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Abstract: Mine water that inrushes from coal-roof strata has always posed a substantial threat to
mining activities every year. Therefore, an accurate prediction of the water-conducting fracture
zone (WCFZ) height in the mining overburden strata is of great significance for the prevention and
control of mine water accidents. The support vector regression (SVR) is proposed to predict the
height of the WCFZ based on the mining depth, hard rock proportional coefficient, mining thickness
and length of the working face. Simultaneously, the multi-population genetic algorithm (MPGA) is
employed to search for the optimal SVR parameters. The MPGA-SVR model is trained and tested
with a total of 69 collected data samples, and it is also applied to a field test. The accuracy and stability
of the model were measured by the mean squared error and correlation coefficients. The obtained
results show that the MPGA-SVR model achieves a higher accuracy and stability than the traditional
empirical formula and genetic algorithm (GA)-SVR model. In terms of the process for optimizing
the SVR parameters, the MPGA can find the optimal parameters more quickly and accurately, and it
can effectively overcome the problem of premature and slow convergence of the genetic algorithm
(GA). The proposed model improves the prediction accuracy and stability, which will help to avoid
accidents caused by the inrush of water inrush in mining overburden strata and protect the ecological
environment of the mining area.

Keywords: ecological environment; mine water inrush; water-conducting fracture zone; support
vector regression; multi-population genetic algorithm; fractured rocks

1. Introduction

As an important fossil energy source, coal has always played a dominant role in China’s primary
energy consumption structure [1,2]. Although the safety situation of coal mines has been improved in
recent years, mine water has always been a substantial threat to mining safety [3]. In the process of
mining activities, the equilibrium state of the original rock stress in the overburden strata is destroyed,
which leads to collapse, fracture and bending in the mining overburden strata. Once these fractures are
interconnected with a water-bearing body (surface water, goaf water or aquifer water) in the mining
overburden strata, the mine water will flow into the working face and bring huge economic losses
and casualties, as illustrated in Figure 1 [4]. With the increase of mining depths, mining intensity
and mining speed, the problem of mine water is becoming more prominent [5]. Therefore, accurately
predicting the height of the water-conducting fracture zone (WCFZ) in the mining overburden strata is
of great significance for the safe production of coal mining [6–8].
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Figure 1. The development of a water-conducting fracture zone (WCFZ) in mining overburden strata 
after mining. 

In the process of coal mining, the development of a WCFZ in mining overburden strata is an 
extremely complicated mechanical problem, which is characterized by the fuzzy randomness of the 
rock stratum structure, the complexity of the mining influence stress change and the nonlinear 
deformation and failure of the mining overburden. To predict the height of the WCFZ, scholars have 
proposed many methods, such as the field measurement method [9,10], theoretical calculations, 
numerical simulations [11–13], empirical formulas [14] and intelligence algorithms [15]. Among 
them, the field measurement method has the highest accuracy, but it is time consuming, laborious 
and costly [16]. The theoretical calculation method is too idealistic and has a large deviation from the 
actual complex geological conditions. The accuracy of the numerical simulation method is closely 
related to the geological condition parameters of the model, and the accurate acquisition of these 
parameters is difficult. The empirical formula considers a single influencing factor that is insufficient 
to reflect the combined effects of multiple influencing factors [3,17]. Increasingly more methods have 
been proposed with the deepening of research, and the prediction results of each method often have 
large differences since each method has a different level of adaptability and constraints. 

In recent years, with the development and promotion of artificial intelligence technology, some 
machine learning methods, such as artificial neural networks (ANNs), decision trees (DTs) and 
support vector regression (SVR), have been developed. These methods have the advantages of 
comprehensive consideration, simple operation, low cost and good prediction results, therefore they 
are introduced to predict the height of the WCFZ. Ma et al. (2008) [18] established a three-layer Back 
Propagation (BP) neural network for predicting the height of the water-conducting fracture zone, and 
the prediction results are more reasonable and accurate than those of the empirical formula. Q. Wu 
et al. (2017) [19] presented a radial basis function neural network (RBFNN) model to predict the 
height of the WCFZ in a fully mechanized longwall mining operation with sublevel caving. However, 
the ANN is not stable enough to make a prediction with a small data sample, and the final prediction 
result easily falls into a local optimal solution since the parameters are often solved by a gradient 
technique. Zhang et al. (2017) [10] proposed a random forest regression model that is applied to the 
Hongliu Coal Mine in Northwest China with a high prediction accuracy. However, this model takes 
much time and has a high calculation cost, and the model is prone to over-fitting when the sample 
set is noisy. 

