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Abstract: Researchers rely on sensor-derived data to gain insights on numerous human behaviors and
environmental characteristics. While commercially available data-logging sensors can be deployed
for a range of measurements, there have been limited resources for integrated hardware, software, and
analysis platforms targeting field researcher use cases. In this paper, we describe Geocene, an integrated
sensor data logging, survey, and analytics platform for field research. We provide an example of
Geocene’s ongoing use in the Household Air Pollution Intervention Network (HAPIN). HAPIN is a
large, multi-center, randomized controlled trial evaluating the impacts of a clean cooking fuel and
stove intervention in Guatemala, India, Peru, and Rwanda. The platform includes Bluetooth-enabled,
data-logging temperature sensors; a mobile application to survey participants, provision sensors,
download sensor data, and tag sensor missions with metadata; and a cloud-based application for
data warehousing, visualization, and analysis. Our experience deploying the Geocene platform
within HAPIN suggests that the platform may have broad applicability to facilitate sensor-based
monitoring and evaluation efforts and projects. This data platform can unmask heterogeneity in
study participant behavior by using sensors that capture both compliance with and utilization of the
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intervention. Platforms like this could help researchers measure adoption of technology, collect more
robust intervention and covariate data, and improve study design and impact assessments.

Keywords: sensors; data loggers; field research; cookstove; household energy; platforms; stove
use monitors

1. Introduction

The collection, storage, and analysis of sensor data is increasingly important for field research.
Where traditional observational or survey data may induce behavior changes (a bias known as the
“Hawthorne Effect”) [1,2] or result in recall or courtesy biases, sensors can provide objective data [1,2].
In this paper, we discuss a novel, sensor-based data logging, surveying, and analytics platform called
“Geocene,” for deploying data-logging sensors in large fleets. To illustrate the capabilities of this
platform, we focus on one case study: the Household Air Pollution Intervention Network (HAPIN)
trial. HAPIN—a large, multi-center randomized controlled trial evaluating the impact of a clean fuel
intervention on exposure to air pollution and related health impacts among 3200 households—is using
the Geocene platform to track cookstove adoption.

Many researchers face technical challenges when seeking to objectively evaluate environmental
performance or behavioral indicators using sensors in field-based studies. Often, the novel research
questions they want to explore cannot be answered with commercially-available sensor solutions.
Most commercial internet-of-things (IoT) devices are vertically integrated platforms to address common
consumer needs in developed markets (e.g., FitBit as a step-counting platform). By contrast, researchers
often want to use sensors to answer difficult questions about novel subjects (for instance, assessing
latrine use in the developing world [3]) for which commercially available, off-the-shelf solutions do
not exist. In these cases, researchers can develop their own hardware [4–7] or find creative ways to
apply available sensors [8–10].

When no pre-existing solution exists, researchers often utilize a common, generic class of devices
called “data loggers” (Figure 1). Data loggers record data about the physical environment and can
often be equipped with many different types of sensors. Unlike IoT devices, which typically tend
to solve a particular use case for sensing (e.g., counting steps), data loggers record raw sensor data
about the world (e.g., recording the raw vibrations caused by stepping)—sometimes for a specific need,
but often simply to observe characteristics of the monitored environment [11].

Data loggers are often constrained in other ways, including in the amount of data they can
store and the ways in which data are retrieved from the loggers. Most data loggers transfer their
data using USB to a computer. The data transferred to the computer is often warehoused as static,
comma-separated values (CSV) or as a proprietary, encoded file. It is common for researchers to encode
metadata in downloaded file names (e.g., “site-a__house-1__treatment-true__phase-post.csv” or, more
cryptically, “a1truepost.csv”). Keys to merge raw sensor data with additional information gathered
from surveys are often encoded in the file name. The management and sharing of these data files is
commonly accomplished with commercial cloud storage platforms such as Dropbox, Box, or Google
Drive. The results of practices like this are large volumes of sometimes poorly organized raw sensor
data that must be analyzed with custom analytics.

Research in international development and public health often involves randomized
controlled trials or observational studies measuring small effects across hundreds to thousands
of subjects [3,5,8,9,12–14]. To measure these effects, data loggers are deployed in similarly large
fleets. However, with hundreds or thousands of data loggers, managing data can be a major barrier to
successful research.

In our prior work [9,15–17], the operational costs of deploying traditional data loggers, including
fieldworker training and compensation, data management and analysis, and interpretation of findings,
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outweighed the capital costs of the loggers. Additionally, because of the complexity of supervising
field teams to deploy data loggers, quality checks and analytics are often delayed, which can result
in errors with metadata, sensor placement, or other issues. These issues might have been managed
during deployment if easier review of data was possible.

