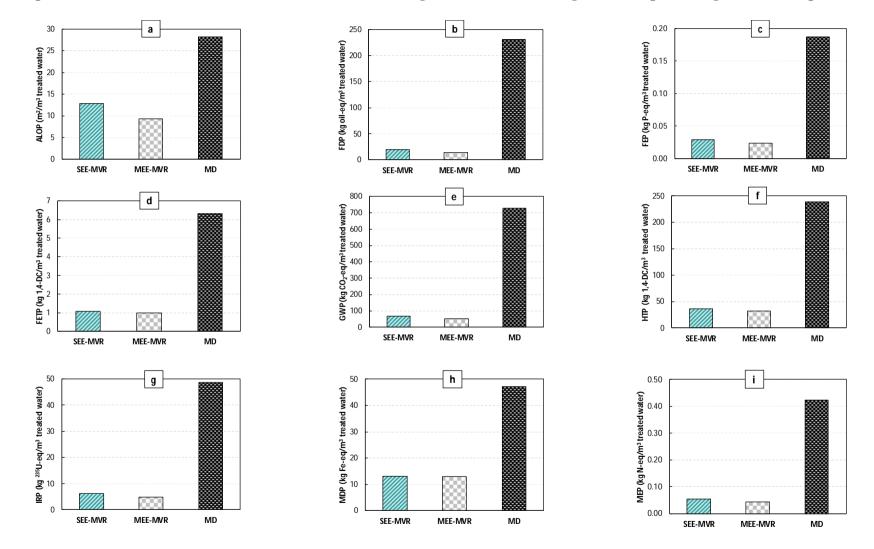
Environmental and Economic Water Management in Shale Gas Extraction.


José A. Caballero*^a, Juan A. Labarta^a, Natalia Quirante^a, Alba Carrero-Parreño^a and I.E.

Grossmann^b

Supplementary Information

This document contains the supplementary material for the article *«Environmental and Economic Water Management in Shale Gas Extraction»*. The document is organized as follows:

- S.1. Comparison between thermal and membrane-based technologies for all the subcategories of impact using ReCiPe Midpoint (H)
- S.2. Waste Water Management: Mathematical model Formulation.
 - Nomenclature
 - Waste Water Management Model
 - Model Parameter: typical values
 - References
- S3. Case Study Data and Results
 - Case Study Data
 - Results for the maximum profit optimization
 - Results for the minimum total LCIA (endpoint)
 - Results for the minimum fresh water consumption

S.1. Comparison between thermal and membrane-based technologies for all the subcategories of impact using ReCiPe Midpoint (H)

Figure S.1. Comparison between thermal and membrane-based technologies for all the subcategories of impact using ReCiPe Midpoint (H). a) Agricultural land occupation (ALOP), b) Fossil depletion (FDP), c) Freshwater eutrophication (FEP), d) Freshwater ecotoxicity (FETP), e) Global warming potential (GWP), f) Human toxicity (HTP), g) Ionizing radiation (IRP), h) Metal depletion (MDP), i) Marine eutrophication (MEP),

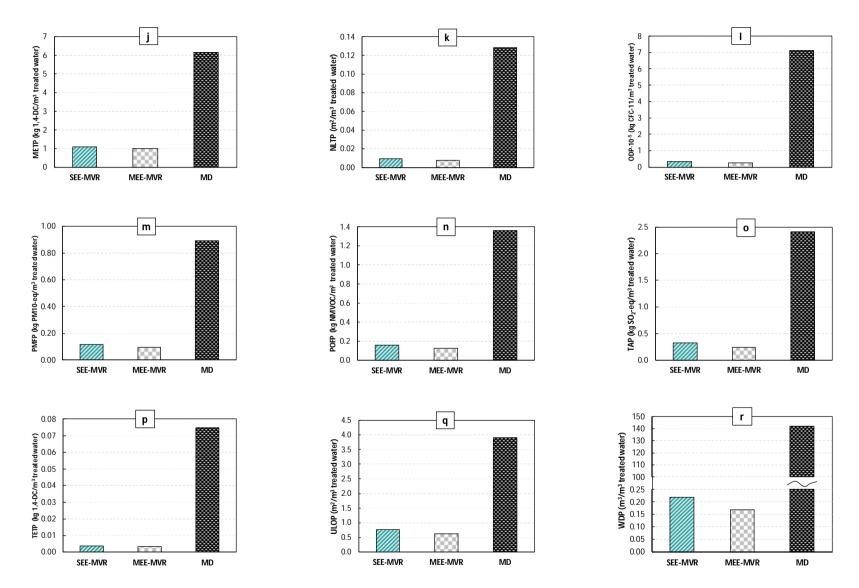


Figure S.1.(cont) Comparison between thermal and membrane-based technologies for all the subcategories of impact using ReCiPe Midpoint (H) j) Marine ecotoxicity (METP), k) Natural land transformation (NLTP), l) Ozone depletion (ODP), m) Particulate matter formation (PMFP), n) Photochemical oxidant formation (POFP), o) Terrestrial acidification (TAP), p) Terrestrial ecotoxicity (TETP), q) Urban land occupation (ULOP), and r) Water depletion (WDP).

S.2. Waste Water Management: Mathematical model Formulation

The shale gas water management mathematical model is based on the model proposed by Carrero-Parreño et al. [1] The equations that define this problem are detailed below:

NOMENCLATURE

Indexes

С	Fracturing crew
d	Disposal well
f	Source
k	Capacity
n	Onsite treatment
р	Wellpad
t	Time period
W	Well
wt	Treatment

Parameters

$D_{p,d}^{pad-dis}$	Distance from wellpad p to disposal well d
$D_{f,p}^{pad-source}$	Distance from source f to wellpad p
$D_p^{pad-off}$	Distance from wellpad p to offsite-treatment
$D_{p,pp}^{pad-pad}$	Distance from wellpad p to wellpad pp
$F_{t,p,w}^{well}$	Flowback water forecast for well w on wellpad p in time period t
$F_n^{on,LO}$	Minimum onsite capacity for treatment wt
$F_n^{on,UP}$	Maximum onsite capacity for treatment wt
$F_k^{cwt,UP}$	Maximum centralize water treatment capacity k
V_s^{UP}	Maximum storage volume of tank type s
WD_w	Water demand of well w
α_k^{cwt}	Cost coefficient of centralized water treatment k
α^{des}	Onsite treatment recovery factor
$lpha_d^{dis}$	Disposal coefficient cost coefficient for disposal d
$lpha^{fr}$	Friction reducer cost coefficient
α^{ft}	Fracturing tank cost coefficient
α^{fwt}	Fresh water tank cost coefficient
α_p^{on}	Onsite desalination cost coefficient on wellpad p
$\alpha^{\it pre}$	Pretreatment recovery factor

α^{rec}	Centralized water treatment recovery factor
α^{reuse}	Pretreatment cost coefficient aiming its reuse
α_{f}^{source}	Freshwater cost coefficient in freshwater source f
$\alpha^{\textit{treat}}$	Pretreatment cost coefficient aiming its treatment
α^{truck}	Trucking cost coefficient
$eta^{{}_{ft}}$	Mobilize, demobilize and cleaning cost coefficient for storage tank
${m eta}_p^{on}$	Maintenance cost coefficient for onsite treatment on wellpad p
$ au_w$	Time to fracture well <i>w</i>

Binary variables

$y_{t,p,w,c}^{hf}$	Indicates if well w on wellpad p is stimulating using fracturing crew c in time period t
$\mathcal{Y}_{t,p,n}^{on}$	Indicates if onsite treatment n is used on wellpad p in time period t

Variables

$f_{t,p,k}^{cwt,in}$	Inlet flow in centralized water treatment k in time period t
$f_{t,k}^{cwt,out}$	Outlet flow in centralized water treatment k in time period t
$f_{t,p}^{dem}$	Flowrate of water demand in wellpad p in time period t
$f_{t,p}^{fresh}$	Flowrate of freshwater used in hydraulic fracturing in wellpad p in time period t
$f_{t,p}^{imp}$	Flowrate of impaired water used in hydraulic fracturing in wellpad p in time period t
$f_{t,p,pp}^{imp,pad}$	Flowrate of impaired water from wellpad p to wellpad pp in time period t
$f_{t,p,d}^{on,brine}$	Brine flowrate after onsite desalination process in wellpad p in time period t
$f_{t,p}^{on,in}$	Onsite desalination inflow in wellpad p in time period t
$f_{t,p}^{on,out}$	Onsite desalination outflow in wellpad p in time period t
$f_{t,p}^{on,slud}$	Sludge flowrate after onsite desalination process in wellpad p in time period t
$f_{t,p}^{pad}$	Flowrate of produce water on wellpad p in time period t
$f_{t,p}^{\ pre,in}$	Onsite pretreatment inflow in wellpad p in time period t
$f_{t,p}^{\ pre,out}$	Onsite pretreatment outflow in wellpad p in time period t
$f_{t,p,f}^{source}$	Flowrate of freshwater from natural source f to wellpad p in time period t
$f_{t,p,w}^{well}$	Flowrate of produce water on well w wellpad p in time period t
$st_{t,p,s}$	Level of water in tank type s on wellpad p in time period t
$y_{t,p,w}^{fb}$	Indicates when the water starts to come out on well w on wellpad p in time period t

WASTE WATER MANAGEMENT MODEL.