The SVR is a machine learning method based on statistical learning theory and structural risk 
minimization criteria, which can be applied to small data sample for learning and predicting [20]. 
The SVR has the advantages of high accuracy, fast convergence speed and strong generalization 
ability, and it is widely used for predictions [21–23]. On the other hand, the setting of the SVR model 
parameters directly affects the performance of the model, and the problem of setting the model 
parameters is still not well solved [17]. Sun et al. (2009) [24] and Roushangar et al. (2015) [25] proposed 
a hybrid calculation system in which genetic algorithm (GA) was adopted to search for the SVR 

Figure 1. The development of a water-conducting fracture zone (WCFZ) in mining overburden strata
after mining.

In the process of coal mining, the development of a WCFZ in mining overburden strata is an
extremely complicated mechanical problem, which is characterized by the fuzzy randomness of the rock
stratum structure, the complexity of the mining influence stress change and the nonlinear deformation
and failure of the mining overburden. To predict the height of the WCFZ, scholars have proposed
many methods, such as the field measurement method [9,10], theoretical calculations, numerical
simulations [11–13], empirical formulas [14] and intelligence algorithms [15]. Among them, the field
measurement method has the highest accuracy, but it is time consuming, laborious and costly [16].
The theoretical calculation method is too idealistic and has a large deviation from the actual complex
geological conditions. The accuracy of the numerical simulation method is closely related to the
geological condition parameters of the model, and the accurate acquisition of these parameters is
difficult. The empirical formula considers a single influencing factor that is insufficient to reflect the
combined effects of multiple influencing factors [3,17]. Increasingly more methods have been proposed
with the deepening of research, and the prediction results of each method often have large differences
since each method has a different level of adaptability and constraints.

In recent years, with the development and promotion of artificial intelligence technology, some
machine learning methods, such as artificial neural networks (ANNs), decision trees (DTs) and support
vector regression (SVR), have been developed. These methods have the advantages of comprehensive
consideration, simple operation, low cost and good prediction results, therefore they are introduced to
predict the height of the WCFZ. Ma et al. (2008) [18] established a three-layer Back Propagation (BP)
neural network for predicting the height of the water-conducting fracture zone, and the prediction
results are more reasonable and accurate than those of the empirical formula. Q. Wu et al. (2017) [19]
presented a radial basis function neural network (RBFNN) model to predict the height of the WCFZ in
a fully mechanized longwall mining operation with sublevel caving. However, the ANN is not stable
enough to make a prediction with a small data sample, and the final prediction result easily falls into
a local optimal solution since the parameters are often solved by a gradient technique. Zhang et al.
(2017) [10] proposed a random forest regression model that is applied to the Hongliu Coal Mine in
Northwest China with a high prediction accuracy. However, this model takes much time and has a
high calculation cost, and the model is prone to over-fitting when the sample set is noisy.

The SVR is a machine learning method based on statistical learning theory and structural risk
minimization criteria, which can be applied to small data sample for learning and predicting [20]. The
SVR has the advantages of high accuracy, fast convergence speed and strong generalization ability, and
it is widely used for predictions [21–23]. On the other hand, the setting of the SVR model parameters
directly affects the performance of the model, and the problem of setting the model parameters is
still not well solved [17]. Sun et al. (2009) [24] and Roushangar et al. (2015) [25] proposed a hybrid
calculation system in which genetic algorithm (GA) was adopted to search for the SVR parameters,
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and the results were encouraging. As a method to search for the optimal solution by simulating
the natural evolution process, GA was first proposed by Holland (1975) [26]. Although the GA has
inherent implicit parallelism and better global optimization ability, many shortcomings have also been
exposed with the wide application of GA and the deepening of research. In the GA evolution process,
the choice of the crossover and mutation probability often determines the global search performance of
the algorithm and the balance with the local search ability. In the actual application process, the value
of the crossover and mutation probability are often fixed. There is a risk of premature convergence.
The individuals in the group prematurely move towards a unified state and gradually stop evolving,
therefore the result is a local optimum rather than a global optimum. On the other hand, the GA also
has the disadvantage of slow convergence; that is, it fluctuates as it approaches the optimal solution
but does not converge quickly. To deal with this problem, the concept of information theory has been
introduced to preventing from premature convergence. Information-guided mutation was performed
on multiple variables, and selection was made based on the obtained information entropy [27]. In
addition, there are also optimization designs based on single genetic algorithm to reduce the probability
of premature convergence. The main reason for the premature and slow convergence of the GA is that
the population loses diversity before the optimal solution (or satisfactory solution) is obtained during
the population evolution. To make full use of the global evolutionary characteristics of the GA and
avoid its shortcomings, the multi-population genetic algorithm (MPGA) is first adopted to establish an
MPGA-SVR model for predicting the height of the WCFZ. For the proposed model, this paper analyses
its prediction performance in terms of accuracy and stability. The empirical formula and GA-SVR were
also adopted to predict the height for comparison.

