacturing devices radically reshape industrial engineering. Manufacturing goes beyond
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the production of the physical object, because operating a smart, connected manufacturing device
requires a supporting cloud-based system [6]. The digital twin of the manufacturing architecture is
related with all the above-mentioned technologies used in this paradigm.

Big data is one of the nine pillars involved in achieving Industry 4.0. A huge amount of data are
available in manufacturing systems, waste management systems, etc., but the data and information
should be properly collected, encoded and transmitted to the cloud application in order to be processed
and to allow a real-time monitoring of equipment and systems. The major challenges are represented
by: data acquisition from smart sensors, actuators and PLCs; data conversion; data security and
privacy; data encoding, encryption and decryption [7–10].

Software architectures of the big data processing platforms are analyzed in the literature,
including solutions for job scheduling for big data applications [11], solutions which offer a flexible
co-programming architecture able to support the life cycle of time-critical cloud native applications [12],
mobility-driven cloud-fog-edge collaborative real-time framework solution, which has IoT, Edge, Fog
and Cloud layers and which exploits the mobility dynamics of the moving agent [13].

Several data encoding and encryption solutions for cloud applications are presented in the
literature [14–22], but without including detailed case studies to present identified problems, propose
solutions, and implement results.

The main problem is the identification of the right solution that will ensure the data transmission
and processing in a secure way, quickly, efficiently and with low costs. The proposed solution presented
in Chapter 2 can be used both in smart factories and for smart city applications including automated
waste collection systems.

Waste management comprises prevention, collection (metal, paper, cardboard, aluminum cans
plastic), removal, recycling, reuse, and safe disposal of toxic and dangerous waste. In order to perform
these activities at all levels of households, institutions, community and industrial entities, a complex
monitoring system is needed.

Anagnostopoulos et al. [23] suggest the use of various devices like RFIDs, sensors, and actuators to
transform different objects into “smart things”. The role of smart things embedded in the environment
is to monitor and collect ambient information. Embedding “smart things” in the city environment may
lead to “smart cities” [23]. The promise of smart cities is great because intelligent services could be
offered on top of such information related to any aspect of humans’ activities. Perera et al. [24] pointed
to the need for a service model for smart cities supported by the Internet of Things (IoT).

IoT network is a decentralized network in which mobile devices communicate with gateways
and they pass the information to the applications. In order to secure the communication channel,
security access protocols such as Diffie–Hellman algorithm are implemented, based on symmetric
encryption keys and RSA Rivest–Shamir–Adleman (RSA) and based on a public encryption key and
a private decryption key. These encryption algorithms are relatively slow. The changing of keys
also requires a time synchronization between all network devices, for which the following are used:
network time protocol (NTP), based on GPS time synchronization, precision time protocol (PTP), based
on time server, and time lay technique (in this technique, an average time of all nodes is computed
and used as a reference). All this leads to the increased complexity of the system and supplemental
power consumption.

To highlight the efficiency of the proposed solution for data encoding and encryption for cloud
applications, we conducted a case study on an automated waste collection systems developed in a
previous research project.

The automated waste collection system concept developed in a previous research project consists
in different modules based on the waste type:

• Plastic recipients and glass bottles and aluminum cans module;
• Small waste electrical and electronic equipment module;
• Large waste electrical and electronic equipment module;
• Cardboard and paper module;



Sustainability 2020, 12, 1839 3 of 15

• Batteries module.

Thanks to modularity, different configurations of the system can be obtained based on location
requirements. Currently, only the plastic recipients and glass bottles and aluminum cans module has
been developed and is already operating on the market, but in the near future other modules will be
developed and added to the existing module.

The plastic recipients and glass bottles and aluminum cans module consists of:

• Reverse vending machine (RVM);
• Conveyor system;
• Smart bins (containers).

