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Abstract: Barley is a very important crop worldwide and has good impact in preserving food security.
The impacts of 10 mM proline and 0.5 mM salicylic acid were evaluated on water stressed barley
plants (Hordeum vulgare L. Giza126). Salicylic acid and proline treatments led to increased stem
length, plant dry weights, chlorophyll concentration, relative water content, activity of antioxidant
enzymes, and grain yield under drought stress. Nevertheless, lipid peroxidation, electrolyte leakage
(EL), superoxide (O2

·−), and hydrogen peroxide (H2O2) significantly decreased in treated barley
plants with proline and salicylic acid in both growing seasons as compared with drought treatment
only, which caused significant decrease in stem length, plant dry weights, chlorophyll concentration,
activity of antioxidant enzymes, as well as biological and grain yield. These results demonstrated the
importance of salicylic acid and proline as tolerance inducers of drought stress in barley plants.

Keywords: Barley; drought; enzymes activity; electrolyte leakage; scanning electron microscope

1. Introduction

The barley (Hordeum vulgare L.) plant belongs to the family Poaceae, playing a main role in
human food and animal feeding [1]. The production of barley grains was around 142.37 million
tons in 2017/2018 (www.statista.com/statistics/271973/world-barley-production). However, it was
influenced by environmental factors, particularly drought. Drought is a very damaging factor which
causes decreases in morphological and physiological parameters and reduces plant growth and
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production [2]. By 2050, the population of the world will reach more than 9 billion people and the
adverse climate changes will extremely threaten food security [3]. The plants under deficit water stress
have distinctive morphological symptoms such as wilting, etiolation, yellowing, and leaf downfall [4,5].
Stomatal closure and reduction in CO2 concentration are the first responses to drought stress in leaves,
consequently reducing photosynthetic activity. The stomatal density too is associated with tolerance of
drought stress [6]. Drought stress led to significant reductions in chlorophyll concentrations and yield
characters of flax plants [7].

Generally, biotic and abiotic stress cause oxidative damage, resulting in increase of electrolyte
leakage and respiration rate, which lead to increased reactive oxygen species production (superoxide
and hydroxyl radicals as well as hydrogen peroxide); however, stem length and root dry weights were
reduced in many plants [8–11]. One of the main reasons of crop loss during the growth and flowering
stages is drought, which causes decrease in the yield of most crops [12]. Morphological characters and
grains yield significantly decreased under water-deficit stress conditions [13]. High concentration of
reactive oxygen species (ROS) induces lipid peroxidation; causes injury to proteins; can damage to
photosynthetic processes, thylakoid membranes, and pigments; and finally causes programmed cell
death [14]. Accordingly, the plants can avoid ROS injury with upregulation of enzyme activity like
catalase and polyphenol oxidase, which play vital roles in ROS scavenging [15–17]. Salicylic acid (SA)
plays a main role under stress conditions in the regulation of photosynthesis and many physiological
processes [13,18], proline metabolisms, and antioxidant defense systems as well as provides protection
under abiotic stresses [19] and improves the growth characters and yield parameters of canola plant [4].
Use of SA significantly alleviated the injurious impacts of drought and decreased lipid peroxidation
in wheat plants [20], increased growth characters and yield of faba bean plants, as well as improved
activity of antioxidant enzymes [13]. Proline accumulation is induced in plant tissues under drought
conditions, and it is considered as osmoregulators, which helps in osmoregulation and protects the
structure of organs and membranes of plant cells [21]. Furthermore, proline plays a pivotal role in
alleviating the injurious effects of drought and salinity stress in addition to protecting chloroplasts,
mitochondria, and DNA from oxidative damage [22]; improving photosynthetic processes; and
increasing soluble sugar accumulation. Thus, our study aimed to assess the impact of salicylic acid
and proline on morphophysiological, biochemical characters and yield as well as scanning electron
microscope investigation of barley plants under drought conditions.

2. Materials and Methods

2.1. Plant Materials

The research experiments were conducted on the farm of the Faculty of Agriculture, Plant
Pathology, and Biotechnology Laboratory (PPBL) and Egyptian Phytomicrobial Collection for Research
and Sustainability Excellence Center (EPCRS) Excellence Center, Kafrelsheikh University, Egypt. The
meteorological data of this location is presented in Table 1 according to NASA POWER Data Access
Viewer-Prediction of Worldwide Resource (https://power.larc.nasa.gov/data-access-viewer).

