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Abstract: A back-propagation neural network prediction model with three layers and six neurons in
the hidden layer is established to overcome the limitation of the equivalent linear overbreak slough
(ELOS) empirical graph method in estimating unplanned ore dilution. The modified stability number,
hydraulic radius, average deviation of the borehole, and powder factor are taken as input variables
and the ELOS of quantified unplanned ore dilution as the output variable. The training and testing
of the model are performed using 120 sets of data. The average fitting degree r2 of the prediction
model is 0.9761, the average mean square error is 0.0001, and the relative error of the prediction is
approximately 6.2%. A method of calculating the unplanned ore dilution is proposed and applied to
a test stope of the Sandaoqiao lead–zinc mine. The calculated unplanned ore dilution is 0.717 m, and
the relative error (i.e., the difference between calculation and measurement of 0.70 m) is 2.4%, which
is better than the relative errors for the empirical graph method and numerical simulation (giving
dilution values of 0.8 and 0.55 m, respectively). The back-propagation neural network prediction
model is confirmed to predict the unplanned ore dilution in real applications.

Keywords: equivalent linear overbreak slough empirical graph; unplanned ore dilution;
back-propagation neural network; prediction model; numerical simulation

1. Introduction

Ore dilution control is a common problem in the process of mine production. Unplanned ore
dilution refers to the mixing of waste rock into ore not caused by stope design, leading to ore dilution,
a higher production cost and a lower quality ore. The accurate and efficient prediction of unplanned
ore dilution can guide production by improving the quality of mined ore, mining technology, and
production management [1–6].

Scholars have adopted different methods for quantitatively estimating ore dilution. Clark [7]
proposed the concept of equivalent linear overbreak slough (ELOS), by which the irregular overcut
body under exploitation is transformed into the average overcut depth to represent the unplanned ore
dilution value. He introduced the ELOS concept into the stability graph method and proposed the
ELOS empirical graph method. Liu et al. [8] obtained a regression equation of the ore recovery rate as a
function of the rock inclusion rate of the pillarless sublevel caving on the basis of the simulation results
of an ore drawing experiment and the Matlab statistical analysis box. Luo et al. [9] proposed a method
of calculating ore dilution using a three-dimensional laser cavity detection system. Tait [10] adopted a
neural network to show that the quality of the surrounding rock mass, hydraulic radius of the stope,
and various blasting factors are highly correlated with the ELOS. Wang [11] compared measurements
of the ELOS with estimations from an empirical graph and concluded that the difference was due
to blasting and other factors that have been ignored when building the empirical graph. He also
compared the parameters affecting the blasting effect with the previous differences and concluded that
the drilling conditions had the main effects on the ELOS. Papaioanou et al. [12] established a stability
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graph capable of quantifying the ore dilution using two statistical analysis methods, namely the logistic
regression and the Bayesian likelihood discrimination. Stewart et al. [13] proposed a method for
predicting the dilution of narrow-vein mines on the basis of a large number of examples of narrow-vein
mines. Jang et al. [14,15] established a decision support system for unplanned ore dilution using a
neuro-fuzzy system. The decision support system provides suggestions for mitigating unplanned ore
dilution by analyzing the geology, blasting, and stope design. The above research works are important
to the calculation of ore dilution.

In mining production, factors that affect unplanned ore dilution mainly include the stability
of surrounding rock, the shape and size of the stope, and the blasting effect of mining. The ELOS
empirical graph method proposed by Clark [7] is convenient for the calculation of the unplanned
ore dilution of ore but has some disadvantages: (1) When creating the ELOS empirical graph, only
the modified stability number and hydraulic radius of the stope are considered, while other factors
affecting unplanned ore dilution are ignored, introducing errors into the calculation results; (2) The
use of the method is greatly limited once the modified stability number or hydraulic radius exceeds
the scale range of the graph; (3) In most cases, the application of the experience graph only provides
a fuzzy range of the ELOS and not the exact value. These disadvantages necessitate a more reliable
model for predicting unplanned ore dilution in terms of diverse factors.

In this regard, adopting the ELOS empirical graph and fully considering the average deviations
of the borehole, powder factor, and other factors affecting the blasting effect, the present paper uses
a back-propagation (BP) neural network algorithm to build a model for predicting unplanned ore
dilution. The prediction performance of the BP neural network model is modified and optimized using
collected data and measurements, and the prediction accuracy of the model is verified by engineering
application. The prediction model provides a new method for ore non-dilution index analysis.

2. Materials and Methodologies

2.1. Parameter Selection and Data Acquisition

The present paper determines the modified stability number, hydraulic radius, average deviation of
the borehole, powder factor, and the corresponding ELOS as indicators for the analysis and calculation
of unplanned ore dilution by comprehensively analyzing the influencing factors, characteristics, and
causes of unplanned ore dilution and combining the research results of Clark, Tait, and Wang et al.
The established prediction system is shown in Figure 1.

Figure 1. System for predicting unplanned ore dilution.

One hundred sets of basic data of stope unplanned ore dilution at typical mines were
collected [11,16–18]. Additionally, rock mechanics tests and three-dimensional laser digital
surveying [19] were carried out to obtain 20 sets of data (Table 1). The volume of the overbreak slough
of the final stope is obtained by comparing the final stope shape obtained by three-dimensional laser
digital surveying with the originally designed stope shape (Figure 2), and the ELOS is calculated as

ELOS =
VOS
AS

(1)
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where VOS is the volume of the slough from the stope surface while AS is the area of the stope surface.

Table 1. Data for the obtained sample.