In this paper, we discuss the Geocene platform and illustrate its application in the context of
the multi-country HAPIN trial. Geocene attempts to address some of the challenges of deploying
sensors for field research. Geocene consists of (1) a sensing platform that accepts multiple sensors
for different parameters and includes a Bluetooth radio for communication with mobile devices;
(2) inbuilt survey and metadata management; and (3) cloud-based, customizable analysis tools to
translate raw sensor data into meaningful study metrics. In prior work [18], a multidisciplinary team
of researchers envisioned a “proposed integrated data collection, analysis, and sharing platform for
impact evaluation”; the Geocene platform makes significant progress towards realizing many aspects
of that vision.
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Figure 1. Examples of data loggers, as illustrated by page 1 of Google image search results for “data
logger,” accessed November 11, 2019.

2. Materials and Methods

We next describe the components of the platform, including hardware and its management using
mobile applications, data transfer (from sensors to mobile devices to the web), and data translation
and analysis.

2.1. Hardware

Geocene data loggers, called Dots (Figure 2), are designed to operate in harsh environments
without access to power or internet-connected networks. Dots are powered by two AAA alkaline
batteries, which are available globally. Dots have gasketed seals and are water- and dust-resistant.
The onboard non-volatile flash memory in Dots can store 196,000 16-bit samples. At a 5-minute
sampling rate, memory fills in 22 months; at a 1-second rate, memory fills in 2.3 days. Because memory
is non-volatile, if the logger’s battery dies, data is preserved. Depending on the application, Dots can
be outfitted with different sensors including temperature, electrical current, electrical voltage, GPS,
light, pressure, humidity, or vibration.
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Figure 2. Geocene Dot. The left panel is a photograph of a temperature-logging Geocene Dot; the
right panel is a schematic of the Dot. The Dot contains a BLE (Bluetooth Low Energy) radio for
communication with mobile devices, a button to power on and power off the device, and an LED
to indicate device status. The Dot requires two AAA batteries and includes power management,
communication, and data processing and storage capabilities.

2.2. Provisioning, Surveying and Metadata Management

Loggers in the Geocene platform perform data collection “missions”—a period of data logging
activity performed by a particular data logger and associated with metadata. A narrative description
of a mission’s metadata might read as follows:

“Temperature data was collected by the logger named ‘ABCD’ at a sampling rate of
2 minutes. The logger was installed on a traditional cookstove within home 12345 in
the intervention group.”

Geocene’s platform manages metadata collection using a surveying tool built into the Geocene iOS
and Android mobile applications (Figure 3). Before a mission can be started (i.e., before the logger can
start recording data), field workers must complete a metadata survey that is associated with the time
series data that will be collected by the data logger (Figure 4). The survey contains fields that restrict
free data entry and enforce data types (e.g., responses that should be numeric are forced to be numeric).
Responses to survey questions are transformed into metadata “tags” that take on a key:value format.

For the descriptive example given above, survey questions about cookstove type, intervention
group status, and household identifier would be translated into tags like cookstove_type:traditional,
intervention_group:true, and household_id:12345. Tags can be used to search and filter data or as covariates
for downstream analyses.

The platform also supports narrative “notes” for unstructured metadata. These kinds of metadata
can be useful for special cases or caveats that are important to remember for later analysis and data
cleaning. Examples of missions, tags, and notes are described in the HAPIN case study below.
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Air Pollution Intervention Network (HAPIN) trial, shown here running on iOS).

2.3. Ongoing In-App Data Collection and Data Management

When a user connects to a Dot via Bluetooth, the user can download the Dot’s sensor data.
These data transfers take from a few seconds to a few minutes depending on the amount of data
in the Dot’s memory. The application then displays the downloaded data on an interactive chart.
This differs from many traditional data loggers, where data might need to be downloaded to a laptop,
then loaded into an application (such as Microsoft Excel) to generate charts—all before data quality
can be evaluated. The interactive chart on the mobile application can be immediately used for in-field
quality control checks of sensor placement (e.g., for a cooking fire, to ensure that temperature spikes are
hot enough to clearly detect cooking on a stove but not so hot that they damage the sensor), participant
behavior and/or compliance (e.g., confirmation that a participant is using an intervention cookstove),
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or to validate and elaborate participants’ survey responses (e.g., a user reported cooking three times
yesterday, but the sensor data shows just one single meal—why might this be?).