The RVM equipment identifies and sorts the waste. The conveyor transports the waste to the
dedicated container (cans, plastic, glass). The conveyer contains deviation units to sort the waste to
the dedicated container. The ultrasonic sensors notices when a container is full and the conveyer will
transport the waste to the next available container. At the end, the client receives the voucher [25].

The paper is organized as follows: In Section 2, details about the new method of data encoding
and encryption for cloud applications using PNG format images are presented. In Section 3, the case
study results are presented, while Section 4 discusses the conclusion of the research.

2. Materials and Methods

To send all the data from smart sensors, actuators, PLCs, etc., into the cloud, a new method of
data encoding and encryption using images in PNG format is presented. In the proposed method,
pixels are generated according to data values and type, and afterwards they are encrypted using a
symmetric key (RGB pixel values from a different image).

The color of each pixel may be defined by three component values, R, G and B, ranging between 0
and 255, or 0 and FF in hexadecimal [26].

Depending on the type of values to be stored, several encoding methods for generating the pixel
colors are used:

a. In the case of positive integers between 0 and 16,777,215, the encoding can be done directly by
converting the decimal number to hexadecimal (ex. 16,777,215 becomes FFFFFF), the six-digit
hexadecimal string explodes into three groups of two digits and each of this group is (R = 255,
G = 255 and B = 255, in this case, a white pixel corresponding to the maximum value that can
be stored);

b. In the case of float numbers, the conversion is done to 16-digit hexadecimal values:
00.00.00.00.00.00.00.00, requiring three pixels for storage (R1G1B1, R2G2B2, and R3G3, the
last component, B3, is not used). Thus, any float value with any number of decimals, positive or
negative, (in IEEE 754 double-precision standard, the full range of numbers is −9.999999 × 1096
through 9.999999 × 1096) can be archived using a group of three consecutive pixels. The image
will have the number of pixels equals three times the number of archived float values;

c. For String, alphanumeric values (UTF8), the conversion of each alphanumeric character into
hexadecimal is made according to the UTF8 encoding table or a custom-defined table (for
example, A becomes hex: 41, z becomes hex: 7a), so each pixel can store a hexadecimal to a
decimal number of three alphanumeric characters, one for each component—R, G, and B. The
image will have a number of pixels equal to one third of the total number of characters.

d. Booleans values can be stored as alphanumeric values 0 and 1.

For encrypting data of any kind, corresponding to the above-mentioned encoding methods, an
encryption image with the number of pixels equal to the number of stored variables is used.

The automated generation of the image key is based on image size and uses random values for Rk,
Gk, Bk. When variables (properties values) are encoded, for each variable converted in hexadecimal,
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the hexadecimal value returned from the correspondent pixel in the image key will be added (for the
first variable will be used the first pixel, for the second variable the second pixel, and so on, or we can
scramble the pixel order based on an established rule). The hex sum or RGB values or only one hex
value can be used (from R, G, or B, based on a variable ID established rule). If the resulting value of R,
G or B is greater than 255, (FF in hex), the result will be decreased by 255 (FF in hex).

The decryption and decoding process is analogous but in reverse. In other words, from the
hexadecimal value returned by decoding the RGB values of each group of pixels (based on variable
type and encoding method) the hexadecimal value returned by RGB of the correspondent pixel in the
Image Key will be subtracted based on the established rule, and then, based on the encoding method,
the variable value will be decoded. If the value obtained by subtraction is negative, then this value will
be increased with 255 (FF in hex) before decoding the variable value. (Figure 1).
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Some descriptive information may also be entered in the first pixels of the storage image, such as:
time stamp, location ID, the number of variables of each type, the size of varchar variables (number
of characters), like a dictionary. In this way, a more flexible solution can implemented. For example,
the first three pixels will store the timestamp (as a float), the fourth pixel will store the location ID (as
integer), pixels 5, 6, 7, 8 will store data types, the number of variables of each data type and the order
of placement in the image, and pixel 9 will store the number of characters of the varchar variable. For
the type of variable, the values are: 1 for Boolean, 2 for integer, 3 for float, 4 for varchar. Regarding the
order of placement, the data will be sorted by variable type before encoding, the number of variables
of each type will be counted, and then an order of encoding for each type of variables will be selected.