Sample
Number Mine Stope

Modified
Stability
Number

Hydraulic
Radius

(m)

Average
Borehole

Deviation (m)

Powder
Factor
(kg/t)

ELOS (m)

1 Sandaoqiao 26015 73.10 10.46 0.50 0.50 0.10
2 Sandaoqiao 35052 29.36 12.95 0.60 0.50 1.10
3 Sanshandao S19170 0.17 1.82 0.20 0.39 2.70
4 Hulun Buir Shanjin 760-7 11.25 7.38 0.40 0.58 1.20
5 Hongling 4102 35.07 8.46 0.40 0.58 0.90
6 Hongling 6113 9.28 6.00 0.30 0.50 0.60
7 Hongling 4100 18.19 13.68 0.60 0.50 1.90
8 Hongtoushan 33 10.39 6.89 0.30 0.45 0.70
9 Hongtoushan 30 6.93 6.89 0.30 0.45 1.10

10 Qinglonggou 3480-4 35.28 4.05 0.40 0.58 0.10
11 Qinglonggou 3480-4 9.18 4.05 0.40 0.58 0.40
12 Qinglonggou 3480-3 35.28 6.12 0.40 0.58 0.10
13 Qinglonggou 3480-3 9.18 6.12 0.40 0.58 0.70
14 Qinglonggou 3500-3 14.03 3.78 0.40 0.39 0.30
15 Qinglonggou 3500-3 3.81 3.78 0.40 0.39 0.80
16 Qinglonggou 3500-2 14.03 5.51 0.40 0.39 0.40
17 Qinglonggou 3500-2 3.81 5.51 0.40 0.39 1.30
18 Qinglonggou 3500-1 14.03 6.51 0.40 0.39 0.40
19 Qinglonggou 3500-1 3.81 6.51 0.40 0.39 1.80
20 Xincheng 632 1.81 1.78 0.20 0.45 1.00

Figure 2. Comparison of the final stope shape and designed stope shape.

The collected data (100 sets) and acquired data (20 sets) constitute the database of the BP neural
network model. Eighty percent of the 120 sets of data (i.e., 96 sets of data) are randomly selected as
sample data for training the model while the remaining 20% (i.e., 24 sets of data) are selected as the
sample data for testing the model.

2.2. Neural Network Model

The unplanned ore dilution is closely related to the modified stability number, hydraulic radius,
average deviation of the borehole, and powder factor. However, this complicated relationship is not
linear, and it is thus difficult to predict the unplanned ore dilution and the error is relatively large.
The BP neural network performs well in handling nonlinear relationships in data. Therefore, the
present paper adopts the BP neural network in predicting unplanned ore dilution, effectively reducing
the prediction error.
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2.2.1. Model Structure

The BP neural network adopted in this paper is a multilayer feedforward neural network based
on the error BP algorithm [20–22]. The three-layer BP neural network has excellent nonlinear mapping
capability and is thus adopted for modeling in this work [23]; that is, there is one input layer, one
hidden layer, and one output layer. The input layer has four input variables, namely the modified
stability number, hydraulic radius, average deviation of the borehole, and powder factor, which affect
the unplanned ore dilution, and there are thus four neuron nodes in the input layer. The output layer
only contains the ELOS, which represents the unplanned ore dilution, and there is thus one neuron
node in the output layer. Given that the number of neuron nodes in the hidden layer directly affects
the ability of the neural network to map complex problems, the number of neuron nodes in the hidden
layer needs to be optimized through experimental analysis; the number is set as n [24].

2.2.2. Building the Model

Due to the five variables—modified stability number, hydraulic radius, drilling of average
deviation, powder factor, and ELOS—not being of the same type, they must be normalized to ensure
proper training results of the model. The input and output variables are mapped to [0,1] through a
normalization processing. The normalization is expressed as

zi
k =

Zi
k
−Zimin

Zimax −Zimin
, (k = 1, 2 · · · 120)(i = 1, 2, 3, 4, 5) (2)

where zi
k denotes the normalized data of class I; Zi

k denotes the original data of class i; and Zmin

and Zmax are respectively the minimum and maximum values in the original data of class I. After
normalization, the input of the model Xi

(120) = (xi
1, xi

2 . . . xi
120) while the expected output M(120) =

(m1, m2 . . . m120). The input Xi
(96) of 96 sets of random training samples after normalization processing

is input into the neural network, and the output value set Yj
(96) of the hidden layer is calculated as

Y j
(96) = f

 4∑
i=1

wi j
(y)Xi

(96) + b j
(y)

 = 1

1 + e
−

4∑
i=1

wi j
(y)Xi−b j

(y)
, ( j = 1, 2 · ··, n) (3)

where wij
(y) is the weight of the connection between the input layer and hidden layer; bj

(y) is the
threshold between the input layer and hidden layer; and the excitation function f (x) of the hidden
layer adopts the logsig function f (x) = 1/[1 + exp(−x)]. The excitation function of the output layer is set
as a linear function. When the input variable propagates forward to the output layer, the set Z(96) of
the output of the output layer is calculated as

Z(96) =
n∑

j=1

w j
(z)Y j

(96) + b(z) (4)

where wj
(z) is the weight of connection between the hidden layer and output layer while b(z) is the

threshold between the hidden layer and output layer. When the output of the output layer of all
training samples is obtained, the training accuracy of the model is determined by the mean square
error (MSE), expressed as

MSE =
1

96

96∑
k=1

(
mk
− zk

)2

(5)

where mk is the measured ELOS value of the training sample in set k while zk is the output value of the
BP neural network output layer of the training samples in set k. When the error that is the difference
between the training output and the measurement is large and the target accuracy is not achieved, the
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error is reverse-propagated by the gradient descent algorithm until the target accuracy is achieved,
which means the training process is complete. The calculation is

w(N+1) = w(N) − α
∂MSE
∂w

(6)

b(N+1) = b(N) − α
∂MSE
∂b

(7)

where w(N) is the weight of each connection layer; b(N) is the threshold between the connection layers;
w(N+1) is the modified weight; b(N+1) is the revised threshold; α is the network learning rate; and N is
the number of corrections.