Assignment constraint

Eq. (S1) guarantees that at the time period each well is going to fracture,

$$\sum_{t \in T} y_{t,p,w}^{hf} = 1 \qquad \forall w \in RPW_p, p \in P$$
(S1)

where $y_{t,p,w}^{hf}$ indicates that the well w in wellpad p is stimulating in time period t.

Eq. (S2) ensures that there is no overlap in drilling operations between different wells,

$$\sum_{w \in RPW_p} \sum_{tt=t-\tau_w+1}^{t} y_{tt,p,w}^{hf} = 1 \qquad \forall t \in T, p \in P$$
(S2)

where τ_w is a parameter that indicates the time required to fracture well *w*.

Shale water recovered

After fracturing a well, a portion of the freshwater injected returns to the wellhead,

$$y_{t,p,w}^{hf} = y_{t+\tau_w,p,w}^{fb} \qquad t \le T - \tau_w, \forall w \in RPW_p, p \in P$$
(S3)

where $y_{t,p,w}^{fb}$ represents the time period when the flowback water comes out. The binary variable $y_{t,p,w}^{fb}$ is treated as a continuous variable since its integrality is enforced by the Eq (S3)

The wastewater from each wellpad is calculated with Eq. (S4),

$$f_{t,p,w}^{well} = \sum_{w \in RPW_p} \sum_{tt=0}^{tt \le t-1} F_{t-tt,p,w}^{well} \cdot y_{tt+1,p,w}^{fb} \qquad \forall t \in T, p \in P$$
(S4)

where $F_{t,p,w}^{well}$ are parameters that indicate flowback flowrate.

Eq. (S5) describes the mass balance of flowback water collected from the wells belonging to wellpad p,

$$f_{t,p}^{pad} = \sum_{w \in RPW_p} f_{t,p,w}^{well} \qquad \forall t \in T, p \in P$$
(S5)

Mass balance in storage tanks

The level of the fracturing tank in each time period $(st_{t-1,p,s})$ depends on water stored in the previous time period, the flowback water recovered after the hydraulic fracturing $(f_{t,p}^{pad})$, the water sent to another wellpad to be reused $(f_{t,pp,p}^{imp,pad})$, the water sent to CWT $(f_{t,p,k}^{cwt,in})$ or onsite $(f_{t,p}^{onpre,in})$ treatment and the water sent to disposal $(f_{t,p,d}^{dis})$. The mass balance in the storage tank is described in **Eq. (S6)**.

$$st_{t-1,p,s} + f_{t,p}^{pad} + \sum_{\substack{pp \in P \\ pp \neq p}} f_{t,pp,p}^{imp,pad} = st_{t,p,s} + \sum_{\substack{pp \in P \\ pp \neq p}} f_{t,p,pp}^{imp,pad}$$

$$+ f_{t,p}^{onpre,in} + \sum_{k \in K} f_{t,p,k}^{cwt,in} + \sum_{d \in D} f_{t,p,d}^{dis} \quad \forall t \in T, p \in P, s \in \{s1\}$$
(S6)

The fresh water is also stored in portable tanks. The mass balance is detailed in Eq. (S7).

$$st_{t-1,p,s} + \sum_{f \in F} f_{t,p,f}^{source} = st_{t,p,s} + f_{t,p}^{fresh} \qquad \forall t \in T, p \in P, s \in \{s2\}$$
(S7)

The volume of the tank (v_s) is calculated by Eq. (S8),

$$st_{t,p,s} + \theta_{t,p,s} \le v_s \qquad \forall t \in T, p \in P, s \in S$$
(S8)

where $\theta_{t,p,s}$ represents the inlet water in the storage tank divided by the number of days in a week. This variable is introduced due to as the time horizon is discretized into weeks, the storage tank should handle the inlet water that comes from one day.

The volume of the tank is bounded by the maximum storage capacity allowed in a wellpad per week.

$$v_s \le V_s^{UP} \qquad \forall s \in S \tag{S9}$$

Water demand

The water demand per wellpad $(f_{t,p}^{dem})$ can be provided by a mixture of impaired water $(f_{t,p}^{imp})$ or fresh $(f_{t,p}^{fresh})$,

$$f_{t,p}^{dem} = f_{t,p}^{fresh} + f_{t,p}^{imp} \qquad \forall t \in T, p \in P$$
(S10)

The amount of water demand per well is given by Eq. (S11),

$$f_{t,p}^{dem} = \sum_{w \in RPW_p} f_{t,p,w}^{dem} \qquad \forall t \in T, p \in P$$
(S11)

Eq. (S12) indicates that the water when the well is going to be drilled, must be greater or equal than the well water demand (WD_w) ,

$$f_{t,p,w}^{dem} \ge WD_w \cdot \sum_{c \in C} y_{t,p,w,c}^{hf} \qquad \forall t \in T, w \in RPW_p, p \in P$$
(S12)

Onsite treatment

Onsite pretreatment mass balance is described in Eq. (S13),

$$f_{t,p}^{pre,out} + f_{t,p}^{on,slud} = f_{t,p}^{pre,in} \qquad \forall t \in T, p \in P$$
(S13)

The recovery factor (α^{pre}) is used to model the relationship between the inlet and outlet streams.

$$f_{t,p}^{pre,out} = \alpha^{pre} \cdot f_{t,p}^{pre,in} \qquad \forall t \in T, p \in P$$
(S14)

The outlet pretreated water can be used as a fracturing fluid $(f_{t,p}^{imp})$ or/and can be sent to onsite desalination treatment $(f_{t,p}^{on,in})$,

$$f_{t,p}^{pre,out} = f_{t,p}^{imp} + f_{t,p}^{on,in} \qquad \forall t \in T, p \in P$$
(S15)

Mass balance around onsite desalination technology is given by Eq. (S16),

$$f_{t,p}^{on,out} + f_{t,p}^{on,brine} = f_{t,p}^{on,in} \qquad \forall t \in T, p \in P$$
(S16)

Again, the relation between inlet and outlet mass flowrate in onsite desalination unit is addressed by using the recovery factor (α^{on}),

$$f_{t,p}^{on,out} = \alpha^{on} \cdot f_{t,p}^{on,in} \qquad \forall t \in T, p \in P \qquad \forall t \in T, p \in P$$
(S17)

The following equation **Eq. (S18)** represents the maximum and minimum capacity of the desalination treatment.

$$F^{on,LO} \cdot y_{t,p}^{on} \leq f_{t,p}^{on,in} \leq F^{on,UP} \cdot y_{t,p}^{on} \qquad \forall t \in T, p \in P$$
(S18)

Centralized water treatment

Eq. (S19) shows the connection between inlet and outlet streams, and Eq. (S20) limits the inlet water of CWT k with the maximum capacity allowed.

$$f_{t,k}^{cwt,out} = \alpha_k^{off} \cdot \sum_{p \in P} f_{t,p,k}^{cwt,in} \qquad \forall t \in T, k \in K$$
(S19)

$$\sum_{p \in P} f_{t,p,k}^{cwt,in} \le F_k^{cwt,UP} \qquad \forall t \in T, k \in K$$
(S20)

Objective function

Different objective functions have been considered depending on the case studied. We solve a multi-objective optimization problem considering two objective functions (**Eq. (S21)** and **Eq. (S22)**). Specifically, the gross profit to be maximized includes revenue from shale gas and expenses for wellpad construction and preparation, shale gas production and waterrelated costs. The life cycle impact assessment minimizes environmental impacts associated with water activities.