Table 1. The meteorological data of the experimental location from sowing to harvesting date.

Meteorological Data Season December January February March April May

Precipitation (mm day−1)
2017 8.36 7.78 7.85 0.58 47.42 0.03
2018 8.13 32.80 10.80 1.61 3.09 0.01

Relative Humidity at 2
Meters (%)

2017 67.35 68.84 67.23 63.81 59.35 53.37
2018 67.82 68.49 67.61 55.02 54.00 54.25

Maximum Temperature at 2
Meters (◦C)

2017 21.88 17.16 18.86 21.86 25.25 29.92
2018 19.65 18.69 20.99 25.41 27.58 31.35

Minimum Temperature at 2
Meters (◦C)

2017 14.21 9.70 10.37 12.50 14.21 18.37
2018 13.66 11.64 12.15 13.66 15.76 19.90

https://power.larc.nasa.gov/data-access-viewer
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Some of the physiological studies were conducted in the center lab of excellence center in
biotechnology research, king Saud university during two growing seasons of 2017/2018 and 2018/2019.
The research study was designed to study the influence of proline and salicylic acid in mitigating
the harmful impacts of drought on morphophysiological, biochemical, and yield characteristics of
Hordeum vulgare L. (Giza 126). The experiment was laid out as a randomized complete block design
with three replicates; the plot size was 2.5 × 2.5 m2. The previous crop was maize (Zea mays L.). The
recommended doses of chemical fertilizers were nitrogen at 110 kg N ha−1 ammonium sulfate and
phosphorus at 125 kg P2O5 ha−1 superphosphate. Calcium superphosphate was added according to the
recommendation of the Ministry of Agriculture during seedbed preparation. The amount of N fertilizer
was added to each plot at two doses: the first dose was at sowing date, while the second one was at
booting stage. Barley grains (120 kg ha−1) were sown on 4 December 2017 and on 8 December 2018 in
typical clay soil. The characters of the experimental soil were recorded according to Association of
Officinal Analytical Chemists (AOAC; 2005) [23] as follows: pH 8.2; electrical conductivity 1.8 dS m−1;
available phosphorus 10.5 ppm; available nitrogen 32.4 ppm; available potassium 289 ppm; silt 35.5%;
sand 17.3%; clay 47.2%; and texture clay. The treatments were four as follows: 1) control (well water
plants) plants receive five irrigations during growing season; 2) drought treatment (D) plants receive
one irrigation only after germination; 3) drought treatment + 0.5 mM SA; and 4) drought treatment +

10 mM proline. Foliar application of SA and proline was done one time after 21 days from sowing date.
The harvested dates were on 2 May 2018 and 7 May 2019, respectively.

2.2. Morphophysiological and Biochemical Studies

Ten plants were randomly taken at anthesis stage to determine length of stem, number of leaves,
fresh and dry weights, chlorophyll concentrations as well as proline, electrolyte leakage (EL), Lipid
peroxidation (MDA), and relative water content. According to Lichtenthaler (1987) [24], concentrations
of chlorophyll a and chlorophyll b were determined as mg g−1 fresh leaves and the absorbance
was determined at 663 and 648 nm. Electrolyte leakage was measured according to Szalai et al
(1996) [25]. As described by Simaei et al. (2011) [26], proline content was determined in fresh leaves
as mM g−1 FW (fresh weight). Lipid peroxidation was determined according to Davenport et al.
(2003) [27] by calculating the amount of malondialdehyde. Lipid peroxidation (MDA) was recorded as
follow: (nmol g−1fw) = (6.45 × (A532 − A600) − (0.56 × A450)) × V-1W, where V = volume (ml) and
W = weight (g).

Hydrogen peroxide (H2O2) and superoxide (O2
·-) were assayed as described by Ádám et al.

(1989) [28].
Catalase activity (CAT) was measured according to Aebi et al. (1983) [29]. Peroxidase (POX)

activity was measured as described with Hammerschmidt et al. (1982) [30]. Polyphenol oxidase (PPO)
activity was measured as described with Malik and Singh (1980) [31].