After the training process, the weights of connection and thresholds between the connecting layers
are kept unchanged. The input variable Xi

(24) of the remaining 24 test samples after normalization is
input into the neural network, and the set of output values Z(24) of the output layer is obtained through
the above process. Finally, the output of the output layer in the set is anti-normalized to obtain the
predicted value of the test sample.

Zi
k = zi

k(Zimax −Zimin) + Zimin (8)

2.2.3. Model Training and Testing

To ensure the effectiveness of training and testing with sample data, the target error is set as 10−4,
the network learning rate is 0.01, and the maximum number of training steps is 1000. A flowchart of
the model training and testing is shown in Figure 3.

Figure 3. Flowchart of the model training and testing.
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The MSE and r2 are introduced to evaluate the prediction performance of the BP neural network
model more comprehensively. As r2 approaches 1, the correlation between the predicted value and the
measurement increases and the fitting degree of the model improves. r2 is calculated as

r2 =

(
24

24
Σ

k=1
MkZk

−
24
Σ

k=1
Mk

24
Σ

k=1
Zk

)2

24
24
Σ

k=1
(Mk)

2
−

(
24
Σ

k=1
Mk

)224
24
Σ

k=1
(Zk)

2
−

(
24
Σ

k=1
Zk

)2
(9)

where Mk is the measured ELOS value of the test sample in set k while Zk is the predicted ELOS value
of the test sample in set k. The number of neuron nodes n in the hidden layer is set as 1–10, and the
neural network was trained and tested for 5 times successively to obtain the corresponding predictive
performance evaluation index [25] (Table 2).

Table 2. Evaluation index of the prediction performance.

n Evaluation Index 1st 2nd 3rd 4th 5th Average Value

1
r2 0.9372 0.9091 0.8730 0.7650 0.8620 0.8693

MSE 0.0015 0.0025 0.0038 0.0026 0.0030 0.0027

2
r2 0.9307 0.8685 0.9390 0.9093 0.8407 0.8976

MSE 0.0007 0.0007 0.0006 0.0003 0.0010 0.0007

3
r2 0.9586 0.9124 0.9562 0.8276 0.9351 0.9180

MSE 0.0004 0.0002 0.0002 0.0002 0.0002 0.0003

4
r2 0.9633 0.9234 0.8944 0.8847 0.9784 0.9288

MSE 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002

5
r2 0.9772 0.9689 0.9117 0.8982 0.9662 0.9444

MSE 0.0003 0.0002 0.0002 0.0003 0.0007 0.0003

6
r2 0.9874 0.9700 0.9809 0.9511 0.9909 0.9761

MSE 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

7
r2 0.9810 0.8904 0.9737 0.8993 0.9482 0.9385

MSE 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

8
r2 0.9500 0.9385 0.9633 0.9824 0.9658 0.9600

MSE 0.0001 0.0001 0.0001 0.0001 0.0002 0.0001

9
r2 0.9223 0.9390 0.9308 0.9659 0.9376 0.9391

MSE 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

10
r2 0.9325 0.9692 0.9329 0.9171 0.9163 0.9336

MSE 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

According to the analysis in Table 2, when there are six neuron nodes in the hidden layer, the
average fitting degree r2 of the BP neural network model is 0.9761 and the average MSE is 0.0001.
The prediction performance of the BP neural network model is best in this case. The number of neuron
nodes in the hidden layer of the BP neural network model is therefore set at six. Accordingly, the
prediction model of unplanned ore dilution is built as the following (Figure 4).

A 5-fold cross-validation experiment was conducted for the established prediction model of
unplanned ore dilution. The specific operation process of the experiment was as follows: Step 1:
randomly shuffles the database (Appendix A) and divide it into five sets. Step 2: one set is used for
test validation set and the other four sets are used for training set. Step 3: after conducting 5 validation
tests in turn, randomly shuffles the database again and repeat the first step. The whole process was
repeated for 5 times, with a total of 25 experiments for the performance evaluation. The experimental
data obtained by 5-fold cross-validation are shown in Appendix B.
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Figure 4. Prediction model of unplanned ore dilution.

Taking the first experimental data of the 5-fold cross-validation experiment as an example, the
predicted value of the test samples calculated by the BP neural network model was compared with the
measured value, and the results were recorded in Table 3.

Table 3. Comparison of predictions and measurements.

Sample
Number

Measured
Value (m)

Predicted
Value (m)

Relative
Error (%)

Sample
Number

Measured
Value (m)

Predicted
Value (m)

Relative
Error (%)

1 0.40 0.4016 0.4 13 1.90 1.8510 2.6
2 0.10 0.1096 9.6 14 0.80 0.8726 9.1
3 0.20 0.2179 8.9 15 0.20 0.1932 3.4
4 0.70 0.7025 0.4 16 0.50 0.5363 7.3
5 0.70 0.7625 8.9 17 4.30 4.6840 8.9
6 0.30 0.3256 8.5 18 3.30 3.5360 7.2
7 0.10 0.0984 1.6 19 0.10 0.0896 10.4
8 0.40 0.4363 9.1 20 2.00 2.1350 6.8
9 0.30 0.3260 8.7 21 0.40 0.4254 6.4

10 0.50 0.5104 2.1 22 0.80 0.7242 9.5
11 0.60 0.5619 6.4 23 0.90 0.9262 2.9
12 0.90 0.8672 3.6 24 1.10 1.1210 1.9

The corresponding data in Table 3 are integrated to draw a relative error diagram of the unplanned
ore dilution prediction model, as shown in Figure 5.