2. Methods

2.1. Support Vector Regression (SVR)

The SVR is an application model of a support vector machine (SVM), which was proposed
by Vapnik (2000) [28]. The SVR model transforms complex low-dimensional non-linear regression
problems into linear regression problems in high-dimensional feature space by applying a mapping
function, Φ(x). The regression function is defined as follows [29]:

f (x) = ω ·Φ(x) + b (1)

where ω is the weight, is the threshold, Φ(x) is the inner product. The Equation (1) can be transformed
into the following functional minimum problem:

R(ω) = min
[

1
2‖ω‖

2 + C
k∑

i=1

(
ξi + ξ∗i

)]
s.t.


ω ·Φ(xi) + b− yi ≤ ε+ ξi
yi −ω ·Φ(xi) − b ≤ ε+ ξ∗i
ξi ≥ 0, ξ∗i ≥ 0

(2)

where xi and yi is respectively the input and output values of the training samples, ε is the insensitive
loss function parameter, ξ and ξ∗ are the two sets of non-negative relaxation variables, C is the
penalty factor.

Equation (2) can be transformed into a dual problem by the Lagrangian multiplier method:
J
(
αi,α∗i

)
= max

[
k∑

i=1

(
α∗i − αi

)
yi − ε

k∑
i=1

(
α∗i + αi

)
yi−

1
2

k∑
i=1

k∑
j=1

(
α∗i − αi

)(
α∗i − αi

)(
Φ(xi) ·Φ

(
x j

))
s.t.


k∑

i=1

(
α∗i − αi

)
=0

αi,α∗i ∈ [0, C]

(3)
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By solving Equation (3), the SVR regression function can be obtained as shown in Equation (4):

f (x) =
k∑

i=1

(
αi − α

∗

i

)
K
(
xi, x j

)
+ b (4)

where the K(xi, xj) is the kernel function of SVR. As different kernel functions have different kernel
function parameters, and the most commonly used Gaussian Radial Basis (RBF) kernel function [30] as
shown in Equation (5) is selected in this paper:

K
(
xi, x j

)
= exp

−‖xi − x j‖
2

2σ2

 (5)

where σ is the only adjustable kernel width parameter in the RBF function.
If g = 1/2σ2, then there are three parameters (C, ε, g) in the SVR regression function that need

to be determined. The insensitive loss coefficient ε controls the width of the insensitive region of the
regression function to the sample data and affects the number of support vectors. If the value of ε is
too large, the number of support vectors will be small, which may cause the model to be too simple
and the learning accuracy is not enough. If the value of ε is too small, the regression accuracy is high,
but it may cause the model to be too complicated and the generalization ability is poor. The penalty
coefficient C reflects the penalty degree of the algorithm on sample data beyond ε, and its value affects
the complexity and stability of the model. If the value of C is too small, the penalty for the sample data
exceeding ε is small, and the training error becomes large. If the value of C is too large, the learning
accuracy is high, but the generalization ability of the model is poor. The kernel width parameter σ
reflects the degree of correlation between support vectors. If σ is too small, the relationship between
support vectors is loose, the learning machine is relatively complicated and the promotion ability
cannot be guaranteed. If σ is too large, the influence between support vectors is too strong, and it is
difficult for the regression model to achieve sufficient accuracy.