2.3. Scanning Electron Microscope (SEM) Investigation and Yield Characters

Histological structure of barley flag leaf epidermal tissue was investigated with scanning electron
microscope (SEM). Samples of flag leaf at 50 days from sowing (4 mm2) were taken and prepared for
scanning electron microscope investigation according to Harley and Ferguson (1990) [32]. At harvest
date (2 May 2018 and 7 May 2019), the yield components; (length of spike, no. of grains spike−1, 1000
grains weight, and biological and grain yield ton ha−1) were determined.

2.4. Statistical Analysis

One- and two-way analysis of variances (ANOVAs) were carried out using IBM-SPSS Statistics
for Mac OS, version 23.0. (IBM SPSS, Armonk, NY: IBM Corp), and the means were compared using
Tukey’s honestly significant difference (HSD) post hoc test at p ≤ 0.05 when the differences were
significant (p ≤ 0.05). Data were represented as mean ± standard error (SE) (Gomez and Gomez 1984,
Duncan 1955, O’Mahony 1986) [33–35].
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3. Results

3.1. Effect of Proline and SA on Morphophysiological Characters and Biochemical Analysis of Barley Plants
under Drought Stress

The stem lengths (cm) of barley plants in the untreated control group in the first and second season
were 59.25 ± 1.58 cm and 60.25 ± 2.79 cm, which significantly (p < 0.05) decreased to 51.25 ± 1.45 cm and
54.00 ± 2.29 cm in the drought stressed plants, respectively (Table 2). According to the results during
the two growing seasons 2017/2018 and 2018/2019 presented in Table 2, drought stress significantly
(p < 0.05) decreased fresh and dry weight of barley plants compared to the control plants group (well
water) and other treatments. The highest values of stem length recorded were 66.0 ± 1.30 cm and
67.5 ± 2.42 cm in the barley plants under drought stress and treated with SA in both growing seasons.
However, the highest fresh weights of 8.01 ± 0.26 g and 9.44 ± 0.35 g in the drought + SA group and that
for dry weight at 3.61 ± 0.15 and 3.6 ± 0.15 g were obtained with drought stressed plants treated with
salicylic acid (D + salicylic acid), which were significantly (p < 0.05) different from drought stressed
group. The lowest values of stem length (51.25 ± 1.45 and 54.0 ± 2.29 cm), fresh weight (5.45 ± 0.14g and
5.71 ± 0.12 g), and dry weight (2.06 ± 0.06 g and 2.52 ± 0.09 g) in the two growing seasons respectively
were recorded in drought stressed plants (Table 2). Contrariwise, there was no significant difference
(p > 0.05) among the treatments in leaves number/plant (Table 2). Under drought stress, chlorophyll a
and b concentrations were considerably reduced in stressed plants compared to the control plants.
Proline and SA treatments led to increased concentrations of chlorophyll a and b in the stressed plants
compared with control and untreated stressed plants in both seasons. The obtained data pointed out
that the maximum levels of chlorophyll a and b were recorded in water stressed plants treated with
proline (1.74 ± 0.17 and 1.83 ± 0.24 mg g−1 FW and 1.13 ± 0.03 and 1.2 ± 0.30 mg g−1 FW) and with SA
(1.66 ± 0.24 and 1.50 ± 0.15 mg g−1 FW and 1.07 ± 0.03 and 0.86 ± 0.09 mg g−1 FW) respectively, in
the two growing seasons (Figure 1A,B). Moreover, the highest leaf total chlorophyll contents of 2.87 ±
0.19 mg g−1 FW were recorded in proline-treated barley under drought stress. Generally, treatments
of barley plants with either proline or SA significantly (p < 0.05) improved chlorophyll b and total
chlorophyll contents. Differences were assessed by one- and two-way ANOVAs followed by Tukey’s
HSD post hoc tests at p < 0.05.

Table 2. Stem length, number of leaves, and fresh and dry weights of barley plants treated with salicylic
acid and proline under drought stress during two growing seasons (2017/2018–2018/2019). Data are
represented as mean (±standard error (SE)); differences between treatment groups were assessed by
ANOVA. Means in the same column followed by the different letter are significantly different according
Tukey’s HSD (honestly significant difference) test at p < 0.05.