For descriptive information, nine pixels will be used:
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• 4 × Booleans, order 1 (using four pixels, from 10 to 13);
• 6 × integers, order 2 (using sox pixels, from 14 to 19);
• 12 × float, order 3 (using 36 pixels, from 20 to 55);
• 1 × varchar order 4, size 8 (characters) (using three pixels, from 56 to 58).

In this case, the pixels 5, 6, 7, 8, 9 with: [R: 1, G: 4, B: 1], [R: 2, G: 7, B: 2], [R: 3, G: 12, B: 3], [R: 4, G:
1, B: 4], [R: 0, G: 0, B: 8] will be generated.

The generated image will have: 4 pixels (for timestamp) + 5 pixels (for variable dictionary) + 4
pixels for Booleans + 6 pixels for integers + 36 pixels for float + 3 pixels for varchar, in total 58 pixels
for data storage. If one wants to use an image with 1:1 aspect ratio, the number of pixels for width and
height can be computed using this formula:

w = h = FLOOR (SQRT (n)), (1)

where w: image width (in pixels), h: image height (pixels), n: number of pixels needed for storage
In the above example, a minimum of 58 pixels is needed, so the image will have

w = h = FLOOR (SQRT (58)) = 8 (2)

The generated image will have 64 pixels (8 × 8), with the first 58 pixels containing our data and
the other six unused pixels.

Using this approach, it will be much easier to read any kind of generated images by reading the
content of the first nine pixels, which describe the structure and content of the image.

The central cloud application receives data from multiple distributed systems and stores this
telemetry data in an image-based database. The web interface allows the live monitoring of image
feeds from cameras, loading weights and filling level data and condition monitoring information, and
is able to generate multiple reports for each equipment or module. Alarms can also be sent in case of
malfunction or when the waste must be collected. Using a graphical map, the application suggests the
most economical route for discharging the waste for each city.

The interface views of the application are the following:
a. Dashboard view
The dashboard shows some reports and live information:

• Number of collection centers;
• Number of collecting modules;
• Daily quantity of waste collected for each type of waste (plastic recipients, glass bottles,

aluminum cans);
• Errors reported by the condition monitoring with links to a detailed view of the corresponding

collecting modules;
• Filling rate statistics with links to a corresponding collecting module, with a filling rate greater

than 80 %.

b. Collection system view
This view shows the specific information regarding each collection system:

• Center location (longitude and latitude, street address and map view);
• Number and types of collecting modules;
• Historian telemetry reading for all modules;
• Errors reported by the condition monitoring.

c. Live video feeds view from each collecting module
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This view automatically shows camera flows from active collection modules and also allows the
manual selection of all installed video cameras from collecting modules.

d. Discharging map view (at city level)
The implementation of the map (Figure 2) was made using GO.js (https://gojs.net), by

superimposing the path layer above a leaflet mapping library (https://leafletjs.com/) and the routing
was done using leaflet routing machine library (https://www.liedman.net/leaflet-routing-machine/).
The application reads all the locations of modules in the city with a filling rate of more than 80%,
reads their geographical coordinates, places them on the city map and draws the most economical
discharging route using several points.
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For the case study, a plastic recipients and glass bottles and aluminum cans module composed of
RVM, conveyor, three sorting systems and six smart bins is presented (Figure 3).
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Figure 3 shows the diagram for the location of the sensors for each component, in order to collect
the data as well as the controllers of the in-line motors.