From the above analysis, the complexity and generalization ability of the SVR model depends on
these three parameters. It is unreasonable and time-consuming to optimize and select each parameter
individually in the parameter selection. These three parameters should be considered simultaneously.
Therefore, it is very important to find an accurate, stable and fast parameter selection method. It is
difficult to obtain satisfactory results by directly using the default parameters or simply using the
Cross Validation (CV) method provided by the LibSVM toolbox in Matlab to optimize the parameters
in the SVR model. In this paper, the MPGA is employed to optimize the parameters in the SVR model.

2.2. The Multi-Population Genetic Algorithm (MPGA)

The MPGA is an improvement based on the GA, which can well solve the premature convergence
and slow convergence of the GA. In the process of GA evolution, the selection of crossover probability
(Pc) and mutation probability (Pm) often determines the global search of the algorithm and the balance
of local search ability. The crossover operator is the main operator for generating new individuals,
which determines the ability of genetic algorithm to search globally. The mutation operator is only the
auxiliary operator that generates the new individual, which determines the local search ability of the
genetic algorithm. Many scholars [31–33] recommend choosing a larger Pc (0.7–0.9) and a smaller Pm
(0.001–0.05). However, there are still many values for Pc and Pm. For different choices, the optimization
results are quite different. The MPGA compensates for this shortcoming of GA by co-evolution of
several populations with different control parameters, taking into account both global search and local
search of the algorithm.

In the evolution of MPGA, the various independent populations are connected by immigration
operators. The immigration operator introduces the optimal individuals that appear in the evolution
process of various populations periodically (this article sets every other generation) into other
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populations, and realizes the information exchange between the populations [34]. The specific
operational rule is to replace the worst individual in the target population with the best individual
in the source population. After each generation of evolution is completed, the best individuals in
each population are selected by the artificial selection operator and placed in the elite population
for preservation. The elite population does not perform genetic operations such as crossover and
mutation to ensure that the optimal individuals produced by various groups in the evolution process
are not destroyed or lost [35]. Based on GA, the MPGA co-evolve by introducing multiple populations
with different control parameters to shorten the generation number needed to find nearly optimal
solutions. MPGA uses multiple sets of different genetic parameters to search at the same time, so
it has low dependence on genetic parameters and has strong applicability. Remarkably, no matter
single population or multi-population cases, the key to solve the problem of premature convergence is
to formulate the implementation rules of selection, crossover and mutation operations. The goal of
MPGA in this paper is searching for the optimal parameter of SVR for predicting.

2.3. MPGA-SVR Model

Good accuracy and generalizability of the SVR model depend on the proper selection of optimal
parameters. This paper uses the MPGA to optimize the parameters (the penalty factor C and the kernel
function parameter g) in the SVR model, and the insensitive loss function parameter takes the default
value (ε = 1) provided in the LibSVM toolbox.

The flowchart shows the procedures followed during the parameter optimization of the adopted
MPGA, as shown in Figure 2.

(1) Parameter initialization
(a) Set gen = 0, where gen is the current number of generations.
(b) Set NIND = 20 as the size of each population.
(c) Set GGAP = 0.9 as the generation gap.
(d) Set MAXGEN = 100 as the maximum number of generations.
(e) Set MP = 10 as the number of the populations. The MPGA breaks through the framework

of genetic evolution of GA by a single population, and improves the search ability by introducing
multiple populations simultaneously.

(f) In this paper, the p-th population’s crossover probability Pc (p) is set between 0.5 and 0.9, and
the p-th population’s mutation probability Pm (p) is set between 0.001 and 0.05. The parameters are
defined as Equation (6): {

Pc(p) = 0.5 + (0.9− 0.5) ∗ δ
Pm(p) = 0.001 + (0.05− 0.001) ∗ δ

(6)

where δ is an number randomly generated between 0 and 1, p∈[1, MP].
(g) The penalty factor C∈(0,100), the kernel function parameter g∈(0,1000).
(2) Binary coding and generate the initial populations.
(3) Calculate the fitness function as shown in Equation (7):

F(p, q) =
1
n

n∑
j=1

(H f −H′f (p, q, j))2 (7)

where F(p, q) is the fitness value of the q-th individual in p-th population,H′f (p, q, j) is the predicted
height of the j-th input sample in the q-th individual in the p-th population.