Treatments

Stem Length (cm) Number of Leaves Fresh Weight (FW, g
plant−1) Dry Weight (DW, g plant−1)

First Second First Second First Second First Second

Season Season Season Season

Control 59.25b ± 1.58 60.25ab ± 2.79 5.75a ± 0.53 6.50a ± 0.46 7.36a ± 0.35 8.91a ± 0.35 2.99a ± 0.32 3.52a ± 0.14

Drought (D) 51.25c ± 1.45 54.0 b ± 2.29 5.00a ± 0.73 4.75a ± 0.14 5.45b ± 0.14 5.71b ± 0.12 2.06b ± 0.06 2.52b ± 0.09
(D) + Salicylic acid 66.00a ± 1.30 67.50a ± 2.42 5.50a ± 1.00 5.75a ± 0.26 8.01a ± 0.26 9.44a ± 0.35 3.61a ± 0.15 3.60a ± 0.15

(D) + Proline 62.25ab ± 0.87 62.13ab ± 2.21 5.25a ± 0.29 5.50a ± 0.47 7.66a ± 0.47 9.02a ± 0.26 3.06a ± 0.16 3.47a ± 0.10

ANOVA: F-ratio 24.48 4.82 0.197 3.28 9.53 37.29 11.17 18.86
p-value <0.001 *** 0.033 * >0.05 ns >0.05 ns 0.005 ** <0.001 *** 0.003 ** <0.001 ***

* Significant at p < 0.05; ** highly significant at p < 0.01; *** very highly significant at p < 0.001; NS, nonsignificant at
p > 0.05.



Sustainability 2020, 12, 1736 5 of 15
Sustainability 2020, 12, x FOR PEER REVIEW  6  of  16 

   

Figure 1. Effect of salicylic acid and proline on chlorophyll a and b concentrations (A,B), relative
water content (C), and proline content (D) in barley plants under drought stress during two growing
seasons: season 1 (2017/2018) and season 2 (2018/2019). Data represented as mean ± SE); differences
between treatment groups were assessed by one- and two-way ANOVAs. Bars with different letters are
significantly different according to Tukey’s HSD at p < 0.05. * Significant at p < 0.05; ** highly significant
at p < 0.01; *** very highly significant at p < 0.001; NS, nonsignificant at p > 0.05.
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The effects of either proline or SA treatments on relative water contents and proline content in
barley are presented in Figure 1C,D. Drought caused significant reduction (p < 0.05) in relative water
content (58.3% ± 1.35 % and 53% ± 3.11%) in both seasons, respectively; nevertheless, the maximum
values (81.5% and 84%) were recorded in control plants. Additionally, proline and SA treatments
led to significant increase in relative water content (RWC; 72.5% and 74.6%, and 76% and 78.2%,
respectively) in both seasons compared with stressed untreated plants (Figure 1C). From Figure 1D,
it could be observed that water stressed-plants showed significant increase in proline contents (7.4
and 7.9 mM g−1 FW) compared with control plants (5.2 and 4.5 mM g−1 FW) in the two seasons,
respectively. Interestingly enough, proline contents were enhanced with application of proline and SA;
the maximum values (9.6 and 9.1 mM g−1 FW) were obtained with proline treatment in both seasons.
Exposing plants to drought stress led to increased electrolyte leakage (43% and 41.5%) in the two
seasons compared with control and the treated stressed plants with proline and SA (Figure 2A). Our
results indicated that application of proline and SA led to decreased electrolyte leakage (EL) in stressed
treated plants (21% and 24%, and 25% and 23.5%) in both seasons, respectively; the best result was
obtained with stressed treated plants with SA. As a response of drought, data presented in Figure 2B
indicated that drought stress significantly increased lipid peroxidation (MDA) (5 and 5.2 µmol g−1

FW) compared to control plants (3.9 and 4.2 µmol g−1 FW) in both seasons, respectively. However,
application of proline and SA treatments significantly decreased lipid peroxidation (3.5% and 3.6%,
and 3.6 and 4.7 µmol g−1 FW) compared to stressed untreated plants in the two seasons.