$$\begin{aligned} \max : GP &= \sum_{t \in T} \sum_{p \in P} \sum_{w \in RPW_p} \sum_{t=0}^{t \leq t-1} F_{t-t,p,w}^{gas} \cdot y_{t+1,p,w}^{fb} \cdot \alpha_t^{gas} \\ &- \sum_{t \in T} \sum_{p \in P} [\sum_{d \in D} \alpha_d^{dis} \cdot f_{t,p,d}^{dis} \\ &+ \sum_{w \in RPW_p} (\alpha^{drill} \cdot y_{t,p,w}^{lf} + \alpha^{prod} \cdot f_{t,p,w}^{gas}) \\ &+ \sum_{f \in F} \alpha_f^{source} \cdot f_{t,p,f}^{source} \\ &+ \alpha^{fr} \cdot f_{t,p}^{imp} \\ &+ \alpha^{reuse} \cdot f_{t,p}^{imp} + \alpha^{treat} \cdot f_{t,p}^{on,in} + \alpha_p^{on} \cdot f_{t,p}^{on,in} + \beta_p^{on} \cdot y_p^{on} \\ &+ \sum_{k \in K} \alpha_k^{cwt} \cdot f_{t,p,k}^{cwt,in} \\ &+ (\sum_{f \in F} f_{t,p,f}^{source} \cdot D_{f,p}^{pad-source} + \sum_{k \in K} f_{t,k}^{cwt,in} \cdot D_{p,k}^{pad-cwt} + \sum_{p p \in P} f_{t,p,pp}^{pad-pad}) \cdot \alpha_p^{trans}] \\ &+ \alpha^{fwt} \cdot v_{fwt} + \alpha^{ft} \cdot v_{ft} + \beta^{ft} \end{aligned}$$
(S21)

$$\min : LCIA = \sum_{t \in T} \sum_{p \in P} [\sum_{f \in F} \sigma^{source} \cdot f_{t,p,f}^{source} + \sigma^{on} \cdot f_{t,p}^{on,in} + \sum_{k \in K} \alpha_k^{cvvt} \cdot f_{t,p,k}^{cvvt,in} + \sum_{k \in K} \alpha_k^{cvvt} \cdot f_{t,p,k}^{cvvt,in} + \sum_{k \in K} f_{t,p,f}^{source} + \sum_{k \in K} f_{t,k}^{cvvt,in} \cdot D_{p,k}^{pad-cvvt} + \sum_{pp \in P} f_{t,p,pp}^{pad-pad} \cdot D_{p,pp}^{pad-pad}) \cdot \sigma^{trans}]$$
(S22)

Model Parameters: typical values

All data related with the case study is shown in the section (S???). However, in this section we show typical values for costs and other relevant parameter and the relevant references.

Table S.1. Cost coefficients.

Parameter	Value	Unit	Ref
Disposal cost (α_d^{dis})	90 - 120	\$/m ³	[2]
Truck cost (α^{truck})	0.15	\$/km/m ³	[2]
Fracturing tank cost ($lpha^{fl};eta^{fl}$)	4.37; 52390	\$/ m ³ ; \$	*
Freshwater tank cost (α^{fwt})	0.59	\$/ m ³	*
Pretreatment cost ($\alpha^{reuse}, \alpha^{treat}$)	0.8 - 2.0	\$/m ³	[3]
Desalination cost (α_p^{ondes})	10 - 25	\$/m ³	[4,5]
Demobilize, mobilize and clean out cost (β_p^{ondes})	650 - 850	\$/week	*
Centralized water treatment (α_k^{cwt})	42 - 84	\$/m ³	[2]
Friction reducer cost (α^{fr})	0.18 - 0.30	\$/m ³	*
Freshwater withdrawal cost (α_f^{source})	1.76 - 3.50	\$/m ³	[6]

* Provided by a company

 Table S.2. Model parameters.

Parameter	V

Parameter	Value	Unit	Ref
V_s^{UP}	60,000	m ³	*
$F_{t,p,w}^{well}$	2,400 - 9,300	m ³ week ⁻¹	[7]
$f^{on,UP}$	4,000	m ³ week ⁻¹	*
$f_k^{cwt,UP}$	16,700	m ³ week ⁻¹	*
$W\!D_{\!\scriptscriptstyle W}$	7,500 - 37,000	m ³ week ⁻¹	[7]
$ au_w$	1 - 5	weeks	[7]

* Provided by a shale gas company

References

- Carrero-Parreño, A.; Reyes-Labarta, J.A.; Salcedo-Díaz, R.; Ruiz-Femenia, R.; Onishi, V.C.; Caballero, J.A.; Grossmann, I.E. Holistic Planning Model for Sustainable Water Management in the Shale Gas Industry. *Ind. Eng. Chem. Res.* 2018, *57*, 13131–13143.
- 2. Yang, L.; Grossmann, I.E.; Mauter, M.S.; Dilmore, R.M. Investment optimization model for freshwater acquisition and wastewater handling in shale gas production. *AIChE J.* **2015**, *61*, 1770–1782.
- 3. Carrero-Parreño, A.; Onishi, V.C.; Salcedo-Díaz, R.; Ruiz-Femenia, R.; Fraga, E.S.; Caballero, J.A.; Reyes-Labarta, J.A. Optimal Pretreatment System of Flowback Water from Shale Gas Production. *Ind. Eng. Chem. Res.* **2017**, *56*, 4386–4398.
- 4. Carrero-Parreño, A.; Onishi, V.C.; Ruiz-Femenia, R.; Salcedo-Díaz, R.; Caballero, J.A.; Reyes-Labarta, J.A. Optimization of multistage membrane distillation system for treating shale gas produced water. *Desalination* **2019**, *460*, 15–27.
- 5. Onishi, V.C.; Carrero-Parreño, A.; Reyes-Labarta, J.A.; Fraga, E.S.; Caballero, J.A. Desalination of shale gas produced water: A rigorous design approach for zero-liquid discharge evaporation systems. *J. Clean. Prod.* **2017**, *140*, 1399–1414.
- 6. Yang, L.; Grossmann, I.E.; Manno, J. Optimization models for shale gas water management. *AIChE J.* **2014**, *60*, 3490–3501.
- 7. EPA Technical Development Document for the Effluent Limitations Guidelines and Standards for the oil and Gas Extraction Point Source Category.; 2016;

SHALE GAS WATER MANAGEMENT

Institute of Chemical Process Engineering

University of Alicante

LCA + Water Management Report

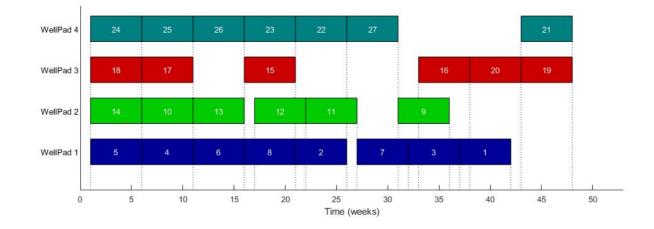
BEST GLOBAL ENVIRONMENTAL ALTERNATIVE

RESULTS FOR THE CASE STUDY IN THE PAPER:

«Environmental and Economic Water Management in Shale Gas Extraction»

CONTENTS

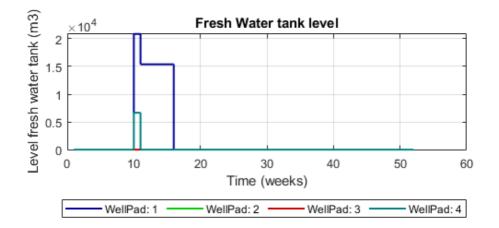
MODEL STATISTICS RESULTS: SCHEDULING RESULTS: Storage Tanks. Volumes and Levels RESULTS: Main Flows RESULTS: Global data water utilization RESULTS: Time dependent Water flow charts RESULTS : Gas Production Charts RESULTS : Cost Distribution RESULTS : LCA

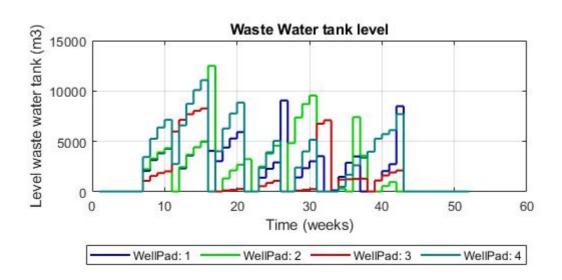

MODEL STATISTICS

Number of Variables	:	11373.0
Numer of Discrete Variables	:	1165.0
Number of Equations	:	9068.0
Number of non-zero elements	:	112950.0
Number of Iterations	:	940439.0
CPU Generation Time (s)	:	0.6090
CPU Solution Time (s)	:	83. 5310
Model Objective Value	:	0. 5189

RESULTS: SCHEDULING

The different wells must be schedule according to the following table.