(4) Selection operation. According to the fitness value of each individual and the generation
gap GGAP, some excellent individuals are selected from the previous generation and inherited to the
next generation.

(5) Crossover operation. A new generation of individuals is produced by crossover operation.
The individuals within each population are selected randomly to exchange part of their chromosomes
according to the Pc (p).
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(6) Mutation operation. For each individual in each population, the gene value at one or some loci
is changed to other alleles according to the Pm (p).

(7) Immigration operation. Different populations are relatively independent, which are linked by
immigration operators. The specific operation rule is to replace the worst individual (the maximum
value of F(p, q) in the target population with the best individual (the minimum value of F(p, q)) in the
source population.

(8) Artificial selection operation. After the end of each generation, the optimal individuals of each
population are selected by artificial operators to store them in elite populations.

(9) Select the best individual from the elite population and gen= gen +1.
(10) If gen =MAXGEN, the process of the evolution will stop, and the result of optimal parameters

is acquired. Otherwise, go to (3).
(11) The obtained parameters are used to predict the height of WCFZ.Sustainability 2019, 11, x FOR PEER REVIEW 7 of 16 
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3. Study Area and Data Set

3.1. Engineering background

The No. 8101 working face of the No. 2 coal seam, located in the center of Selian Coal Mine is in the
Ordos, Inner Mongolia, China. The ground level corresponding to the mining area is +1382–+1441 m,
and the average mining depth of the working face is 170 m. Fully-mechanized mining method is
adopted with an average coal thickness of 4.0 m, and the length of working face is 280 m. The strata
directly overlying the coal seam mainly consist of the siltstone and sandy mudstone in the Jurassic
formation, which were considered as aquitards. Mechanical properties of the 8101 working face’s roof
under the gully were tested by the lithology, and the lithology is defined as medium hard.

The surface corresponding to the 8108 working face is undulating and has a gully development
with a depth of about 38 m. A short flood will be formed during the rainy season. If the mining
crevice penetrates the gully, it will cause surface water to flood into the well, causing the mine to burst.
Therefore, it is necessary to study the height of the WCFZ during the mining of the 8101 working face
through the gully.

3.2. Model Sample Data

The selection of the sample data is of great significance for the predicting results. There are many
factors affecting the height of WCFZ in mining overburden. Based on the previous studies [17,19,36],
four major influencing factors affecting the height of WCFZ (Hf ) have been selected: mining depth
(H), hard rock proportional coefficient (c), mining thickness (d), length of working face (L). Among
them, the hard rock proportional coefficient (c) is the ratio between the accumulated thickness of
hard rock strata within the range of the estimated height of WCFZ (

∑
h) and the estimated height of

WCFZ in mining overburden (Hp). The calculation formulas of c and Hp are shown in Equation (8) and
Equation (9) respectively.

c =
∑

h
Hp

(8)

Hp = (15 ∼ 20)d (9)

where the Hp can be valued 15–20 times of mining thickness (d) according to local conditions.
On the other hand, the sample data’s gradient distribution for each attribute is directly related

to the prediction performance of the model. The wider the gradient distribution, the stronger the
representativeness of the established model and the stronger the applicability of the prediction. Based
on the above considerations and the characteristics of SVR for processing small sample data, 69 sets of
sample data [18,24] were searched to verify the effect of the MPGA-SVR model, as shown in Table 1.

The dimension and magnitude of each attribute are different, therefore it is necessary to normalize
the sample data, as shown in Equation (10):

Xi j =
xi j −min(xi j)

max(xi j) −min(xi j)

Y j =
y j −min(y j)

max(y j) −min(y j)

(10)

where Xij is the j-th input sample value in the i-th attribute after normalization, xij is the j-th input
sample value in the i-th attribute. Yj is the j-th output sample value after normalization, yj is the j-th
output sample value.
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Table 1. The samples for model training.