Several pieces of equipment have been used:

• 8 × ESP 32 microcontroller (development boards with ESP-WROOM-32, wireless and Bluetooth);
• 6 × Time of flight sensors (VL53L1X ToF Distance Ranging Sensor 4m);
• 6 × Button load cells 1000 kg;
• 5 × Raspberry PI (Raspberry Pi 4 Model B/1GB), one for the edge server and four as

motor controllers;
• 3 × L298N DC Motor Drive Controller Board Module;
• 1 × DHT22 humidity and temperature sensor of −40 to 80 ◦C (accuracy ±0.5 ◦C) and humidity

from 0% to 100% (accuracy ±2%);
• 1 ×Wireless router (Netgear Nighthawk AC1900).

From the plastic recipients and glass bottles and aluminum cans module, different data from
sensors, RVM and motor controllers are collected. The data from RVM (number of collected items:
plastic recipients, glass bottles and aluminum cans) are collected with an ESP 32 microcontroller; the
weight and level of filling on each container are collected with six container filling detectors and the
status of conveyor and sorting systems is determined using the motor controllers. A hygrometer
connected to an ESP32 captures temperature and humidity. All these microcontrollers are connected to
a local wireless network. On the same network, there is a raspberry PI as a central edge server, that
reads the data from each microcontroller using the local wireless network and exports the data to the
central server.

Each second the following data are collected:

• Timestamp: float;
• RVM status: BOOLEAN (1: OK, 0: STUCK);
• CONVEYOR STATUS: integer (1: RUNNING, 2: PAUSE, 3:STUCK);
• Separator 1: BOOLEAN (1: OK, 0: STUCK);
• Separator 2: BOOLEAN (1: OK, 0: STUCK);
• Separator 3: BOOLEAN (1: OK, 0: STUCK);
• Collected PET: float;
• Collected GLASS: float;
• Collected ALUMINIUM: float;
• Container1 filling rate: integer (form 0 to 100);
• Container1 weight: float;
• Container2 filling rate: integer (form 0 to 100);
• Container2 weight: float;
• Container3 filling rate: integer (form 0 to 100);
• Container3 weight: float;
• Container4 filling rate: integer (form 0 to 100);
• Container4 weight: float;
• Container5 filling rate: integer (form 0 to 100);
• Container5 weight: float;
• Container6 filling rate: integer (form 0 to 100);
• Container6 weight: float;
• Hygrometer sensor Si7021 temperature: float;
• Hygrometer sensor Si7021 Humidity: float.

Data type:
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• Boolean: 4;
• Integer: 7;
• Float: 12.

In the case study, two methods for data transmission and database storage were used, one using
the proposed PNG image database and a classical method using JSON files and a Cassandra database.

In the classical method, the data are sent from the edge server in JSON format over the internet
and stored in a Cassandra database.

JSON stands for JavaScript Object Notation, and is a concise hierarchical data serialization syntax
that is supported by all modern browsers. This format makes it a lightweight way of representing
objects, while remaining human-readable [27]. For this reason, it has replaced XML notation on
many platforms.

JSON values can be any one of the following:

• String (contained with quotes);
• Number (integers and decimals);
• Boolean (written as true or false, without quotes);
• Object (wrapped in curly braces, thus creating a hierarchy);
• Array (wrapped in square brackets and can contain lists of any type, including mixed types);
• Null (written exactly as null to denote a non-value).

The Apache Cassandra database is a modern solution for data storage with linear scalability, fault
tolerance and support in replicating across multiple datacenters, being one of the favorite solutions for
IoT. Cassandra was designed as decentralized to handle big data workloads across multiple nodes
without any single point of failure [28,29]. Cassandra has a peer-to-peer distributed system across its
nodes, and data are distributed among all the nodes in a cluster. All the nodes in a cluster play the
same role. Each node is independent and, at the same time, interconnected to other nodes [30].

Each node in a cluster can accept read and write requests, regardless of where the data are actually
located in the cluster. When a node goes down, read/write requests can be served from other nodes in
the network.