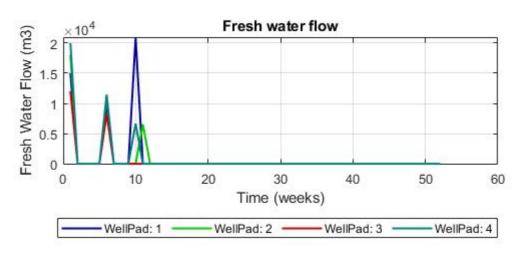

Well	1 in wellpad	1	Starts	fracki ng	at	week	37	and	ends	fracki r	ng at	week	42
Well	2 in wellpad	1	Starts	fracki ng	at	week	21	and	ends	fracki r	ng at	week	26
Well	3 in wellpad	1	Starts	fracki ng	at	week	32	and	ends	frackir	ng at	week	37
Well	4 in wellpad	1	Starts	fracki ng	at	week	6	and	ends	fracki r	ng at	week	11
Well	5 in wellpad	1	Starts	fracki ng	at	week	1	and	ends	fracki r	ng at	week	6
Well	6 in wellpad	1	Starts	fracki ng	at	week	11	and	ends	frackir	ng at	week	16
Well	7 in wellpad	1	Starts	fracki ng	at	week	27	and	ends	fracki r	ng at	week	32
Well	8 in wellpad	1	Starts	fracki ng	at	week	16	and	ends	fracki r	ng at	week	21
Well	9 in wellpad	2	Starts	fracki ng	at	week	31	and	ends	fracki r	ng at	week	36
Well	10 in wellpa	d 2	Starts	fracki ng	at	week	6	and	ends	fracki r	ng at	week	11
Well	11 in wellpa	d 2	Starts	fracki ng	at	week	22	and	ends	fracki r	ng at	week	27
Well	12 in wellpa	d 2	Starts	fracki ng	at	week	17	and	ends	fracki r	ng at	week	22
Well	13 in wellpa	d 2	Starts	fracki ng	at	week	11	and	ends	fracki r	ng at	week	16
Well	14 in wellpa	d 2	Starts	fracki ng	at	week	1	and	ends	fracki r	ng at	week	6
Well	15 in wellpa	d 3	Starts	fracki ng	at	week	16	and	ends	fracki r	ng at	week	21
Well	16 in wellpa	d 3	Starts	fracki ng	at	week	33	and	ends	fracki r	ng at	week	38
Well	17 in wellpa	d 3	Starts	fracki ng	at	week	6	and	ends	fracki r	ng at	week	11
Well	18 in wellpa	d 3	Starts	fracki ng	at	week	1	and	ends	fracki r	ng at	week	6
Well	19 in wellpa	d 3	Starts	fracki ng	at	week	43	and	ends	fracki r	ng at	week	48
Well	20 in wellpa	d 3	Starts	fracki ng	at	week	38	and	ends	frackir	ng at	week	43
Well	21 in wellpa	d 4	Starts	fracki ng	at	week	43	and	ends	fracki r	ng at	week	48
Well	22 in wellpa	d 4	Starts	fracki ng	at	week	21	and	ends	fracki r	ng at	week	26
Well	23 in wellpa	d 4	Starts	fracki ng	at	week	16	and	ends	frackir	ng at	week	21
Well	24 in wellpa	d 4	Starts	fracki ng	at	week	1	and	ends	fracki r	ng at	week	6
Well	25 in wellpa	d 4	Starts	fracki ng	at	week	6	and	ends	fracki r	ng at	week	11
Well	26 in wellpa	d 4	Starts	fracki ng	at	week	11	and	ends	fracki r	ng at	week	16
Well	27 in wellpa	d 4	Starts	fracki ng	at	week	26	and	ends	fracki r	ng at	week	31


RESULTS: Storage Tanks. Volumes and Levels

```
Volume of fresh water tanks (m3)
    Well Pad
               1 :
                      50000.0
    Well Pad
               2 :
                      50000.0
    Well Pad
               3 :
                      50000.0
    Well Pad
                      50000.0
               4 :
Volume of waste water tanks (m3)
    Well Pad
              1 :
                      50000.0
    Well Pad
               2 :
                      50000.0
                      50000.0
    Well Pad
              3 :
                      50000.0
    Well Pad
              4 :
```

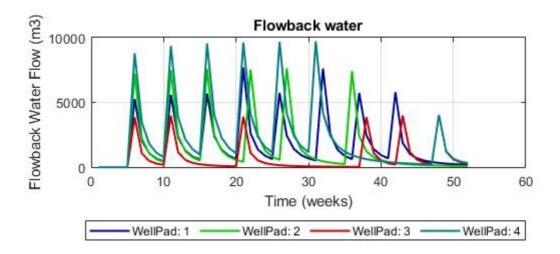
FRESH Water Tank Level

RESULTS: Main Flows

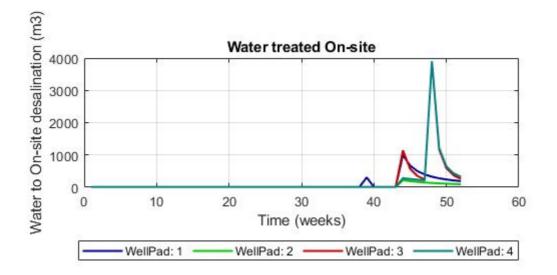

Total Flow from each water source to each WellPad (m3)

WellPad 1 WellPad 2 WellPad 3 WellPad 4 Total 20847.9 0.0 0.0 6655.2 27503.0 Source 1 : Source 2 : 0.0 0.0 0.0 0.0 0.0 Source 3 : 24907.5 35563.9 20275.2 31464.0 12210.6 Total 45755.4 35563.9 20275.2 38119.2 : Total fresh water demand of each wellpad (m3) WellPad 1: 126000.0 WellPad 2 : 108000.0 WellPad 3 : 72000.0 WellPad 4 : 132000.0 : 438000.0 Total Total flowback water in each wellpad (m3) WellPad 1: 91634.5 WellPad 2 : 78614.5 WellPad 3: 38240.0 WellPad 4: 120850.0 Total : 329339.1 Total flowback recycled by each wellpad (m3) WellPad 1 : 80244.6 WellPad 2 : 72436.1 WellPad 3 : 51724.8 93880.8 WellPad 4 : Total : 298286.4 Total flow treated on-site in each wellpad(m3) WellPad 1: 4022.8 WellPad 2 : 1185.4 8524.1 WellPad 3 : 7440.2 WellPad 4 : Total : 21172.5 Total flow sent to a C.W.T by each wellpad(m3) WellPad 1 : 0.0 WellPad 2 : 0.0 WellPad 3 : 0.0 WellPad 4 : 0.0 Total 0.0 Total flow sent to disposal by each wellpad(m3) WellPad 1: 0.0 WellPad 2 : 0.0 WellPad 3 : 0.0 WellPad 4 : 0.0 Total 0.0 Total flow recycled between wellpads (m3) WellPad 1 WellPad 2 WellPad 3 WellPad 4 WellPad 1: 0.0 6014.3 15117.8 4087.2 10032.5 WellPad 2 : 0.0 5153.6 7407.1 WellPad 3 : 2424.7 1376.7 0.0 2919.8 8001.2 WellPad 4 : 12486.2 10322.1 0.0

RESULTS: Global data water utilization


Total water demanded by WellPads (m3)	:	438000.0
Total fresh water consumption (m3)	:	139713.6
Total flowback water (m3)	:	329339.1
Total flowback water recycled (m3)	:	298286.4
Total sludge generated (m3)	:	9880.2
Total water desalinated on-site (m3)	:	21172.5
Total water desalinated off-site (m3)	:	0.0
Total water send to disposal (m3)	:	0.0
Percentage of fresh water saved (%)	:	68.1

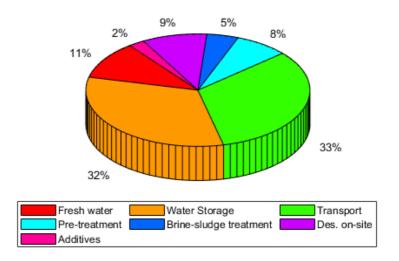
RESULTS: Time dependent Water flow charts



Total fresh water consumed in each wellpad


Total flowback water produced in each wellpad

Water to on-site desalination facility in each wellpad


RESULTS : Gas Production Charts

RESULTS : Cost Distribution

Fresh water adquisition cost(k\$)	:	402.5
Water transport cost(k\$)	:	1213.1
Friction reducers cost(k\$)	:	86.5
Fresh water storage cost (k\$)	:	118.0
Waste water Storage cost(k\$)	:	1083.6
Pre-treatment cost(k\$)	:	288.3
On-site desalination cost(k\$)	:	347.1
Off-site desalination cost(k\$)	:	0.0
Water disposal cost(k\$)	:	0.0
Brine and sludge disposal cost(k\$)	:	169.4
Drilling costs(k\$)	:	7290.0
Gas production cost(k\$)	:	5961.2
Total Cost (k\$)	:	16959.7
Total Gas Income (k\$)	:	59017.6

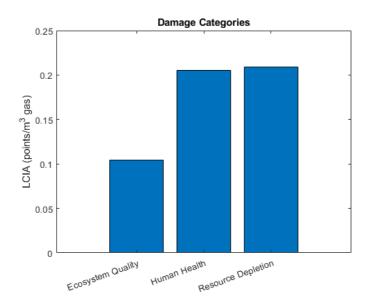
Water related Cost Distribution Pie Chart (drilling and gas production are not included in the chart)