No. H/m c d/m L/m Hf/m No. H/m c d/m L/m Hf/m

1 412.40 0.09 2.20 157.00 35.40 36 476.40 0.63 3.65 132.00 57.49
2 489.00 0.47 4.50 160.00 54.79 37 515.70 0.35 4.50 147.00 55.00
3 86.10 0.50 4.60 170.00 53.90 38 450.00 0.72 8.00 170.00 86.80
4 472.50 0.53 4.50 132.00 57.45 39 283.90 0.63 5.70 177.90 51.40
5 336.40 0.12 2.00 76.00 27.25 40 499.90 0.47 4.80 150.00 54.79
6 89.00 0.95 2.03 69.00 45.86 41 49.00 0.52 4.00 135.00 45.00
7 424.42 0.26 3.40 120.00 45.10 42 420.06 0.14 3.00 145.00 30.29
8 590.00 0.51 9.00 220.00 76.37 43 516.00 0.74 2.95 206.10 54.50
9 290.00 1.00 2.60 168.00 46.22 44 264.50 0.26 2.80 148.50 40.35
10 290.00 0.18 2.60 168.00 39.14 45 367.00 0.41 7.52 190.00 61.77
11 420.50 0.52 3.00 209.00 52.01 46 434.40 0.46 3.40 136.00 45.10
12 357.00 0.38 7.53 170.00 61.90 47 445.40 0.07 4.00 195.00 38.81
13 649.10 0.23 3.00 186.00 42.99 48 304.00 0.12 3.10 150.00 40.00
14 475.20 0.28 3.90 209.00 49.05 49 362.80 0.33 2.00 138.00 31.62
15 568.60 0.65 3.65 132.00 60.14 50 270.00 0.65 3.80 168.00 54.60
16 557.25 0.45 5.80 186.00 65.25 51 331.00 0.55 7.40 160.00 64.25
17 320.00 0.81 5.00 122.00 67.70 52 499.92 0.47 4.80 150.00 54.00
18 412.55 0.08 2.20 157.00 35.20 53 351.30 0.53 2.00 105.00 36.99
19 312.00 0.24 5.30 145.70 44.20 54 419.03 0.16 3.00 145.00 32.83
20 679.00 0.46 2.10 180.00 44.54 55 357.70 0.33 2.00 128.00 33.96
21 367.00 0.47 7.50 173.50 75.50 56 550.00 0.81 2.40 180.00 55.32
22 403.20 0.10 1.80 120.00 22.61 57 265.00 0.56 2.70 192.00 42.81
23 125.00 0.06 3.00 150.00 22.00 58 320.80 0.16 2.00 128.00 33.01
24 665.00 0.19 7.50 222.00 53.70 59 316.80 0.14 2.00 128.00 31.61
25 433.00 0.52 7.00 168.00 70.30 60 420.00 0.71 3.70 70.00 56.80
26 434.10 0.35 3.00 145.00 47.55 61 478.30 0.54 3.85 209.00 52.15
27 290.00 0.37 2.60 168.00 38.41 62 568.40 0.85 2.94 180.40 57.00
28 485.00 0.36 4.80 175.00 62.50 63 295.00 0.64 2.60 185.00 40.50
29 265.00 0.60 2.60 147.00 43.43 64 453.60 0.16 4.00 195.00 44.96
30 269.00 0.68 2.80 156.00 50.34 65 412.50 0.24 2.20 136.00 35.20
31 387.50 0.55 4.50 175.00 58.50 66 320.00 0.60 1.23 90.00 31.98
32 441.97 0.36 3.40 120.00 48.90 67 411.70 0.30 2.20 136.00 35.21
33 437.17 0.05 3.40 120.00 28.63 68 264.50 0.93 2.80 156.00 44.34
34 463.00 0.62 7.60 116.00 86.40 69 475.00 0.37 6.10 170.00 64.60
35 403.10 0.08 2.00 136.00 22.61

4. Result and Discussion

To test the performance of the MPGA-SVR model, 48 sets of sample data (70%) are selected
randomly as training samples, and the other 21 sets of sample data (30%) is selected as test samples.
During the development of the SVR model, the MPGA was employed to search for the SVR parameter.
The prediction performance of the model was evaluated from two aspects of accuracy and stability.
Finally, the total of 69 sets of data were employed to predicting the WCFZ’s height of 8101 working
face. All computational works in this model were implemented in MATLAB 2017b programming
environment based on the CPU of Xeon(R) E3-1230 3.30GHz processor.