The mobile application allows the user to edit or add metadata or narrative notes at any time—for
instance, to correct a mistake during previous entry or to make notes about changes in the environment
that arose between visits.

2.4. Networking and Data Transfer to the Cloud

Dots communicate to Android or iOS mobile applications using Bluetooth Low Energy (BLE).
Data is logged continuously and stored locally on the logger. When a phone or tablet running the
Geocene app approaches the Dot, data can be transferred from the Dot to the mobile device over BLE.
The loggers communicate over BLE rather than cellular, Wi-Fi, or other internet-connected networks to
manage cost and power consumption, and, more importantly, because internet-connected networks
are weak or absent in many locations where field work is performed. BLE data has a range of 3–100 m,
depending on the number of obstacles in the way. However, the 100 m theoretical range of BLE is
rarely achieved in practice; with Dots, data can typically be downloaded in real-world contexts from
up to 30 m away with clear line of sight, or about 10 m away with a wall or significant obstacle in the
way. In practice, field staff can typically download data from just outside homes or structures in which
Dots are placed.

After data moves from the logger to the mobile device, the data must be moved to the internet.
The Geocene networking topology relies on “sneakernet,” a step in the data transfer process where
data must be physically moved (i.e., by walking it from one place to another while wearing sneakers)
to an internet-connected network (Figure 5).
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Figure 5. Schematic of Geocene data collection. Fieldworkers either visit households or, in some
cases, walk near households. Dots within range are found by the mobile application and data can be
downloaded and the Dot relaunched. When fieldworkers return to their field HQ, where they have
Wi-Fi and/or cell service, data is transmitted to Geocene’s cloud servers for warehousing and processing.

2.5. Cloud Ingress for Dots and Third Party Data Loggers

The mobile application syncs data to the cloud-based web application. This web application
communicates with the mobile application and other web services using a REpresentational State
Transfer (REST) application programming interface (API). Specifically, the Geocene web app is built on
the Django Python REST framework.

Raw sensor data that is synced via the mobile app is first written to Amazon S3. Then, a series
of server-based workers import queued raw data into a relational database. Raw logger data from
non-Geocene data loggers can also be imported into the platform from a web dashboard (Figure 6).
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Figure 6. The import module for non-Geocene data loggers. Currently, the module supports data
from a variety of data-logging temperature sensors, including Maxim iButtons, Wellzion SSN-61
Thermocouple loggers, and EME kSUMs.

2.6. Data Warehousing and Viewing

After ingress, all mission metadata and time series data are warehoused in a PostgreSQL relational
database. This database serves the Geocene web dashboard via the aforementioned REST API. Backups
of this database are made daily and stored as flat objects on Amazon S3.

Geocene’s web application includes a dashboard for viewing and editing data. The default
dashboard can also be augmented with custom dashboards and email alerts to track relevant program
performance indicators and quality control metrics.

2.7. Cloud Analytics: Models and Processors

Geocene’s cloud platform includes an analytics module that identifies and summarizes events of
interest in time series data (Figure 7). The primary purpose of the cloud analytics engine is to reduce
large volumes of raw time series data into summaries of events of interest.

The Geocene cloud analytics system performs analysis on data using “models” and “processors.”
A model is a function that can detect events in time series data. The simplest example of a model would
be a “threshold” model that detects periods that are above, below, or equal to a particular threshold.
A model can be customized to meet analytical needs; for example, a threshold model could detect all
temperatures below 0 ◦C. After a model is customized, it is added to a processor, which then analyzes
a user-selected subset of missions (e.g., missions tagged “intervention_group:true”).

The Geocene analytics framework is built upon the open-source SUMSarizer R library (https:
//github.com/geocene/sumsarizer/), to which the authors of this paper have contributed substantially.
The event detection models available in SUMSarizer and, thus, Geocene, described below.

https://github.com/geocene/sumsarizer/
https://github.com/geocene/sumsarizer/
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Figure 7. Details of a mission in the Geocene dashboard. Data visualized in the screenshot above
includes the raw temperature trace (the continuous blue line) and areas identified as a stove use event
(the highlighted orange bars). The plot on this dashboard is zoomable and scrollable, allowing users to
focus on areas of interest.