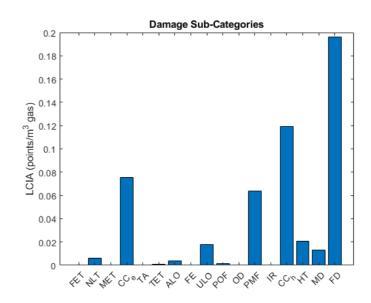
Shale Water Management Costs Distribution %

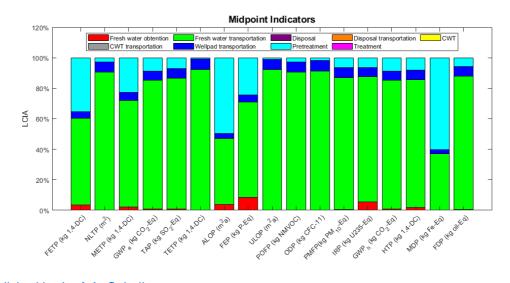
RESULTS : LCA

TOTAL ENVIRONMENTAL IMPACT

Environmental Impact (points/dam3·gas) : 0.51885


DAMAGE CATEGORIES


Ecosystem Quality (points/dam3.gas)	:	0. 10462
Human Health (points/dam3 gas)	:	0. 20497
Resources Depletion (points/dam3.gas)	:	0. 20926


SUB-DAMAGE CATEGORIES

Freshwater Ecotoxicity	0.00003 points/dam3 gas	===>	0. 02404	kg 1,4-DC
Natural Land Transformation	0.00616 points/dam3 gas	===>	0. 00163	m2
Marine Ecotoxicity	0.00001 points/dam3 gas	===>	0. 03797	kg 1,4-DC
Climate Change, Ecosystems	0.07545 points/dam3∙gas	===>	1. 66768	kg CO_2-Eq
Terrestrial Acidification	0.00029 points/dam3 gas	===>	0. 02245	kg SO_2-Eq
Terrestrial Ecotoxicity	0.00084 points/dam3∙gas	===>	0. 00255	kg 1,4-DC
Agricultural Land Occupation	0.00393 points/dam3 gas	===>	0. 10397	m2
Freshwater Eutrophication	0.00005 points/dam3 gas	===>	0. 00043	kg P-Eq
Urban Land Occupation	0.01785 points/dam3 gas	===>	0. 39002	m2
Photochem. Oxidant Formation	0.00129 points/dam3 gas	===>	0. 03329	kg NMVOC
Ozone Depletion	0.00004 points/dam3∙gas	===>	0.00000	kg CFC-11
Particulate Matter Formation	0.06368 points/dam3∙gas	===>	0. 01226	kg PM_10-
Eq				
I oni si ng Radi ati on	0.00012 points/dam3 gas	===>	0.35672	kg U235-Eq
Climate Change, Human Health	0.11938 points/dam3 gas	===>	2.63848	kg CO_2-Eq
Human Toxicity	0.02046 points/dam3 gas	===>	1. 50817	kg 1,4-DC
Metal Depletion	0.01295 points/dam3 gas	===>	0. 27896	kg Fe-Eq
Fossil Depletion	0.19632 points/dam3 gas	===>	1.63711	kg oil-Eq

FIGURES LCA

Published by José A. Caballero

SHALE GAS WATER MANAGEMENT

Institute of Chemical Process Engineering

University of Alicante

LCA + Water Management Report

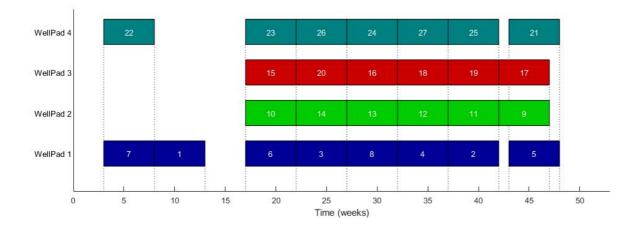
BEST ECONOMIC ALTERNATIVE

RESULTS FOR THE CASE STUDY IN THE PAPER:

«Environmental and Economic Water Management in Shale Gas Extraction»

CONTENTS

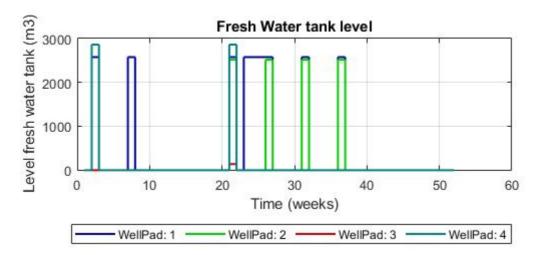
MODEL STATISTICS RESULTS: SCHEDULING RESULTS: Storage Tanks. Volumes and Levels RESULTS: Global data water utilization RESULTS: Time dependent Water flow charts RESULTS : Gas Production Charts RESULTS : Cost Distribution RESULTS : LCA

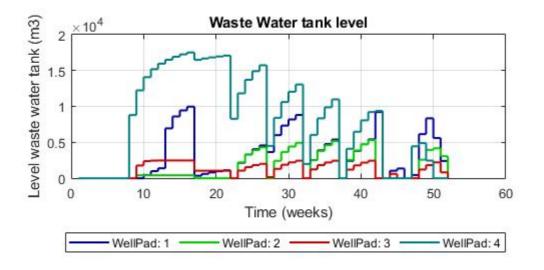

MODEL STATISTICS

Number of Variables	:	11373.0
Numer of Discrete Variables	:	1165.0
Number of Equations	:	9068.0
Number of non-zero elements	:	112950.0
Number of Iterations	:	25776.0
CPU Generation Time (s)	:	0.5940
CPU Solution Time (s)	:	3.9380
Model Objective Value	:	48643. 1019

RESULTS: SCHEDULING

The different wells mus be schedule according to the following table.


Well	1 in wellpad 1		Starts	fracki ng	at	week	8	and	ends	fracki n	g at	week	13
Well	2 in wellpad 1		Starts	fracki ng	at	week	37	and	ends	fracki n	g at	week	42
Well	3 in wellpad 1		Starts	fracki ng	at	week	22	and	ends	fracki n	g at	week	27
Well	4 in wellpad 1		Starts	fracki ng	at	week	32	and	ends	fracki n	g at	week	37
Well	5 in wellpad 1		Starts	fracki ng	at	week	43	and	ends	fracki n	g at	week	48
Well	6 in wellpad 1		Starts	fracki ng	at	week	17	and	ends	fracki n	g at	week	22
Well	7 in wellpad 1		Starts	fracki ng	at	week	3	and	ends	fracki n	g at	week	8
Well	8 in wellpad 1		Starts	fracki ng	at	week	27	and	ends	fracki n	g at	week	32
Well	9 in wellpad 2		Starts	fracki ng	at	week	42	and	ends	fracki n	g at	week	47
Well	10 in wellpad 2	2	Starts	fracki ng	at	week	17	and	ends	fracki n	g at	week	22
Well	11 in wellpad 2	2	Starts	fracki ng	at	week	37	and	ends	fracki n	g at	week	42
Well	12 in wellpad 2	2	Starts	fracki ng	at	week	32	and	ends	fracki n	g at	week	37
Well	13 in wellpad 2	2	Starts	fracki ng	at	week	27	and	ends	fracki n	g at	week	32
Well	14 in wellpad 2	2	Starts	fracki ng	at	week	22	and	ends	fracki n	g at	week	27
Well	15 in wellpad 3	3	Starts	fracki ng	at	week	17	and	ends	fracki n	g at	week	22
Well	16 in wellpad 3	3	Starts	fracki ng	at	week	27	and	ends	frackin	g at	week	32
Well	17 in wellpad 3	3	Starts	fracki ng	at	week	42	and	ends	fracki n	g at	week	47
Well	18 in wellpad 3	3	Starts	fracki ng	at	week	32	and	ends	fracki n	g at	week	37
Well	19 in wellpad 3	3	Starts	fracki ng	at	week	37	and	ends	fracki n	g at	week	42
Well	20 in wellpad 3	3	Starts	fracki ng	at	week	22	and	ends	fracki n	g at	week	27
Well	21 in wellpad 4	ŀ	Starts	fracki ng	at	week	43	and	ends	fracki n	g at	week	48
Well	22 in wellpad 4	ŀ	Starts	fracki ng	at	week	3	and	ends	fracki n	g at	week	8
Well	23 in wellpad 4	ŀ	Starts	fracki ng	at	week	17	and	ends	fracki n	g at	week	22
Well	24 in wellpad 4	ŀ	Starts	fracki ng	at	week	27	and	ends	fracki n	g at	week	32
Well	25 in wellpad 4	ŀ	Starts	fracki ng	at	week	37	and	ends	fracki n	g at	week	42
Well	26 in wellpad 4	ŀ	Starts	fracki ng	at	week	22	and	ends	fracki n	g at	week	27
Well	27 in wellpad 4	ŀ	Starts	fracki ng	at	week	32	and	ends	fracki n	g at	week	37