By using the PNG Image database (Method 1), the following values have been obtained:

• 4 × Boolean: needs one pixel (RGB) + R (from a second pixel);
• 7 × Integer: needs two pixels (RGB) + G (from a second pixel);
• 12 × Float: needs 36 pixels;
• Total: 40 pixels;
• Image 8 × 5 pixels (Figure 4);
• Image size average: 205 bytes (0.2 kB);
• Image size on disk 1KB.

During the test, data were sent with a frequency of one data snapshot/second.
For one day operation of the module: data sent (at 1 s snapshot): 86400 × 0.2 kB = 17.280 MB.

Using a 3G internet connection with 10 Mb/s upload bandwidth, the average data sending time for
each snapshot was 1.953 milliseconds.

Data storage on disk for one day operation of the module: 86.4 MB.
After all the snapshots were uploaded to the central server, the historian data reading speed

average was: 0.002833 sec/SELECT WHERE clause.
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Figure 4. Example of PNG image generated each second (zoom ×10).

In Figure 4, one can see in the lower right corner the real size of the PNG image generated
based on the transmitted values (8 × 5 pixels). In the center, the same image, magnified 10 times, is
represented. Each pixel from top left to bottom right was generated based on R, G, B components
and the values of these components were calculated based on the encoding method of each data type
using a symmetric image key with the same size (8 × 5 pixels). The snapshot image is very small and
the LZW nondestructive compression of PNG image format compresses it even more [31]. The main
advantage of this format for data transmission is that the values are obfuscated and encrypted, so
without the proper algorithm and the right image key, it is impossible to read the values.

For testing purposes, in order to be able to perform the experiment in a short period of time, but
with a relatively large volume of data, in order to be conclusive, the data were sent with a frequency of
one snapshot/second.

By using JSON files (Method 2), the following values have been obtained:

• Average JSON file size: 568 B;
• Size on disk 1 kB;
• One day operation data sent (at 1 s snapshot): 86400 × 0.55 kB = 47.520 MB;
• Cassandra database size for one day: 100 MB.

Using the same 3G internet connection with 10 Mb/s upload bandwidth, the average data sending
time for each snapshot was 5.42 milliseconds.

By using this method, the values from sensors were sent using JSON format, which is
human-readable and is uncompressed, so the JSON file size is slightly bigger.

Compared to the image generated by the image data method, an example of a JSON file looks
like this:

{
"timestamp": 1572964433478,
"cell-ID": "0012",
"temperature": 21,
"humidity": 20,
"filling": {

"plastic1": 85,
"plastic 2": 0,
"plastic 3": 0,
"glass1": 65,
"glass2": 0,
"aluminum": 12

},
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"weights": {
"plastic 1": 350,
"plastic 2": 0,
"plastic 3": 0,
"glass1": 265,
"glass2": 0,
"aluminum": 25

},
"collected": {

"plastic": 860,
"glass": 1230,
"aluminum": 425

},
"rv-status": 1,
"conveyor-status": 1,
"separator1-status": 1,
"separator2-status": 1,
"separator3-status": 1

}

By implementing this method of encrypted PNG images, a secure and simple solution for IoT
data exchange was tested. This method solves some of the existing problems, providing security
without the implementation of secure access protocols such as Diffie–Hellman or RSA and without
the need for time synchronization. The method also ensures data compression, allowing for shorter
transmission times, and it can be used as an alternative method of historical data storage, replacing the
classic databases.

3. Results and Discussion

In a real life scenario, a frequency of one data snapshot/minute will be enough, so our database
will be smaller, compared with the database with one data snapshot/second.

In this scenario, by using the PNG Image database (Method 1), during an entire day 1440 images
will be sent, of 0.2 kB each, resulting in 288 kB to be sent to the cloud application, and the allocation
size on disk will be 1.44 MB for each module.

By using JSON files (Method 2), during an entire day 1440 JSON files will be sent, of 0.55 kB each,
resulting in 792 kB to be sent to the cloud application, and the Cassandra database will increase by
about 2 MB/day.