Figure 5. Prediction error.

The Figure 5 reveals that the predicted value is slightly different from the field measurements,
with the average relative error being 6.0%. The relative error of each test sample fluctuates within a
certain range, and the fluctuation range is insignificant (10%). Using the same method to deal with
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the other data obtained from the 5-fold cross-validation experiments, the relative error between the
predicted value of the unplanned ore dilution prediction model and the measured value in the field is
within 19.6%. The mean relative error was 6.2%. Therefore, the prediction model of unplanned ore
dilution based on the BP neural network has good accuracy and stability.

2.2.4. Calculation of Unplanned Ore Dilution

Table 2 shows that the prediction performance for unplanned ore dilution is best when there are six
neuron nodes in the hidden layer. However, when deriving the formula for calculating the unplanned
ore dilution, the increase in the number of neuron nodes in the hidden layer greatly increases the
complexity of formula derivation. Therefore, the hidden layer neuron node is reduced to one, while
other layer neuron node remains unchanged, and the formula is derived.

The input variables are normalized to X1, X2, X3, and X4 using Formula (2) and the output y of
the hidden layer is obtained by substituting the input variables X1, X2, X3, and X4 into Formula (3):

y = 1/1 + exp(−w1
(y)X1 −w2

(y)X2 −w3
(y)X3 −w4

(y)X4 − b(y)) (10)

The output y of the hidden layer is input into Formula (4) to get the output z of the output layer:

z = b(z) + w(z)/1 + exp(−w1
(y)X1 −w2

(y)X2 −w3
(y)X3 −w4

(y)X4 − b(y)) (11)

where the weight of the input layer to the hidden layer wi
(y) = {2.5610, −1.5110, 0.0536, −0.0845}; the

threshold b(y) = 2.2195; the weight of the connection from the hidden layer to the output layer wi
(z) =

−1.4773; and the threshold b(z) = 0.4850.
The input and output values in Formula (11) are anti-normalized to obtain the formula for

calculating the unplanned ore dilution (i.e., ELOS).

ELOS = 0.4850− 6.3524/1 + exp(−0.0362x1 + 0.0819x2 − 0.0447x3 + 0.0871x4 − 2.3240) (12)

2.3. Empirical Graph Method

ELOS empirical graph method [7] is the common method used to estimate the unplanned ore
dilution. Although empirical graph method has some shortcomings, it can also verify the prediction
performance of neural network. The empirical graph for estimating unplanned ore dilution is shown
in Figure 6.

Figure 6. ELOS empirical graph.
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2.4. Numerical Simulation Method

With the continuous development and improvement of computer levels, numerical calculation
software has been widely used in geotechnical engineering analysis. As a common verification method,
numerical simulation has the advantages of providing intuitive results and having strong applicability.

In this paper, RS2 numerical simulation software was used to verify the predictive performance
of the established neural network model. RS2 is a powerful geotechnical finite element analysis
software developed by Rocscience, which can perform a certain degree of predictive analysis before
engineering construction.

3. Results

3.1. Engineering Application

In order to verify and cross-validate the BP neural network approach, we select a test stope in the
Sandaoqiao lead-zinc mine to analyze and calculate the unplanned ore dilution and verify the accuracy
of the calculation.

3.1.1. Geological Setting and Engineering Background

The Sandaoqiao lead-zinc mine is located on the western margin of the northern section of the
Greater Khingan Range in Inner Mongolia, China (Figure 7). There are 67 lead-zinc industrial orebodies
in the ore belts I, II, and III within the mining area, among which orebody III-3 is the largest. This
orebody has a strike of 286◦–345◦ and dip angle of 70◦–85◦. The orebody is vein-shaped and regular in
shape. The middle part of the ore body is thicker than the deep part and both sides.

Figure 7. Location of the Sandaoqiao lead–zinc mine.

The stope of the Sandaoqiao lead-zinc mine had a length of 50 m and a height of 40 m. When
mining in an area neighboring exploration line 9 at a depth of 610 m for orebody III-3, the occurrence
of geological faults resulted in the serious dislocation of orebody III-3 and a length of the remaining
orebody of 80 m. If two stopes are arranged for the length of an orebody, the amount of mining and
cutting works and the cost of mining are greatly increased. In an effort to reduce costs and improve
production, the mine lengthened the stope from 50 to 80 m. Consequently, only one stope is needed
to extract the remaining ore of orebody III-3 at a depth of 610 m, which greatly reduces the cutting
quantity and recovery cost. However, the problem is that a change in stope size will affect unplanned
ore dilution, and previous experience of unplanned ore dilution of the original stope size is no longer
valid in predicting unplanned ore dilution with a larger stope. It is therefore necessary to use the
prediction model to obtain the unplanned ore dilution for a test stope.
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3.1.2. Test Stope

The selected test stope of orebody III-3 at a depth of 610 m at the Sandaoqiao lead-zinc mine is
between exploration lines 5 and 9 (Figure 8).

Figure 8. Position of the test stope.