The presented data in Figure 3 revealed that accumulation of hydrogen peroxide and superoxide
in stressed plants was higher than control plants and other treatments (Figure 3A,B). Likewise,
concentrations of O2

·- and H2O2 were increased significantly in water-stressed plants (39 and 43, and
34 and 35) compared with control plants (28 and 30, and 17 and 18) in the two seasons, respectively.
Conversely, foliar application of proline and SA led to decreased concentration of O2

·- (27 and 30, and
28 and 33) in both seasons and concentration of H2O2 (21.5 and 23, and 25 and 27) in the two seasons,
respectively (Figure 3C,D).

In the current study, the results showed that CAT, POX, and PPO enzyme activities were increased
significantly by exposure to drought stress (Figure 4A,C). CAT activity was increased significantly
(176.4 and 181 mM H2O2 g−1 FW min−1) in stressed barley plants compared with control (149.6
and 142.8 mM H2O2 g−1 FW min−1) in both seasons (Figure 4A). However, application of SA led to
improved CAT activity (139 and 146.5 mM H2O2 g−1 FW min−1) in both seasons; likewise, proline led
to improved CAT activity (142.6 and 127.8 mM H2O2 g−1 FW min−1) in compared to control in the two
seasons. Correspondingly, proline and SA treatments led to improve POX and PPO activities in barley
plants under drought conditions in both seasons (Figure 4B,C).
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Figure 2. Effect of salicylic acid and proline on electrolyte leakage (A) and lipid peroxidation (B) in
barley plants under drought stress during two growing seasons: season 1 (2017/2018) and season 2
(2018/2019). Data are represented as mean (±SE); differences between treatment groups were assessed
by one- and two-way ANOVAs. Bars with different letters are significantly different according to
Tukey’s HSD at p < 0.05. * Significant at p < 0.05; ** highly significant at p < 0.01; *** very highly
significant at p < 0.001; NS, nonsignificant at p > 0.05.
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peroxide, H2O2 (B), during second season (2018/2019) and concentrations of superoxide (C) and
hydrogen peroxide (D) in barley plants under water deficit stress during two seasons: season 1
(2017/2018) and season 2 (2018/2019). Data are represented as mean (±SE); differences between
treatment groups were assessed by one- and two-way ANOVAs. Bars with different letters are
significantly different according to Tukey’s HSD at p < 0.05. * Significant at p < 0.05; ** highly significant
at p < 0.01; *** very highly significant at p < 0.001; NS, nonsignificant at p > 0.05.
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Figure 4. Effect of salicylic acid and proline on activities of catalase, CAT (A); peroxidase, POX (B);
and polyphenol oxidase, PPO (C), enzymes in barley plants under drought stress during two growing
seasons: season 1 (2017/2018) and season 2 (2018/2019). Data are represented as mean (±SE); differences
between treatment groups were assessed by one- and two-way ANOVAs. Bars with different letters are
significantly different according to Tukey’s HSD at p < 0.05. * Significant at p < 0.05; ** highly significant
at p < 0.01; *** very highly significant at p < 0.001; NS, nonsignificant at p > 0.05.

3.2. Effect of Proline and SA on Yield and Scanning Electron Microscope (SEM) Investigation of Barley Plants
under Drought Stress Conditions

The decrease in spike length (cm), grain spike−1, grain yield, and biological yield (ton ha−1) as
well as 1000 grains weight (g) under drought conditions are presented in Table 3. Drought stress led to
significant decreases in spike length (6.25 and 6.65 cm) compared with control plants (8 and 7.75 cm) in
both seasons; however, application of proline and SA significantly increased spike length (8 and 8.20,
and 8.6 and 8.5 cm) under drought stress in both seasons, respectively. Furthermore, grains per spike
were significantly (p < 0.05) decreased according to water-deficit stress (48 and 46.5) compared with
control plants (60 and 57). Foliar treatment with SA led to increases in grains per spike, but the increase
was not significant (p > 0.05) (54 ± 2.05 and 51.5 ± 0.68) compared to the control in both seasons, while
proline application led to significant increases in grains per spike (58.5 and 60.5) in both seasons. The
weight of 1000 grains and biological and grain yield were considerably decreased in both seasons
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compared with control plants. Proline and SA treatments led to improve yield characters; the highest
values of biological yield (5.46 ± 0.07 and 5.77 ± 0.11 ton ha−1) and grain yield (2.98 ± 0.12 and 2.98 ±
0.19 ton ha−1) as well as weight of 1000 grains (66.22 ± 1.27 g and 67.18 ± 0.92 g) were obtained with
SA treatment in both seasons, respectively. The scanning electron microscope (SEM) investigation
presented in Figure 5 shows that the epidermal tissue consists of small cells in water-stressed barley
plants as compared with control plants. Application of proline and SA gave small sunken guard cells
compared with guard cells in control plants; these normal guard cells were arranged in parallel rows.
Also, these treatments led to improved epidermis cell structure in the stressed plants.