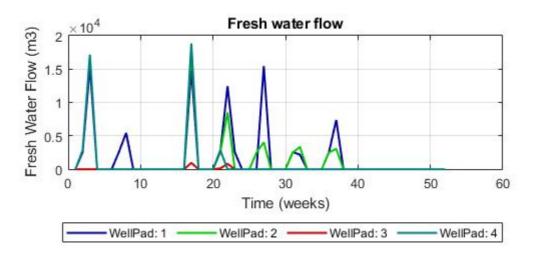


RESULTS: Storage Tanks. Volumes and Levels

```
Volume of fresh water tanks (m3)
               1 :
                       2571.4
    Well Pad
    Well Pad
               2 :
                       2511.8
    Well Pad
               3 :
                        137.1
    Well Pad
               4 :
                       2857.1
Volume of waste water tanks (m3)
                      10036.1
    Well Pad
               1 :
                       5392.8
    Well Pad
               2 :
    Well Pad
               3 :
                       2481.8
    Well Pad
               4 :
                      17529.7
```

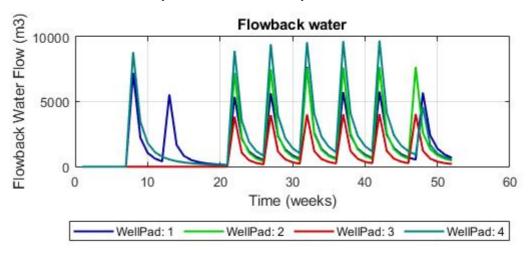
FRESH Water Tank Level [stairs; regular charts]

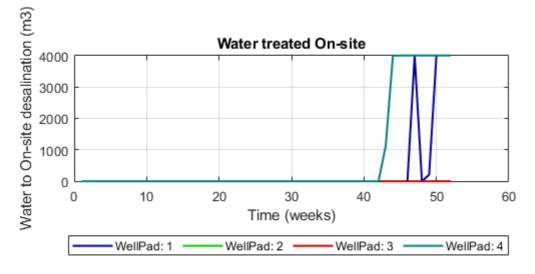
WASTE Water Tank Level


RESULTS: Main Flows

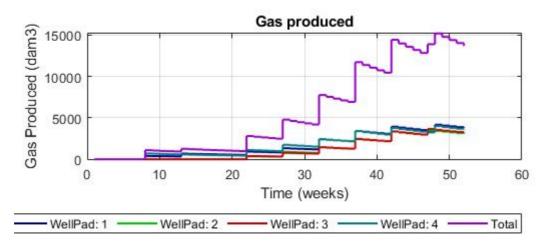
Total Flow from each water source to each WellPad (m3) WellPad 1 WellPad 2 WellPad 3 WellPad 4 Total 88714.6 1920. 0 90634.6 Source 1 : 0.0 0.0 Source 2 : 0.0 0.0 0.0 0.0 0.0 Source 3 : 0.0 46594.3 0.0 41665.0 88259.2 Total 88714.6 46594.3 1920. 0 41665.0 Total fresh water demand of each wellpad (m3) Well Pad 1 : 126000.0 WellPad 2: 108000.0 WellPad 3 : 72000.0 WellPad 4 : 132000.0 : 438000.0 Total Total flowback water in each wellpad (m3) WellPad 1: 89122.9 WellPad 2 : 76235.8 WellPad 3 : 38232.4 WellPad 4 : 118500.7 Total : 322091.9 Total flowback recycled by each wellpad (m3) WellPad 1: 37285.4 WellPad 2 : 61405.7 WellPad 3 : 70080.0 WellPad 4 : 90335.0 Total 259106.2 Total flow treated on-site in each wellpad(m3) WellPad 1: 16210.8 WellPad 2 : 0.0 WellPad 3 : 0.0 WellPad 4 : 37112.1 Total 53322.9 Total flow sent to a C.W.T by each wellpad(m3) WellPad 1: 0.0 WellPad 2 : 0.0 WellPad 3 : 0.0 WellPad 4 : 0.0 Total : 0.0 Total flow sent to disposal by each wellpad(m3) WellPad 1 : 0.0 WellPad 2 : 0.0 WellPad 3 : 0.0 WellPad 4 : 0.0 Total 0.0 Total flow recycled between wellpads (m3) WellPad 1 WellPad 2 WellPad 3 WellPad 4 WellPad 1 : 0.0 430.2 39315.5 3081.5 WellPad 2 : 2571.8 0.0 0.0 16393.3 WellPad 3 : 0.0 6283.3 0.0 2945.0 WellPad 4 : 5603.9 0.0 3927.7 0.0

RESULTS: Global data water utilization

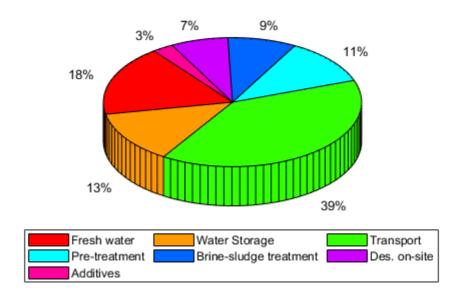

Total water demanded by WellPads (m3)	:	438000.0
Total fresh water consumption (m3)	:	178893.8
Total flowback water (m3)	:	322091.9
Total flowback water recycled (m3)	:	259106.2
Total sludge generated (m3)	:	9662.8
Total water desalinated on-site (m3)	:	53322.9
Total water desalinated off-site (m3)	:	0.0
Total water send to disposal (m3)	:	0.0
Percentage of fresh water saved (%)	:	59. 2


RESULTS: Time dependent Water flow charts

Total fresh water consumed in each wellpad


Total flowback water produced in each wellpad

Water to on-site desalination facility in each wellpad


RESULTS : Gas Production Charts

RESULTS : Cost Distribution

Fresh water adquisition cost(k\$)	:	498.8
Water transport cost(k\$)	:	1117.8
Friction reducers cost(k\$)	:	75.1
Fresh water storage cost (k\$)	:	4.8
Waste water Storage cost(k\$)	:	364.4
Pre-treatment cost(k\$)	:	325.6
On-site desalination cost(k\$)	:	203.7
Off-site desalination cost(k\$)	:	0.0
Water disposal cost(k\$)	:	0.0
Brine and sludge disposal cost(k\$)	:	243.9
Drilling costs(k\$)	:	7290.0
Gas production cost(k\$)	:	4147.9
Total Cost (k\$)	:	14272.0
Total Gas Income (k\$)	:	62915.1

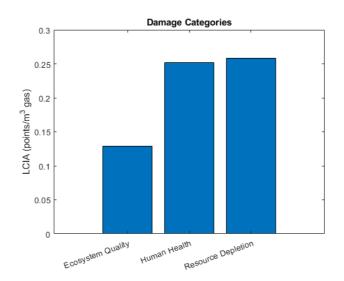
Water related Cost Distribution Pie Chart (drilling and gas production are not included in the chart)

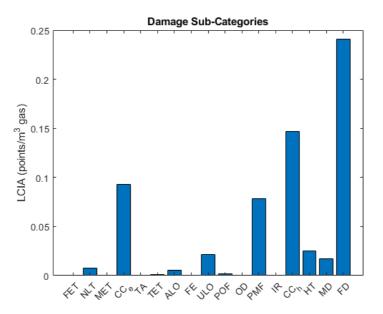
Shale Water Management Costs Distribution %

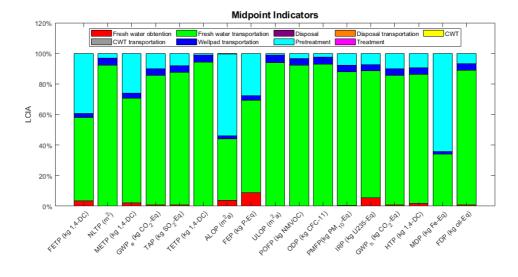
RESULTS : LCA

TOTAL ENVIRONMENTAL IMPACT

Environmental Impact (points/dam3·gas) : 0.63906


DAMAGE CATEGORIES


Ecosystem Quality (points/dam3.gas)	:	0. 12884
Human Health (points/dam3 gas)	:	0. 25221
Resources Depletion (points/dam3.gas)	:	0. 25802