The telemetry data sent to the central application can be viewed in real time for each module in
the historian reading interface (Figure 5). In this view, all the current live values are shown (equipment
status, module status, filling rate, weights, temperature, humidity, total waste collected: number of
plastic recipients, number of glass bottles, number of aluminum cans ) and also any past date/time,
to show how a status from that moment can be selected. In this view the RVM, the conveyor, the
three sorting mechanisms and the six smart bins are represented. The status of each component is
color-coded (green, ok; red, failure). For containers, depending on their filling rate, the following
colors are represented: green from 0% to 40%, orange from 40% to 80%, and red over 80%.
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Next the data encoding, encryption and transmission from an automated waste collection system
with 10 modules was simulated.

Method 1—Using the PNG Image database: In this case, the image data method performs even
better, because a bigger number of pixels will result and the LZW compression will be much stronger.
To send the data from 10 modules, an image of 400 pixels (20 × 20 pixels) will be generated (Figure 5).

The average size of PNG file for 10 modules is 783 bytes and needs 4kB to be stored.
The average upload time for a data snapshot of 10 collecting cells using a 10 Mb/s upload

connection was 5.3 milliseconds.
The storage space on disk for one day will be around 5.76 MB, and for one year of operation it

will be around 2.1 GB of storage.
Method 2—using JSON files and Cassandra database: The JSON file has an average size of 5.57

kb and needs 8 kb to be stored on the disk.
The average upload time for a data snapshot of 10 collecting cells using a 10 Mb/s upload

connection was 37.7 milliseconds.
Using the Cassandra database, the storage needed for an automated waste collection system with

10 modules will be about 11.5 MB/day of operation.
For an entire year of operation, the database for an automated waste collection system with 10

modules will rise to 5 GB.
Finally, the data encoding, encryption and transmission (Method 1) for a central application

was simulated, an application that will collect data from 100 automated waste collection systems,
from different locations, and the results showed that the data will not exceed 210 GB/year at a 1 min
data snap.

The PNG files can be named using this model:
deviceUniqueID_timestampInMiliseconds.png
example: k137_1494270124240.png
The folder structure can be generated based on timestamp by exploding the first seven characters

and storing the images inside the last subfolder (t7).



Sustainability 2020, 12, 1839 12 of 15

/deviceUniqueID/t1/t2/t3/t4/t5/t6/t7/deviceUniqueID_timestampInMiliseconds.png
example:
/k137/1/4/9/4/2/7/0/k137_1494270124240.png
The reading speed of data for the historian application is not dependent on the volume of stored

data. Each time a timestamp snapshot is called, the application will read the correspondent PNG
image, based on timestamp value (Figure 6).
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All the data can be hosted on a small server instance, with a 4TB SSD drive, with the operation
cost being around 1.200 USD/year.

It is easy to do the backup and data replication by copying the folder structure with the PNG files.
Historian data reading speed average: 0.002833 sec/SELECT WHERE clause.
By using JSON files and Cassandra database (Method 2), for a central application that will collect

data from 100 different automated waste collection systems, the database size will be about 500 GB,
which means about three Cassandra nodes with an operation cost of about 3100 USD/month, 37,200
USD/year for a 1 min data snap.

A price estimator could be shown on: https://www.instaclustr.com/solutions/managed-apache-
cassandra/ by selecting a production environment with three nodes and a storage of 1600 GB.

The average speed of using CQL in Cassandra for a historian is about 2 s/SELECT WHERE clause.
In case of internet connection loss in one automated waste collection system, the data will not be

sent to the central application and an alarm will be triggered to mention the telemetry data interruption.
In order to prevent data loss, a small local storage could be used on the edge of Raspberry PI servers to
store the data in case of connection interruption. All missed data will be sent to the central application
when the internet connection will be restored.

To store data for a long period of time, a different SSD drive could be used to store database for
each year in case of the data image method. The cost of a 4 TB drive is quite small, about 500 USD.