Sustainability 2020, 12, x FOR PEER REVIEW  12  of  16 

 

Figure 5. Effect of salicylic acid and proline on barley leaves by Scanning Electron Microscope (SEM) 

during growing season (2018/2019): (A) control, (B) water‐deficit stress (D), (C) D + salicylic acid, and 

(D) D + proline. Bar = 10 μm and bar = 50 μm. 

4. Discussion 

The significant (p < 0.05) decrease  in  leaves number, stem  lengths, and dry weights of barley 

plants (Table 2) under drought stress conditions could be due to the reduction of water absorption 

from  the soil and consequently  to decreased cell division and elongation as well as plant growth 

A 

B 

C 

D 

Stomata 

Guard cell 

Epidermal 

cells
Epidermal cells 

Stomata 

Stomata 

Figure 5. Effect of salicylic acid and proline on barley leaves by Scanning Electron Microscope (SEM)
during growing season (2018/2019): (A) control, (B) water-deficit stress (D), (C) D + salicylic acid, and
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Table 3. Spike length, grains per spike, biological yield, grain yield, and weight of 1000 grains of barley plants treated with salicylic acid and proline under drought
stress during two growing seasons (2017/2018–2018/2019): Data are represented as mean (±SE); differences between treatment groups were assessed by ANOVA.
Means in the same column followed by the different letter are significantly different according Tukey’s HSD at p < 0.05.

Treatments

Spike Length
(cm) Grains per Spike Biological Yield

(ton ha−1)
Grain Yield
(ton ha−1)

Weight of 1000 Grains (g)

First Season Second Season First Season Second Season First Season Second Season First Season Second Season First Season Second Season

Control 8.00a ± 0.32 7.75b ± 0.23 60.0a ± 2.00 57.0a ± 0.88 5.47a ± 0.12 5.35a ± 0.18 2.20b ± 0.07 2.24b ± 0.05 61.53b ± 0.86 57.99a ± 1.98
Drought (D) 6.25b ± 0.06 6.65c ± 0.29 48.0b ± 0.52 46.5c ± 2.52 3.07b ± 0.14 3.01b ± 0.10 1.42c ± 0.06 1.43c ± 0.07 49.30c ± 0.87 53.07b ± 1.56

(D) + Salicylic acid 8.00a ± 0.15 8.60a ± 0.24 54.0a ± 2.05 51.5b ± 0.68 5.46a ± 0.07 5.77a ± 0.11 2.98a ± 0.12 2.98a ± 0.19 66.22a ± 1.27 67.18a ± 0.92
(D) + Proline 8.20a ± 0.16 8.50a ± 0.11 58.5a ± 1.06 60.5a ± 0.29 5.56a ± 0.14 5.63a ± 0.17 2.70a ± 0.13 3.02a ± 0.15 61.33b ± 2.72 65.04a ± 0.98

ANOVA: F-ratio 7.7 8.8 12.3 19.8 98.8 77.4 45.4 31.04 21.5 21.5
p-value 0.010 ** 0.006 ** 0.002 ** <0.001 *** <0.001 *** 0.001 *** <0.001 *** 0.001 *** <0.001 *** <0.001 ***

* Significant at p < 0.05; ** highly significant at p < 0.01; *** very highly significant at p < 0.001; NS, nonsignificant at p > 0.05.
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4. Discussion