SUB-DAMAGE CATEGORIES

Freshwater Ecotoxicity	0.00004 points/dam3∙gas	===> 0.03114	kg 1,4-DC
Natural Land Transformation	0.00749 points/dam3∙gas	===> 0.00199	m2
Marine Ecotoxicity	0.00002 points/dam3 gas	===> 0.04805	kg 1,4-DC
Climate Change, Ecosystems	0.09297 points/dam3 gas	===> 2.05471	kg CO_2-Eq
Terrestrial Acidification	0.00035 points/dam3 gas	===> 0.02757	kg SO_2-Eq
Terrestri al Ecotoxi ci ty	0.00102 points/dam3 gas	===> 0.00309	kg 1,4-DC
Agricultural Land Occupation	0.00522 points/dam3 gas	===> 0.13825	m2
Freshwater Eutrophication	0.00006 points/dam3 gas	===> 0.00055	kg P-Eq
Urban Land Occupation	0.02167 points/dam3 gas	===> 0.47347	m2
Photochem. Oxidant Formation	0.00160 points/dam3 gas	===> 0.04054	kg NMVOC
Ozone Depletion	0.00005 points/dam3 gas	===> 0.00000	kg CFC-11
Particulate Matter Formation	0.07813 points/dam3 gas	===> 0.01505	kg PM_10-
Eq			
I oni si ng Radi ati on	0.00014 points/dam3 gas	===> 0.43868	kg U235-Eq
Climate Change, Human Health	0.14708 points/dam3 gas	===> 3.25081	kg CO_2-Eq
Human Toxicity	0.02520 points/dam3 gas	===> 1.85754	kg 1,4-DC
Metal Depletion	0.01748 points/dam3 gas	===> 0.37656	kg Fe-Eq
Fossil Depletion	0.24054 points/dam3 gas	===> 2.00593	kg oil-Eq

FIGURES LCA

Published by José A. Caballero

SHALE GAS WATER MANAGEMENT

Institute of Chemical Process Engineering

University of Alicante

LCA + Water Management Report

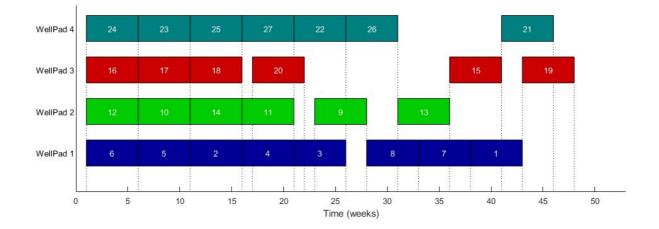
MINIMUM FRESH WATER CONSUMPTION ALTERNATIVE

RESULTS FOR THE CASE STUDY IN THE PAPER:

«Environmental and Economic Water Management in Shale Gas Extraction»

CONTENTS

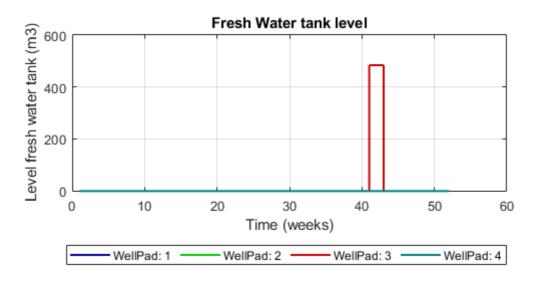
MODEL STATISTICS RESULTS: SCHEDULING RESULTS: Storage Tanks. Volumes and Levels RESULTS: Main Flows RESULTS: Global data water utilization RESULTS: Time dependent Water flow charts RESULTS : Gas Production Charts RESULTS : Cost Distribution RESULTS : LCA

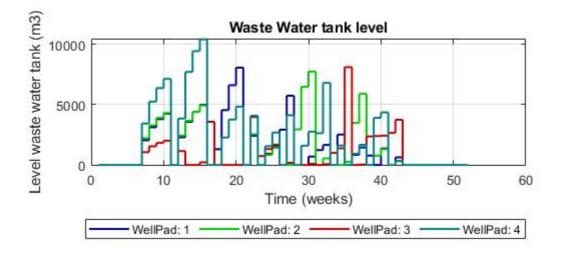

MODEL STATISTICS

Number of Variables	:	11373.0
Numer of Discrete Variables	:	1165.0
Number of Equations	:	9068.0
Number of non-zero elements	:	112950.0
Number of Iterations	:	991149.0
CPU Generation Time (s)	:	0. 5940
CPU Solution Time (s)	:	122. 5790
Model Objective Value	:	138897. 1536

RESULTS: SCHEDULING

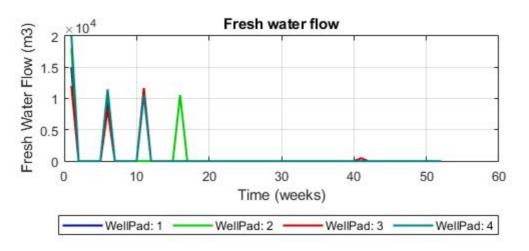
The different wells must be schedule according to the following table.


Well	1 in wellpa	nd 1	Starts	fracki ng	at	week	38	and	ends	fracki ng	at	week	43
Well	2 in wellpa	nd 1	Starts	fracki ng	at	week	11	and	ends	fracki ng	at	week	16
Well	3 in wellpa	nd 1	Starts	fracki ng	at	week	21	and	ends	fracki ng	at	week	26
Well	4 in wellpa	nd 1	Starts	fracki ng	at	week	16	and	ends	fracki ng	at	week	21
Well	5 in wellpa	nd 1	Starts	fracki ng	at	week	6	and	ends	fracki ng	at	week	11
Well	6 in wellpa	nd 1	Starts	fracki ng	at	week	1	and	ends	fracki ng	at	week	6
Well	7 in wellpa	nd 1	Starts	fracki ng	at	week	33	and	ends	fracki ng	at	week	38
Well	8 in wellpa	nd 1	Starts	fracki ng	at	week	28	and	ends	fracki ng	at	week	33
Well	9 in wellpa	nd 2	Starts	fracki ng	at	week	23	and	ends	fracki ng	at	week	28
Well	10 in wellp	ad 2	Starts	fracki ng	at	week	6	and	ends	fracki ng	at	week	11
Well	11 in wellp	ad 2	Starts	fracki ng	at	week	16	and	ends	fracki ng	at	week	21
Well	12 in wellp	ad 2	Starts	fracki ng	at	week	1	and	ends	fracki ng	at	week	6
Well	13 in wellp	ad 2	Starts	fracki ng	at	week	31	and	ends	fracki ng	at	week	36
Well	14 in wellp	ad 2	Starts	fracki ng	at	week	11	and	ends	fracki ng	at	week	16
Well	15 in wellp	ad 3	Starts	fracki ng	at	week	36	and	ends	fracki ng	at	week	41
Well	16 in wellp	ad 3	Starts	fracki ng	at	week	1	and	ends	fracki ng	at	week	6
Well	17 in wellp	ad 3	Starts	fracki ng	at	week	6	and	ends	fracki ng	at	week	11
Well	18 in wellp	ad 3	Starts	fracki ng	at	week	11	and	ends	fracki ng	at	week	16
Well	19 in wellp	ad 3	Starts	fracki ng	at	week	43	and	ends	fracki ng	at	week	48
Well	20 in wellp	ad 3	Starts	fracki ng	at	week	17	and	ends	fracki ng	at	week	22
Well	21 in wellp	ad 4	Starts	fracki ng	at	week	41	and	ends	fracki ng	at	week	46
Well	22 in wellp	ad 4	Starts	fracki ng	at	week	21	and	ends	fracki ng	at	week	26
Well	23 in wellp	ad 4	Starts	fracki ng	at	week	6	and	ends	fracki ng	at	week	11
Well	24 in wellp	ad 4	Starts	fracki ng	at	week	1	and	ends	fracki ng	at	week	6
Well	25 in wellp	ad 4	Starts	fracki ng	at	week	11	and	ends	fracki ng	at	week	16
Well	26 in wellp	ad 4	Starts	fracki ng	at	week	26	and	ends	fracki ng	at	week	31
Well	27 in wellp	ad 4	Starts	fracki ng	at	week	16	and	ends	fracki ng	at	week	21


RESULTS: Storage Tanks. Volumes and Levels

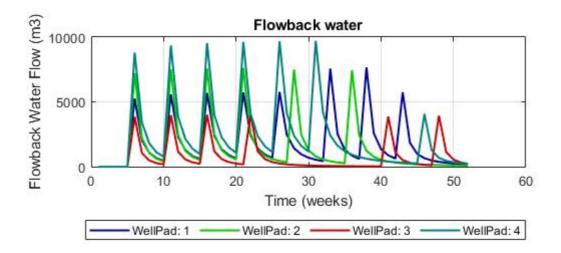
Volume o	f fre	sh water	tanks (m3)
Well	Pad	1 :	50000.0
Well	Pad	2 :	50000.0
Well	Pad	3 :	50000.0
Well	Pad	4 :	50000.0
Volume o	f was	te water	tanks (m3)
	f was Pad	te water 1 :	tanks (m3) 50000.0
Well			
Well Well	Pad Pad	1 :	50000. 0 50000. 0
Well Well	Pad Pad	1 : 2 :	50000. 0 50000. 0