4.1. The Parametric Optimization Process of the SVR Model

After 100 generations of evolution, the target parameters were obtained based on the randomly
selected 48 sets of training sample data. The parametric optimization process of GA and MPGA are
shown in Figure 3.
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Figure 3. The parametric optimization process of GA and MPGA.

In order to reflect the performance advantages of MPGA, both of the GA and MPGA were adopted
to search for the parameters respectively. Each algorithm’s performance was assessed by the mean
squared error (MSE) between the standardized predicted results (H′s f ) and actual results (Hsf), and it
was expressed as Equation (11):

MSE =
1
n

n∑
j=1

(Hs f −H′s f )
2 (11)

In the process of parameters optimization, the GA tends to converge after 32 generations of
evolution, and the value of MSE is reduced from 0.018 to 0.007. The MPGA converges after only seven
generations of evolution, and the value of MSE is reduced from 0.014 to 0.005. On the other hand, the
average of the MSE in GA has a larger range of change than MPGA. Therefore, the MPGA has higher
search accuracy, and significantly improves the slow convergence of GA. Finally, the optimal fitness
parameter values selected are shown in Table 2.

Table 2. Optimal parameters obtained according to GA and MPGA.

Model Parameter Optimal Value

GA
C 19.30
g 0.10

MPGA
C 2.58
g 0.36

To further verify the stability of the algorithms during the parameters search process, five times
of repeated searches were performed, as shown in Figure 4. Comparing with the result we can see
that the GA has a large MSE of 0.014 in the parameter optimization process of the second time, which
is caused by the premature convergence. For the result of the MPGA, the MSE error results of five
iterations were basically consistent with an average value of 0.0055.

Therefore, MPGA has higher accuracy and stability in the process of parameter optimization
for SVR.
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Figure 4. The repetitive parametric optimization process of GA and MPGA for five times.

4.2. The Test of the MPGA-SVR Model

In order to accurately and objectively map the performance of MPGA-SVR model, the correlation
coefficient (r) between the predicted results (H′f ) and experimental results (Hf) were used:

r(H f , H′f ) =
Cov(H f , H′f )√

Var[H f ]Var[H′f ]
(12)

where Cov(H f , H′f ) is the covariance between Hf and H′f , Var[Hf] is the variance of Hf and Var[H′f ] is
the variance of H′f .

The parameters obtained from the GA and MPGA model were employed respectively to predict
the training samples and test samples, and the results were shown in Figures 5 and 6. Based on the
Equations (11) and (12), the r and MSE of the two models were calculated as Table 3.

Table 3. Optimal parameters obtained after GA and MPGA search.

Sample data Prediction Model MSE (m2) Correlation Coefficient (r)

Training sample GA-SVR 11.13 0.96
MPGA-SVR 7.29 0.97

Test sample GA-SVR 34.91 0.93
MPGA-SVR 28.70 0.96
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Figure 5. The comparisons of prediction results of training samples.
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Table 3. Optimal parameters obtained after GA and MPGA search. 

Sample data Prediction Model MSE (m2) Correlation Coefficient (r) 

Training sample 
GA-SVR 11.13 0.96 

MPGA-SVR 7.29 0.97 

Figure 6. The comparisons of prediction results of test samples.

Comparing with the results we can see that the MPGA-SVR model has the lower MSE and higher
r for both of the training sample and test sample. Therefore, the MPGA-SVR model has a better
performance on accuracy compared with the GA-SVM.

In addition to accuracy, stability is also an important index to test the predictive performance
of the model. In this paper, 10 repeated trainings and predictions were performed through the two
models respectively for the same grouped data, and the prediction results were shown in Figure 7. As it
can be seen from Figure 7, the GA-SVR model has a poor prediction effect in the third time with a value
of 0.6. However, the correlation coefficient of the MPGA-SVR model is higher than 0.95 every time.

Therefore, the MPGA-SVR has a better prediction performance from the results of training sample
and test sample.
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4.3. Application of the MPGA-SVR Model

In order to further verify the validity of the MPGA-SVR model for the prediction of water-crushing
zone and its engineering application value, the prediction of the WCFZ’s height for the 8101 working
face is carried out.
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In this section, 69 sets of data were used as training samples to predict the height of the WCFZ
during the mining of the 8101 working face through the gully. For comparison with traditional methods,
the empirical formula method, GA-SVR and MPGA-SVR model were applied, respectively.