The test stope has an average span of 5 m, a height of 40 m, a strike length of 80 m, and an
inclination angle of 70◦. The surrounding rock of the hanging wall of the test stope is detritus crystal tuff

while the surrounding rock of the footwall is andesite. The mining method is shallow-hole shrinkage
mining with a flat bottom structure (Figure 9).

Figure 9. Method of mining the test stope.

3.1.3. Model Application

Various parameters affecting stope stability are obtained from an engineering geological survey
and rock mechanics tests of the test stope (Table 4).

Table 4. Parameters of the hanging wall ELOS.

Modified Stability
Number Hydraulic Radius (m) Average Borehole

Deviation (m) Powder Factor (kg/t)

41.06 13.89 0.60 0.50

Parameters in Table 4 are taken as input variables for the unplanned-dilution prediction model
based on a BP neural network. At the end of model training, the MSE is 9 × 10−5, and the calculated
ELOS of the hanging wall of the test stope is 0.717 m.
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3.2. Comparison and Analysis

Results obtained using the BP neural network model are verified by comparing the field
measurements of the ELOS with results obtained using the BP neural network prediction method, the
empirical graph method, and the numerical simulation method.

3.2.1. Results of Empirical Graph Method

The ELOS empirical graph is the common approach of estimating unplanned ore dilution.
The modified stability number and hydraulic radius in Table 4 are added to the ELOS empirical graph,
and the position of the test stope at a depth of 610 m for the Sandaoqiao lead-zinc mine is obtained as
shown in Figure 10.

Figure 10. ELOS empirical graph.

Figure 10 shows that the ELOS of the test stope obtained using the ELOS empirical graph method
is approximately 0.8 m.

3.2.2. Results of Numerical Simulation

In this paper, RS2 software is used to analyze the mining of the test stope of the Sandaoqiao
lead-zinc mine. The specific process of simulation is not explained here [26]. Numerical results are
presented in Figure 11.

Figure 11. Contours of the plastic zone.
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The morphology of the plastic zone shown in Figure 11 reveals that the ELOS of the hanging wall
of the test stope is 0.55 m.

Field measurements (Figure 12), results obtained using the BP neural network prediction method
and empirical graph method, and numerical simulation results are compared in Table 5. The results
show that the BP neural network prediction model performs well.

Figure 12. Field photographs of the test stope.

Table 5. Comparison of results of investigative methods.

Research Methods ELOS (m) Relative Error (%)

Field measured 0.70 0
BP neural network prediction method 0.717 2.4

Empirical graph method [7] 0.8 14.3
Numerical simulation analysis 0.55 21.4

4. Discussion

In order to more accurately and effectively predict ore dilution, based on the ELOS empirical graph
method and fully considering the average deviations of the borehole, powder factor, and other factors
affecting the blasting quality, a prediction model of unplanned ore dilution based on a three-layer
BP neural network with six neuron nodes in the hidden layer was established. Using collected and
measured data to modify and evaluate the predictive performance of the model, the unplanned ore
dilution prediction model was used to calculate the test stope of Sandaoqiao lead-zinc mine, and the
ELOS of hanging wall was 0.717 m. The relative error between the predicted and actual measurements
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was 2.4%. Therefore, the established prediction model is accurate and reasonable, which provides a
new method for the quantitative analysis of unplanned ore dilution.

Although the traditional ELOS empirical graph method is convenient to use, it has the
disadvantages of not being able to give precise values and being limited in application range.
The BP neural network model established in this paper performs well in predicting the unplanned ore
dilution. The average relative error of the prediction model is 6.2% after the 5-fold cross-validation
experiment. Therefore, the prediction method of ore dilution based on neural network has a wider
application range with good accuracy, making up for the shortcomings of ELOS empirical graph.

A limitation of the unplanned ore dilution prediction model is that it is complicated to use.
The next research objective is to simplify the operation procedure and improve the accuracy of the
simplified calculation formula.

5. Conclusions

Data of unplanned ore dilution for actual mines (i.e., the modified stability number, hydraulic
radius, average borehole deviation, and powder factor) were collected and a model of unplanned
ore dilution was established on the basis of a BP neural network. The average fitting degree r2 of the
model was 0.9761, the average MSE was 0.0001, and the relative error of prediction was about 6.2%.
By referring to the BP neural network model, the simplified calculation formula of unplanned ore
dilution based on a single hidden layer neuron is derived, which provides another research method for
quantitative ore dilution.

Calculations were made for a test stope of the Sandaoqiao lead-zinc mine by applying the
unplanned ore dilution prediction model, and the ELOS of the hanging wall of 0.717 m was obtained.
The difference between calculation and measurement was 2.4%, which is better than the relative error
when adopting the graph method (relative error of 14.3%) or that when conducting numerical simulation
(relative error of 21.4%). The results show that the BP neural network model can be effectively applied
in predicting unplanned ore dilution, providing a new method for ore dilution analysis.
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Appendix A

Table A1. Database of 120 case histories of unplanned ore dilution.

Sample
Number

Modified
Stability
Number

Hydraulic
Radius (m)

Average
Borehole

Deviation (m)

Powder Factor
(kg/t) ELOS (m)

1 73.10 10.46 0.50 0.50 0.10
2 29.36 12.95 0.60 0.50 1.10
3 0.17 1.82 0.20 0.39 2.70
4 11.25 7.38 0.40 0.58 1.20
5 35.07 8.46 0.40 0.58 0.90
6 9.28 6.00 0.30 0.50 0.60
7 18.19 13.68 0.60 0.50 1.90
8 10.39 6.89 0.30 0.45 0.70
9 6.93 6.89 0.30 0.45 1.10
10 35.28 4.05 0.40 0.58 0.10
11 9.18 4.05 0.40 0.58 0.40
12 35.28 6.12 0.40 0.58 0.10
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Table A1. Cont.