The significant (p < 0.05) decrease in leaves number, stem lengths, and dry weights of barley
plants (Table 2) under drought stress conditions could be due to the reduction of water absorption from
the soil and consequently to decreased cell division and elongation as well as plant growth [36,37].
The impact of drought on leaves number can result from the adverse effect on cell elongation and
division as well as nucleic acid synthesis [13]. The reduction in growth characters of barley plants
under drought stress conditions agrees with the results of [4,13] in various plants. Likewise, drought
stress significantly decreased photosynthetic rate, which resulted in reduction in the yield production.
The negative effect of drought on the growth characters might be due to the key role of water in
physiological processes, for example, stimulating the photosynthetic rate, which affects plant dry
weight [38]. In the current research, the injurious impact of drought conditions on relative water
content and chlorophyll concentrations in barley could be due to the reduction in water flow, to decline
of chlorophyll, to disorder of thylakoid, to dehydration of protoplasm, and to photo-assimilation
level, as well as to oxidative damage to the chloroplasts; induces stomatal closure; and decreases Co2

concentration in the mesophyll cells [39]. This adverse effect could be due to the chlorophyll oxidation.
The effect of drought stress in increasing Lipid peroxidation (MDA) and electrolyte leakage (EL) may
be a result of protoplasm dehydration [39], consequently causing oxidative stress to cell membranes.
The same trend was recorded under salinity stress in many plants [9,40,41]. Relative water content
(RWC) significantly decreased under drought stress conditions according to the increase in plasma
membrane permeability and the reduction in water supply. Moreover, proline accumulation was
higher in stressed plants, which may be due to the key role of proline in osmotic regulation under
drought stress. Likewise, O2

·- and H2O2 significantly increased in mesophyll cells of water-stressed
plants because of the drought role in cellular dehydration of plants, causing protein degradation and
thus maximizing oxidative stress [29]. Contrariwise, the activity of antioxidant enzymes (CAT, PPO,
and POX) increased due to drought stress; the plants depend on these enzymes as a defense system to
scavenge the ROS [35,36]. The injurious impact of drought stress on yield components may be related to
the decrease in leaves numbers, RWC, cell division, and photosynthetic process [39,40]. Under drought
conditions, the significant decrease in barley grain yield was also reported mostly because of decreased
grains number as well as 1000 grain weight. SA treatment increased morphological characters of
barley plants under drought conditions. The effect of SA may be related to increased element uptake
as well as photosynthetic rate. Additionally, SA can improve enzymatic (CAT, POX, and PPO) and
nonenzymatic antioxidant activity and plays a main role in the enhancement of plant stress tolerance
as well as decreased oxidative stress [42], consequently improving plant growth of drought-stressed
plants. SA significantly increased yield characters because of its role in improving flower formation and
grain yield. In agreement with our findings, application of SA enhanced number of pods and 100-seed
weights of faba beans under drought stress [13]. These impacts of SA could be due to the greater role
of SA to reserve water in plant cells and to enhance the enzyme activities under stress conditions [43],
consequently increasing yield characters. Under drought stress, proline treatment led to adjustments
in osmotic pressure and improvements in the root system to get water under low water potentials [44].
Moreover, proline accumulation significantly increased in drought-stressed plants and in tolerant rather
than sensitive cultivars [32]. The valuable impact of proline might be due to its role as a scavenger and
osmolyte, consequently improving growth characters and yield production under drought conditions.
Some researchers reported that osmoregulators enhance growth and yield characters in some plants
under drought, salinity and biotic stress conditions [45–48]. Stomatal pores are a very important part
of leaves, considered the main way through which upper and lower epidermises exchange gas and
supply water. Under drought conditions, the reduction in stomatal aperture in stressed barley plants
(Figure 5) may lead to conserved water in the leaf, to reduced transpiration levels, and to saved soil
moisture, consequently avoiding the injurious effect of drought stress conditions on barley plants [6].
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5. Conclusions

To conclude, this research was planned to examine the impact of proline and salicylic acid on
barley plants under drought stress. The growth characters and biochemical and yield characters of
barley were considerably decreased in stressed plants compared with control (well-watered) plants.
Nevertheless, foliar application of proline and SA led to improvements in the plant growth characters,
such as stem length, number of leaves, fresh and dry weight of plants, as well as relative water content;
however, electrolyte leakage and lipid peroxidation were decreased. Furthermore, foliar application of
proline and SA led to improved yield characters in stressed plants compared with untreated stressed
barley plants.
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