The traditional empirical formula was proposed by Liu Tianquan in the early 1980s based on
regression statistical analysis of data from mid-eastern China’s Carboniferous Permian coalfield.
Mechanical properties of the 8101 working face’s roof under the gully were tested by the lithology, and
the lithology is defined as medium hard. Therefore, the predicted height of the WCFZ according to the
empirical formula method (listed in Table 4) is:

H′f =
100

∑
M

1.6
∑

M + 3.6
± 5.6 = 40± 5.6(m) (13)

where the
∑

M is the cumulative thickness of mining coal seam, and the value is equal to the coal
thickness (d) of 4 m here.

Table 4. Experiential computing formula of WCFZ height.

Lithology Computing Formula

Hard H′f =
100

∑
M

1.2
∑

M + 2.0
± 8.9

Medium hard H′f =
100

∑
M

1.6
∑

M + 3.6
± 5.6

Weak H′f =
100

∑
M

3.1
∑

M + 5.0
± 4.0

Extremely weak H′f =
100

∑
M

5.0
∑

M + 8.0
± 3.0

In this case, the estimated height (Hp) of the WCFZ is 20 times of the coal thickness (d), and the
cumulative thickness (

∑
h) of the hard rock above the coal roof is 73.72 m. The hard rock proportional

coefficient (c) is 0.9215 according to the Equation (8).
In order to compare the accuracy and stability of the GA-SVR and MPGA-SVR models at the same

time, the prediction results were obtained by repeated calculation 15 times, the prediction height of the
WCFZ is shown in Figure 8.
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After the actual measurement on site, the height of the WCFZ is approximately 50 m. Aiming to
show the error of different prediction results, the absolute relative error ϕ between the prediction result
and measured result was adopted, which is defined as Equation (14). The result was shown in Figure 9.

ϕ =

∣∣∣∣H f −H′f

∣∣∣∣
H f

(14)
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From the Figures 8 and 9, we can see that the empirical formula’s prediction height of the WCFZ
is from 34.4 m to 45.6 m, and the absolute relative error is from 0.088 to 0.312. As the empirical formula
method considers a single influencing factor only, so the error is the largest. Although the average
prediction height of the WCFZ by the GA-SVR and MPGA-SVR models are both about 47.5 m, but the
GA-SVR model’s prediction result varies greatly each time with a biggest error of 0.11. That is because
the GA has premature convergence when the individuals in the population tend to be in the same
state prematurely and stop evolution. It is obvious that a consistent result can always be obtained for
each calculation by the MPGA-SVR model with an absolute relative error of 0.005, while the result
obtained by the GA has greater uncertainty. Based on the comprehensive consideration of various
factors that affect the development of the water-conducting fracture zone, the MPGA was used to select
more appropriate model parameters for the SVR prediction model. Hence, the MPGA-SVR model
exhibits a better accuracy and stability performance comparing with the other methods in this case. In
addition, the model will be continuously enriched and updated in practice to make it more accurate
and generalizable.

5. Conclusions

In this paper, the MPGA-SVR model is proposed as a novel approach to predict the height of the
WCFZ. The prediction accuracy and stability of the WCFZ’s height have been greatly improved by the
MPGA-SVR model with the parameters of mining depth, hard rock proportional coefficient, mining
thickness, length of working face.

In the process of parameter optimization, the MPGA properly resolves the premature convergence
and slow convergence of GA by co-evolving multiple populations with different genetic parameters,
and the local and global search ability of the model is further improved. Finally, a more suitable
parameter is obtained to predict the height of WCFZ prediction, and the prediction results have a
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high correlation coefficient, low mean square errors and good stability, which is very close to the
experimental result. Comparing with the traditional method, since the model of MPGA-SVR considers
many influencing factors at the same time, unlike the traditional empirical formula, only the unilateral
factors are considered. Therefore, the model proposed in this paper provides a more reasonable
solution to obtain the height of the WCFZ, which is of great significance for the safe and efficient
mining of coal mines. Based on the algorithm proposed in this paper, we can further study and design
different migration mechanisms and several sub-population hierarchical execution architectures of GA
in multi-population mechanisms to obtain more accurate results.
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