Sample
Number

Modified
Stability
Number

Hydraulic
Radius (m)

Average
Borehole

Deviation (m)

Powder Factor
(kg/t) ELOS (m)

13 9.18 6.12 0.40 0.58 0.70
14 14.03 3.78 0.40 0.39 0.30
15 3.81 3.78 0.40 0.39 0.80
16 14.03 5.51 0.40 0.39 0.40
17 3.81 5.51 0.40 0.39 1.30
18 14.03 6.51 0.40 0.39 0.40
19 3.81 6.51 0.40 0.39 1.80
20 1.81 1.78 0.20 0.45 1.00
21 8.10 7.00 0.50 0.56 0.80
22 11.00 7.40 0.60 0.41 1.30
23 7.00 8.80 0.60 0.64 2.30
24 11.00 7.30 0.70 0.45 2.10
25 7.10 9.30 1.00 0.95 1.30
26 8.80 6.90 0.10 0.59 0.10
27 7.80 7.60 0.60 0.41 1.10
28 8.80 6.70 0.70 0.86 2.10
29 7.30 7.20 0.30 0.36 1.20
30 7.80 6.90 0.70 0.45 1.90
31 10.80 5.00 0.50 0.41 0.60
32 8.00 7.20 0.4 0.40 1.20
33 12.20 6.60 0.20 0.40 0.20
34 11.40 6.70 0.30 0.41 0.50
35 6.70 7.30 0.20 0.59 1.10
36 12.00 6.20 0.20 0.60 0.40
37 9.90 9.10 0.4 0.88 1.40
38 14.10 5.40 0.40 0.37 0.20
39 9.20 6.00 0.60 0.45 0.50
40 12.20 6.60 0 0.43 0.30
41 11.20 5.50 0 0.59 0.40
42 11.10 5.20 0.50 0.52 0.40
43 6.00 5.50 0.75 1.05 3.30
44 11.10 6.20 0 0.40 0.40
45 11.60 6.50 0.50 0.50 0.60
46 6.30 8.00 1.00 0.41 4.40
47 9.80 7.00 1.20 0.28 4.00
48 12.00 6.30 0.40 0.32 0.70
49 13.50 6.90 0.40 0.54 0.60
50 9.80 7.50 0.50 0.32 0.80
51 11.00 6.00 0.40 0.67 0.40
52 10.10 8.10 0.90 0.51 1.10
53 9.50 6.20 0.80 0.47 0.70
54 10.30 6.30 0.70 0.47 0.60
55 8.20 6.00 0.90 0.29 1.10
56 7.70 5.60 0.90 0.47 1.50
57 8.20 5.70 0.90 0.36 2.40
58 9.10 5.70 0.30 0.31 0.80
59 10.40 6.90 0.60 0.57 0.80
60 10.60 5.70 0.70 0.33 0.40
61 4.50 7.20 1.00 0.30 1.90
62 7.90 7.20 0 0.30 0.90
63 3.80 7.00 0.50 0.25 1.90
64 5.40 6.10 0.90 0.25 1.20
65 5.60 5.70 0 0.45 0.40
66 12.00 5.70 0 0.45 0.30
67 1.70 7.20 0 0.60 2.80
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Table A1. Cont.

Sample
Number

Modified
Stability
Number

Hydraulic
Radius (m)

Average
Borehole

Deviation (m)

Powder Factor
(kg/t) ELOS (m)

68 7.20 7.20 0 0.60 0.20
69 1.90 8.80 0 0.40 4.30
70 72.00 8.80 0 0.40 0.20
71 1.90 7.60 0 0.55 5.20
72 72.00 7.60 0 0.55 0.10
73 34.00 10.20 0 0.40 0
74 18.20 4.50 0 0.39 0.20
75 21.60 4.50 0 0.39 0.10
76 21.60 7.30 0.60 0.31 0.30
77 21.60 7.30 0.60 0.31 0.30
78 21.60 6.70 1.10 0.32 0.50
79 21.60 6.40 0.90 0.32 0.40
80 1.20 4.40 0 0.70 2.90
81 22.50 15.00 0.25 0.65 1.90
82 36.00 15.00 0.25 0.65 1.00
83 22.50 20.00 0.25 0.65 4.10
84 36.00 20.00 0.25 0.65 1.70
85 34.00 5.80 0.60 0.90 0.10
86 2.40 5.80 0.30 0.90 2.00
87 12.00 2.50 0.40 0.50 0.10
88 15.00 2.50 0.40 0.50 0.30
89 23.00 5.40 0.50 1.20 0.20
90 2.40 5.40 0.10 1.20 1.80
91 22.00 4.10 0.10 1.10 0.20
92 23.00 4.10 0.10 1.10 0.10
93 29.00 4.00 0.50 0.58 0.10
94 36.00 4.00 0.95 0.58 0.10
95 32.00 4.00 0.30 0.90 0.10
96 2.40 4.00 0.15 0.90 1.10
97 22.00 4.20 0.10 1.20 0.10
98 23.00 4.20 0.10 1.20 0
99 32.00 5.10 0.30 0.63 0.30