2.7.1. Custom Ensemble Machine Learning

Researchers are often able to visually identify important features of data. For instance, temperature
peaks from a sensor placed on a stove might represent cooking events and may be easily visually
identifiable. Users with fairly large datasets can upload a subset of their data to a web-based application
known as TRAINSET, which facilitates rapid labeling of features of interest. In TRAINSET, users
click and drag over the portions of the charted data they identify as important events. This creates a
labeled training dataset, which is used to train an ensemble machine learning model, which can then
automatically identify similar features across the entire dataset.

2.7.2. FireFinder

FireFinder is a deterministic algorithm that is used to detect rises in temperature associated with
heat addition events. Most users of SUMSarizer and Geocene use FireFinder to detect cooking events
in temperature time series data (Figure 8). FireFinder operates in 7 distinct steps to detect events (using
“cooking” events here as an illustrative event example):

1. Assume no points are cooking.
2. Assume all points above a user-set primary threshold are cooking—this is a first pass at identifying

periods of stove usage.
3. Assume points with long runs of negative slopes are not cooking, because the stove is cooling off.
4. Assume points with very positive slopes are cooking, because the stove is heating up.
5. Assume points with very negative slopes are not cooking because the stove is quickly cooling off.
6. Ignore points with inter-sample gaps greater than sample interval—these gaps are due to

paused missions.
7. Smooth identified events by applying a user-set minimum event length, minimum inter-event

gap, and minimum event temperature.
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Figure 8. Sample data from a Geocene Dot temperature logger. The top panel includes data prior
to analysis with FireFinder; the bottom panel shows the periods FireFinder identified as cooking
(in orange).

2.7.3. Threshold

The threshold algorithm is simple: it looks for periods above, below, or equal to a specific
user-specified value. These can be particularly useful for detecting sensor errors or out-of-spec
environmental conditions, for example, extremely negative or extremely positive temperatures.

2.7.4. Constant

The constant detector looks for a user-specified length of unchanging values, typically indicative
of an error.

2.8. Exports

Users can download all of their analyzed data from Geocene as flat-text comma-separated value
files that can be opened in Microsoft Excel, R, or other programs to analyze and visualize data.
Downloads include a list of missions, mission tags, raw time series metrics, sensor types, and a list of
events detected by all processors applied to uploaded data.

2.9. Platform Usage

As of February 2020, the Geocene platform has been used to deploy 12,258 data collection missions
with 500 million unique data points. The analytics system has detected about 1.9 million events within
that data.
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3. HAPIN: A Case Study

3.1. Overview

The Household Air Pollution Intervention Network (HAPIN) trial is an ongoing randomized
controlled trial (RCT) enrolling 3200 households in Guatemala, India, Peru, and Rwanda. HAPIN is
evaluating the impact of cooking with liquefied petroleum gas (LPG) versus traditional biomass-fueled
stoves on birth outcomes in pregnant women, pneumonia and stunting in infants, and blood pressure
in older adult women [19]. Mixed use of traditional and clean cooking fuels is common in household
air pollution intervention studies [8,9,15,20]. Models estimate that even occasional use of biomass fuel
can lead to high average exposures to harmful household air pollution [21]. With the goal of achieving
as much compliance with exclusive LPG use as possible among intervention households, HAPIN is
using the Geocene platform to monitor stove use and reinforce the use of LPG and abandonment of
biomass-fuelled stoves among intervention participants.

The study protocol has been reviewed and approved by the institutional review boards (IRBs) or Ethics
Committees at Emory University (00089799), Johns Hopkins University (00007403), Sri Ramachandra
Institute of Higher Education and Research (IEC-N1/16/JUL/54/49) and the Indian Council of Medical
Research, Health Ministry Screening Committee (5/8/4-30/(Env)/Indo-US/2016-NCD-I), Universidad
del Valle de Guatemala (146-08-2016/11-2016) and Guatemalan Ministry of Health National Ethics
Committee (11-2016), Asociación Beneficia PRISMA (CE3571.16), the London School of Hygiene
and Tropical Medicine (11664-5), the Rwandan National Ethics Committee (No.357/RNEC/2018),
and Washington University in St. Louis (201611159). The study has been registered with
ClinicalTrials.gov (Identifier NCT02944682).

Data loggers and related analysis routines used to evaluate cookstove adoption are often referred
to as part of the Stove Use Monitoring System (SUMS). Stove use monitoring in HAPIN enables
field teams to respond to non-compliant intervention households who use their traditional stoves.
It also provides objectively quantified metrics of stove use for incorporation in statistical models and
other analyses.