4. Conclusions

It is known that JSON files could cause a potential security breach, and in order to prevent this, a
lot of verifications are needed, such as: adequate authentication, session management, input validation
of all parameters, effective security controls for all API types, including cloud and serverless API,
parsing validation, validation of JSON object values and formal JSON schema validation. (OWASP
Application Security Verification Standard 4.0 https://owasp.org).

https://www.instaclustr.com/solutions/managed-apache-cassandra/
https://www.instaclustr.com/solutions/managed-apache-cassandra/
https://owasp.org
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Using the proposed method of Image database, a secure, fast and efficient way to send and store
the data in the cloud can be achieved. The data, in the case of the proposed method, are encrypted
using symmetric encryption, each value being differently encrypted based on the correspondent pixel
color on the image key, compared with plain text JSON files.

Because of the LZW compression, the PNG is much smaller than JSON files and requires three
times less bandwidth for sending the same amount of data, or, in the case of the same connection
bandwidth, the data sending is about three times faster.

In our example, the number of properties is quite small (23 properties) and the number of pixels is
also small; therefore, for 10 collecting modules, the generated image is 20 × 20 pixels. For large number
of properties, the LZW nondestructive compression of PNG can perform better.

We can conclude that the proposed Image database method is better than the classical
JSON/Cassandra method, with the amount of data sent to the central server (or cloud), the storage
space needed, and the operation costs being smaller (Table 1).

Table 1. Results comparison for the two methods used in the case study.

Characteristics PNG Image Database JSON/Cassandra

Data sent/day for one module 288 kB 792 kB

Storage/day for one module 1.44 MB 11.5 MB

Storage for 1 year for one automated waste
collection system with 10 modules 2.1 GB 5 GB

Storage for 1 year for 100 automated waste
collection systems 210 GB 500 GB

Yearly operation cost 1200 USD 37,200 USD

Average reading time of historian data 0.002833 s 2 s

The advantage of the proposed method relies on the fact that PNG is stored in a time-based folder
architecture and the speed of retrieval of the information based on a timestamp doesn’t depend on the
size of the database, because there is no need to load the entire database in memory to execute the
selection query (Table 2).

Table 2. Speed comparison for the two methods used in the case study.

Characteristics PNG Image Database JSON/Cassandra

Upload time for a data snapshot of a single
collecting cell using 10 Mb/s upload connection 1.953 milliseconds 5.42 milliseconds

Upload time for a data snapshot of 10 collecting
cells using 10 Mb/s upload connection 5.3 milliseconds 37.7 milliseconds

SELECT WHERE clause 2.833 milliseconds 2 s

The replication of the database is also much simpler in the proposed method and consists of
simply copying the folder structure with its content to a new machine. It is also possible to select only
a needed period for data, by copying only the specific folders.

The data retrieval mechanism in the proposed method needs significantly smaller hardware
resources, compared to other databases like Cassandra that need to load the data in memory to do
the queries.

The operation cost is about 30 times smaller in the case of proposed method, compared to classical
NOSQL databases like Cassandra.

Even if the speed of reading historian data is significantly higher in the case of image data
compared to the classical databases, in the case of complex reports, which include thousands of
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records for long periods of time, due to the large number of PNG files to be read, the speed may
decrease dramatically. As a future research study we aim to solve this limitation by implementing
new scripts able to run periodically based on the data accumulated during a day and able to generate
unique images for each property, thus reducing the number of images in the case studied from 86,400
images/day of operation at 22 (number of properties, excepting time stamp). Since these images will
contain a larger number of pixels, the non-destructive compression LZW of the PNG format will have
a much better compression rate, the space needed for storage being smaller. Also, images containing
precalculated statistical data could be generated, such as averages, maximum and minimum values for
that time period.

In the future, after the waste electrical and electronic equipment module will be developed, the
propose method of data encoding and encryption will be tested using the new configuration of the
automated waste collection system.
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