100 23.00 5.10 0.40 0.63 0.20
101 14.50 5.40 0.50 1.00 0.40
102 2.40 5.40 0.15 1.00 1.80
103 35.00 5.60 0 1.14 0.10
104 23.00 5.60 0 1.14 0.30
105 26.00 6.40 0.80 0.65 0.20
106 34.00 6.40 0.50 0.65 0.10
107 28.00 4.90 1.00 0.47 0.40
108 17.00 4.90 0.45 0.47 0.40
109 22.40 6.90 0.40 0.84 0.20
110 23.00 6.90 0.30 0.84 0.20
111 10.50 5.60 0.30 1.19 0.40
112 23.00 5.60 0 1.19 0.20
113 2.00 5.20 0.50 0.64 1.80
114 12.00 5.20 0.50 0.64 0.50
115 31.00 7.10 0.15 0.84 0.20
116 36.00 7.10 0.15 0.84 0.10
117 33.00 5.50 0.15 1.05 0.10
118 7.10 8.10 0 0.35 1.60
119 60.00 7.90 0.50 0.45 0.20
120 7.20 7.30 0 1.22 1.20
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Appendix B

Table A2. Experimental results of 5-fold cross-validation.

Sample
Number

Measured
Value (m)

Predicted
Value (m)

Relative
Error (%)

Sample
Number

Measured
Value (m)

Predicted
Value (m)

Relative
Error (%)

I-1

1 0.40 0.4016 0.4 13 1.90 1.8510 2.6
2 0.10 0.1096 9.6 14 0.80 0.8726 9.1
3 0.20 0.2179 8.9 15 0.20 0.1932 3.4
4 0.70 0.7025 0.4 16 0.50 0.5363 7.3
5 0.70 0.7625 8.9 17 4.30 4.6840 8.9
6 0.30 0.3256 8.5 18 3.30 3.5360 7.2
7 0.10 0.0984 1.6 19 0.10 0.0896 10.4
8 0.40 0.4363 9.1 20 2.00 2.1350 6.8
9 0.30 0.3260 8.7 21 0.40 0.4254 6.4

10 0.50 0.5104 2.1 22 0.80 0.7242 9.5
11 0.60 0.5619 6.4 23 0.90 0.9262 2.9
12 0.90 0.8672 3.6 24 1.10 1.1210 1.9

I-2

1 2.70 2.8167 4.3 13 1.80 1.7164 4.6
2 0.00 0.0125 - 14 1.80 1.8591 3.3
3 1.10 1.1294 2.7 15 0.40 0.3916 2.1
4 0.10 0.1165 16.5 16 0.10 0.0898 10.2
5 0.20 0.2088 4.4 17 0.20 0.2211 10.6
6 0.40 0.4376 9.4 18 0.20 0.2017 0.8
7 0.70 0.6153 12.1 19 1.70 1.5946 6.2
8 1.00 1.0768 7.7 20 1.10 1.0579 3.8
9 1.30 1.3013 0.1 21 1.20 1.1350 5.4

10 0.20 0.1936 3.2 22 0.20 0.1960 2.0
11 0.20 0.1867 6.7 23 0.10 0.0863 13.7
12 0.20 0.1962 1.9 24 1.80 2.0341 13.0

I-3

1 0.40 0.4312 7.8 13 0.20 0.1843 7.9
2 0.10 0.1163 16.3 14 1.90 2.1185 11.5
3 0.10 0.0897 10.3 15 2.40 2.5134 4.7
4 0.40 0.3848 3.8 16 4.10 4.2107 2.7
5 0.40 0.4132 3.3 17 0.60 0.5861 2.3
6 0.40 0.4076 1.9 18 0.40 0.4166 4.2
7 0.30 0.3189 6.3 19 2.30 2.5427 10.6
8 1.60 1.6931 5.8 20 0.30 0.3166 5.5
9 0.40 0.3977 0.6 21 0.20 0.1843 7.9

10 1.20 1.2694 5.8 22 0.00 0.0000 -
11 0.30 0.2849 5.0 23 1.20 1.2309 2.6
12 1.90 2.1067 10.9 24 0.10 0.1129 12.9

I-4

1 1.30 1.3351 2.7 13 1.40 1.3527 3.4
2 1.20 1.1964 0.3 14 2.80 3.1640 13.0
3 2.90 3.1360 8.1 15 5.20 4.9937 4.0
4 2.10 2.2034 4.9 16 1.80 1.8324 1.8
5 1.10 1.0875 1.1 17 1.10 1.2165 10.6
6 1.50 1.6137 7.6 18 0.10 0.1183 18.3
7 0.60 0.5873 2.1 19 1.30 1.3065 0.5
8 4.00 3.8992 2.5 20 0.40 0.4324 8.1
9 0.80 0.8443 5.5 21 0.80 0.8735 9.2

10 0.40 0.4385 9.6 22 1.90 2.0415 7.4
11 0.40 0.3768 5.8 23 1.10 1.1216 2.0
12 0.10 0.0879 12.1 24 0.60 0.6370 6.2
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Table A2. Cont.