About 3800 (30%) of all Geocene missions belong to HAPIN. HAPIN’s globally-distributed field
staff have synced approximately 155 million unique data points from these missions. HAPIN has
deployed Geocene’s cloud analytics to detect 330 thousand events of various kinds ranging from
cooking, excessive probe temperature, and probe errors (Figure 9). Each day, HAPIN syncs about
500 thousand new data points to the platform, and the analytics detect about 1000 new events daily.
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3.2. Hardware and Provisioning, Surveying, and Metadata Management

Previous studies of household air pollution interventions relied primarily on Maxim iButton
temperature data loggers [8,13,15], which have limited memory and temperature sensing ranges,
or low-cost thermocouple data-loggers [16,20]. The Geocene Dots used in HAPIN use k-type
thermocouples. K-type thermocouples have a theoretical range of about −200 ◦C to 1250 ◦C,
but depending on build quality and environmental considerations, usable temperature ranges can
be much more limited. The high temperature range of thermocouples enables HAPIN field staff

to place Dots’ sensing elements close to the combustion zone of traditional and LPG cookstoves to
detect greater temperature increases when the stove is lit during cooking. Field staff place the probe
in a location where cooking will induce a temperature spike of at least 100 ◦C, but no more than
400 ◦C. Although well-made thermocouples can reach temperatures of >1000 ◦C, surpassing 400 ◦C
regularly can significantly degrade their useful lifetime; therefore, the HAPIN team aims for maximum
temperatures of 400 ◦C to ensure probes will last for the duration of the trial.

When installing Dots, HAPIN field staff answer a common set of questions about each
deployment on handheld tablets using the inbuilt survey (Figure 4). These include data on the specific
stove type on which the Dot is installed, the household ID, the type of household (intervention
or non-intervention), and other metadata that can subsequently be used to filter and subset
data. For example, trial investigators can examine data by country, by intervention status, and/or by
stove type.

3.3. Date Warehousing and Viewing

Given the large sample size of the trial (3200 households across 4 countries; 800 per country,
400 each in control and intervention arms), approximately 3140 Geocene temperature loggers will be in
use for periods of approximately 18 months. A team of roughly 50 HAPIN investigators and field
staff have been trained to provision and deploy these data loggers and download data from them
every two weeks. Dot data are synced using the sneakernet networking topology: field workers collect
data in the field using handheld tablets and synchronize the data with the cloud upon return to their
Wifi-equipped offices (Figure 9).

3.4. Analytics

Stove use monitoring in HAPIN serves multiple purposes. During the trial, FireFinder is
parameterized to be very sensitive to temperature increases from Dots on traditional stoves to flag
all potential traditional stove uses. The sensitive parameters applied to FireFinder result in a high
false-positive rate, but this is desirable for the use case of reducing the rate of false negatives to
near-zero levels. In the HAPIN context, a false negative cooking event would mean a participant was
using their cookstove, but HAPIN staff could not detect this use in the data. Field staff use this data to
visit flagged households and provide behavioral change guidance to encourage exclusive LPG use.

Additionally, HAPIN uses several mechanisms to ensure data quality. First, constant and threshold
detectors identify Dots with thermocouple or other errors. Study staff visit flagged households to either
re-position, repair, or replace the Dot probes or entire Dots. Second, a dashboard and weekly email
highlight households with missing metadata, such as household identifiers, stove type, intervention
installation status, and/or county location.

Finally, HAPIN uses a modified version of FireFinder to create summary data by household on the
frequency and duration of traditional stove use. These data will be used in statistical models to estimate
the influence of stove usage on exposure to household air pollutants, among other analyses [19].

3.5. Administration

To help improve data quality and increase accountability, HAPIN uses custom dashboards and
email alerts through the Geocene platform. Site leaders receive weekly email alerts with screenshots of
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dashboards listing households with traditional stove use (Figure 10), Dots with technical problems,
and missions with missing or corrupt metadata.Sustainability 2020, 12, 1805 12 of 15 
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Figure 10. A weekly email alert about non-compliant households in the HAPIN trial.

In the first three weeks after deploying alerts on missing metadata, the total number of missions
with missing or corrupt metadata dropped from 501 to 200; in other words, 60% of all known data
quality errors were fixed within the first household visit after the system was established. The HAPIN
team was able to use these alerts to address operational errors early, improving the ease and quality of
later analysis.

3.6. Field Benefits and Challenges

The ability to download Dot data over Bluetooth (and without Wi-Fi or cellular network access)
has greatly facilitated fieldwork. Field staff are able to download data from outside a participant’s
house, even when participants are not home, preventing the need for multiple household visits. Also,
the Geocene platform’s ability to program missions and download data without Wi-Fi allows the
HAPIN team to collect data from many participants who live in areas without Wi-Fi or cellular signal.
However, challenges have arisen when updates to the Geocene mobile applications were not fully
downloaded prior to leaving for the field, resulting in incomplete metadata.