FRESH Water Tank Level

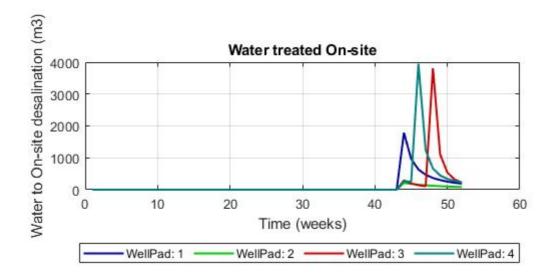

RESULTS: Main Flows

	W	lel I Pad 1	WellPac	12 W	ellPad 3	WellPad 4	Tota
Source	1 :	0.0		0.0	483.0	0.0	483.
Source	2 :	0.0		0.0	0.0	0.0	0.
Source	3 :	24907.5	3955	59.4	31930. 0	42017.2	138414.
Total		24907.5	3955	59.4	32413.0	42017.2	
Total	fresh w	ater dema	nd of each w	vellpad (m3)			
	Well Pad	1: 1	26000.0				
	Well Pad	2: 1	08000. 0				
	Well Pad	3 :					
	Well Pad	4: 1	32000. 0				
	Total	: 4	38000.0				
Total	fl owbac	k water i	n each wellp	oad (m3)			
	Well Pad	1 :	91596. 1				
	Well Pad		78609. 0				
	Well Pad		38483.7				
	Wel I Pad	4 : 1	21070. 7				
	Total	: 3	29759.5				
Total	flowbac	k recycle	d by each we	ellpad (m3)			
	Well Pad	1: 1					
	Well Pad	2 :					
	Well Pad		39587.0				
	Well Pad	4 :	89982.8				
	Total	: 2	99102.9				
Total	flow tr	reated on-	site in each	n wellpad(m3)		
	Well Pad	1 :	5184.4				
	Well Pad		1196.6				
	Well Pad		6728.6				
	Well Pad		7654.3				
	Total	:	20763.8				
Total		ent to a C	.W.T by each	n wellpad(m3)		
	WellPad	1 :	0.0				
	Well Pad	2 :	0.0				
	Well Pad	3 :	0.0				
	Well Pad	4 :	0.0				
	Total	:	0.0				
Total			posal by eac	ch wellpad(m	3)		
	Well Pad	1 :	0.0				
	Well Pad	2 :	0.0				
	Well Pad	3 :	0.0				
	Wel I Pad Total	4 :	0. 0 0. 0				
				vdc (m2)			
Total	flow re	ecycled be	tween wellpa				
Total	flow re	-	tween wellpa ellPad 1	WellPad 2	WellPad 3	WellPad 4	
Total	Wel I Pad	- 1 :	el I Pad 1 0. 0	WellPad 2 4790.5	11290. 4	10081.5	
Total		W	ellPad 1	WellPad 2			
Total	Wel I Pad	- 1 :	el I Pad 1 0. 0	WellPad 2 4790.5	11290. 4	10081.5	

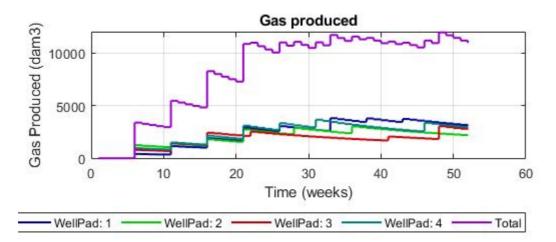
RESULTS: Global data water utilization

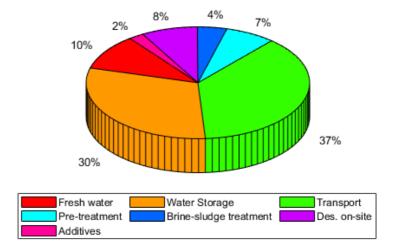

Total water demanded by WellPads (m3)	:	438000.0
Total fresh water consumption (m3)	:	138897.1
Total flowback water (m3)	:	329759.5
Total flowback water recycled (m3)	:	299102.9
Total sludge generated (m3)	:	9892.8
Total water desalinated on-site (m3)	:	20763.8
Total water desalinated off-site (m3)	:	0.0
Total water send to disposal (m3)	:	0.0
Percentage of fresh water saved (%)	:	68.3

RESULTS: Time dependent Water flow charts



Total fresh water consumed in each wellpad


Total flowback water produced in each wellpad


RESULTS : Gas Production Charts

RESULTS : Cost Distribution

Fresh water adquisition cost(k\$)	:	408.2
Water transport cost(k\$)	:	1483.8
Friction reducers cost(k\$)	:	86.7
Fresh water storage cost (k\$)	:	118.0
Waste water Storage cost(k\$)	:	1083.6
Pre-treatment cost(k\$)	:	288. 1
On-site desalination cost(k\$)	:	323.0
Off-site desalination cost(k\$)	:	0.0
Water disposal cost(k\$)	:	0.0
Brine and sludge disposal cost(k\$)	:	168.5
Drilling costs(k\$)	:	7290. 0
Gas production cost(k\$)	:	6050.9
Total Cost (k\$)	:	17300. 9
Total Gas Income (k\$)	:	58593.7

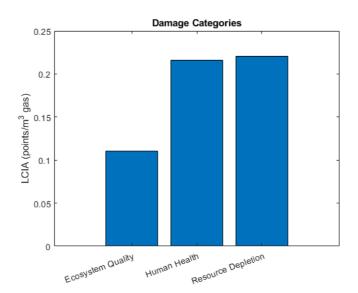
Water related Cost Distribution Pie Chart (drilling and gas production are not included in the chart)

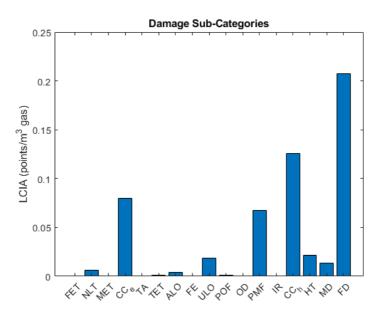
Shale Water Management Costs Distribution %

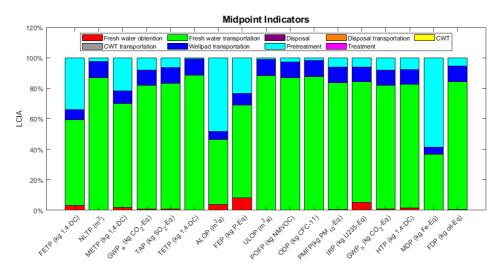
RESULTS : LCA

TOTAL ENVIRONMENTAL IMPACT

Environmental Impact (points/dam3-gas) : 0.54656


DAMAGE CATEGORIES


Ecosystem Quality (points/dam3·gas)	:	0. 11022
Human Health (points/dam3∙gas)	:	0. 21597
Resources Depletion (points/dam3.gas)	:	0. 22037


SUB-DAMAGE CATEGORIES

Freshwater Ecotoxicity	0.00003 points/dam3 gas	===> 0.02487	kg 1,4-DC
Natural Land Transformation	0.00652 points/dam3 gas	===> 0.00173	m2
Marine Ecotoxicity	0.00001 points/dam3 gas	===> 0.03962	kg 1,4-DC
Climate Change, Ecosystems	0.07947 points/dam3 gas	===> 1.75645	kg CO_2-Eq
Terrestrial Acidification	0.00030 points/dam3 gas	===> 0.02367	kg SO_2-Eq
Terrestri al Ecotoxi ci ty	0.00089 points/dam3 gas	===> 0.00270	kg 1,4-DC
Agricultural Land Occupation	0.00404 points/dam3 gas	===> 0. 10654	m2
Freshwater Eutrophication	0.00005 points/dam3 gas	===> 0.00044	kg P-Eq
Urban Land Occupation	0.01890 points∕dam3 gas	===> 0.41288	m2
Photochem. Oxidant Formation	0.00136 points/dam3 gas	===> 0.03520	kg NMVOC
Ozone Depletion	0.00004 points/dam3 gas	===> 0.00000	kg CFC-11
Particulate Matter Formation	0.06716 points/dam3 gas	===> 0.01293	kg PM_10-
Eq			
I oni si ng Radi ati on	0.00012 points/dam3 gas	===> 0.37521	kg U235-Eq
Climate Change, Human Health	0.12573 points∕dam3∙gas	===> 2.77893	kg CO_2-Eq
Human Toxicity	0.02155 points/dam3 gas	===> 1.58815	kg 1,4-DC
Metal Depletion	0.01321 points∕dam3 gas	===> 0.28467	kg Fe-Eq
Fossil Depletion	0.20716 points/dam3 gas	===> 1.72753	kg oil-Eq

FIGURES LCA