Achieving correct placement of the thermocouple probe, that is, to achieve temperatures greater
than 100 ◦C and less than 400 ◦C during cooking, is consistently difficult given the heterogeneity in
stove construction and structure. Staff struggle to position probes correctly at installation, but are
able to use the provided dashboard to identify households where probes have excessive temperatures,
and in those homes, move the probes. Additionally, in some contexts, where stoves are either outdoors
or portable, there have been challenges in hanging and protecting the logger body. HAPIN teams
fashioned protection out of sealable plastic containers, dust bins, and PVC pipes to protect these
outdoor Dot installations.
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Due to the high sensitivity of the FireFinder algorithm, some households are incorrectly flagged
as cooking with their traditional stoves when the stove was not actually used. Mis-flags are often due
to outdoor probe positions that are heated by strong direct sunlight, or other temperature sources in
kitchens such as hot pots placed on traditional stoves to cool or for storage. Field staff sometimes
make visits to falsely flagged households to reinforce exclusive LPG use when this reinforcement is
not necessary; however, this precaution is necessary to avoid missing households who are using their
traditional stove.

Given that Dots can hold many months of data, field teams initially did not delete data from the
Dot after downloading. However, downloads took up to several minutes when there was a large
accumulation of data on the Dot. Thus, field teams started deleting data after downloading to reduce
time in participant homes. However, after clearing the Dot, the data exist only on the tablet that
made the download, which runs the risk of data loss if there are any problems with the tablet or the
downloaded data. Occasionally, data downloaded from a Dot does not sync properly with the cloud,
but this is largely due to situations where the field worker who originally started the mission never
synced the mobile device that originated the mission. Finally, the Geocene application interface is
currently only available in English, which causes difficulty for field teams in other countries who
often do not speak English. Although staff were able to learn how to program the Dots using the
English prompts, they often have trouble interpreting and responding appropriately to warning and
error messages.

4. Discussion and Conclusions

Experiences deploying Geocene in the HAPIN trial suggest that the platform has overcome many
of the challenges with previously available data loggers for field research. The ability to download
over Bluetooth with mobile applications avoids the need to remove data loggers from their installation
location to connect the device to the computer. The surveys allow more accurate collection and storage
of metadata. Real-time data processing allows for continuous review and responses by field staff to
ensure data quality. The data analysis and summary dashboards also facilitate the process of calculating
desired indicators from raw data, which can be viewed by globally-dispersed investigators.

However, several challenges remain with the Geocene platform. Achieving correct positioning
of the thermocouple probe and adequate protection of the data logger body requires piloting and
adjustment based on differing local conditions. Also the algorithm used to flag events of interest may
not always correctly capture targeted events. For example, highly sensitive algorithms may falsely flag
non-cooking events, while less sensitive algorithms may fail to flag actual cooking events. Field teams
must also balance the desire to limit download times by deleting data after each download with the
risk of losing data if problems occur with the downloaded file or tablet before synchronization with the
cloud. Issues with language and data synchronization have also proven challenging. We anticipate that
similar initial challenges may exist for others who use the platform, whether for cookstove adoption
monitoring or other sensor-based needs.

Our experiences with deployment suggest several potential improvements. Providing localization
of the mobile application (i.e., translation into other languages) and addressing data synchronization
issues would facilitate the use of the platform in global field settings. Also, capturing and sharing
guidance on probe placement, Dot installation, and algorithm considerations could help research
teams deploying the platform for the first time. Lastly, further expanding the compatibility of Geocene
with other data loggers could enable teams who already have experience using (or have data from)
other types of devices to use the platform for data analysis.

The Geocene platform has the potential to not only ease data collection and improve data quality
in research studies, but could also be applied by programs seeking to monitor use of their product.
For example, government programs promoting adoption of clean fuel stoves could use the Geocene
platform to monitor use of the clean fuel stoves given to households through the program. This would
enable implementers with limited analysis capability to quantify the impact of their program and make
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adjustments as necessary. Additionally, it would provide programs with more objective data than
could be derived from surveys alone. Facilitating the ability of researchers and program implementers
to easily monitor behaviors could improve the impact of promoted technologies, which in turn can
improve air quality, health, quality of life, or other outcomes among users.
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