Sample
Number

Measured
Value (m)

Predicted
Value (m)

Relative
Error (%)

Sample
Number

Measured
Value (m)

Predicted
Value (m)

Relative
Error (%)

I-5

1 0.30 0.2843 5.2 13 0.50 0.4735 5.3
2 1.90 1.8463 2.8 14 0.60 0.5783 3.6
3 0.20 0.2174 8.7 15 0.10 0.1008 0.8
4 0.30 0.3149 5.0 16 0.20 0.2101 5.1
5 0.10 0.0889 11.1 17 0.80 0.8345 4.3
6 0.40 0.3974 0.7 18 2.10 2.0762 1.1
7 0.20 0.1865 6.8 19 0.10 0.1015 1.5
8 0.30 0.3348 11.6 20 0.10 0.0991 0.9
9 0.10 0.1176 17.6 21 1.20 1.2016 0.1

10 1.10 1.2840 16.7 22 0.50 0.4870 2.6
11 4.40 4.0957 6.9 23 1.00 1.1047 10.5
12 0.70 0.6782 3.1 24 0.10 0.0985 1.5

II-1

1 1.90 1.8967 0.2 13 0.20 0.1980 1.0
2 0.40 0.3955 1.1 14 1.90 2.0766 9.3
3 0.10 0.1103 10.3 15 0.40 0.3754 6.2
4 0.40 0.4124 3.1 16 0.10 0.0955 4.5
5 0.20 0.2067 3.3 17 0.10 0.0956 4.4
6 2.40 2.4348 1.5 18 0.80 0.7872 1.6
7 1.10 1.0846 1.4 19 0.70 0.7216 3.1
8 4.30 4.2841 0.4 20 0.40 0.3862 3.5
9 0.70 0.8346 19.2 21 0.10 0.1106 10.6

10 0.10 0.0968 3.2 22 0.70 0.7416 5.9
11 1.20 1.2167 1.4 23 1.20 1.4345 19.5
12 0.20 0.2164 8.2 24 1.10 1.2000 9.1

II-2

1 1.30 1.3355 2.7 13 0.10 0.1056 5.6
2 1.80 1.7645 2.0 14 1.30 1.3110 0.8
3 0.20 0.2046 2.3 15 0.20 0.2249 12.5
4 1.10 1.1312 2.8 16 1.10 1.1041 0.4
5 0.40 0.3986 0.4 17 0.80 0.7835 2.1
6 1.70 1.6843 0.9 18 0.40 0.4338 8.5
7 1.10 1.0764 2.1 19 0.30 0.3154 5.1
8 0.30 0.2845 5.2 20 0.40 0.4314 7.9
9 0.40 0.4061 1.5 21 0.20 0.2135 6.7

10 0.50 0.5137 2.7 22 0.80 0.8376 4.7
11 0.00 0.0800 - 23 0.20 0.2357 17.9
12 0.20 0.2164 8.2 24 2.00 2.3014 15.1

II-3

1 1.00 1.1435 14.4 13 0.10 0.0947 5.3
2 0.60 0.5913 1.4 14 1.30 1.4157 8.9
3 1.90 2.1438 12.8 15 2.30 2.4180 5.1
4 2.70 2.8375 5.1 16 5.20 5.5438 6.6
5 0.50 0.4971 0.6 17 2.80 2.7641 1.3
6 1.10 1.0090 8.3 18 3.30 3.3264 0.8
7 0.60 0.5763 3.9 19 0.30 0.3275 9.2
8 0.60 0.5816 3.1 20 0.20 0.1800 10.0
9 1.20 1.3244 10.4 21 4.40 4.1826 4.9

10 0.00 0.0676 - 22 0.30 0.3156 5.2
11 0.20 0.2276 13.8 23 4.00 4.3468 8.7
12 4.10 3.5762 12.8 24 0.40 0.4380 9.5
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Table A2. Cont.

Sample
Number

Measured
Value (m)

Predicted
Value (m)

Relative
Error (%)

Sample
Number

Measured
Value (m)

Predicted
Value (m)

Relative
Error (%)

II-4

1 1.50 1.4863 0.9 13 2.10 2.1642 3.1
2 0.20 0.1963 1.9 14 0.20 0.2039 1.9
3 0.40 0.4338 8.5 15 1.90 1.8630 1.9
4 1.10 1.1008 0.1 16 1.80 1.8345 1.9
5 0.10 0.0950 5.0 17 0.90 0.8935 0.7
6 0.40 0.3746 6.4 18 0.10 0.1107 10.7
7 0.80 0.7641 4.5 19 0.20 0.2143 7.1
8 1.80 1.7634 2.0 20 1.20 1.2400 3.3
9 0.50 0.5166 3.3 21 2.10 2.0613 1.8

10 0.40 0.4176 4.4 22 0.10 0.1031 3.1
11 0.60 0.5834 2.8 23 2.90 2.6137 9.9
12 0.70 0.6945 0.8 24 0.30 0.2860 4.7

II-5

1 0.50 0.4791 4.2 13 0.10 0.1196 19.6
2 0.10 0.1037 3.7 14 0.10 0.0964 3.6
3 0.10 0.0963 3.7 15 0.30 0.3167 5.6
4 0.20 0.2048 2.4 16 0.80 0.7315 8.6
5 1.80 1.9115 6.2 17 0.10 0.0846 15.4
6 0.40 0.4310 7.7 18 0.90 0.9153 1.7
7 0.40 0.4135 3.4 19 1.60 1.7346 8.4
8 0.10 0.1164 16.4 20 0.30 0.2872 4.3
9 1.00 1.1866 18.7 21 1.20 1.1631 3.1

10 0.60 0.6423 7.1 22 0.40 0.4232 5.8
11 1.90 2.0409 7.4 23 1.40 1.3451 3.9
12 0.10 0.0900 10.0 24 0.30 0.2900 3.3

III-1

1 0.10 0.1119 11.9 13 1.80 1.8635 3.5
2 4.40 4.5341 3.0 14 0.10 0.1086 8.6
3 0.10 0.1035 3.5 15 1.30 1.3107 0.8
4 0.30 0.3321 10.7 16 0.80 0.8647 8.1
5 5.20 4.9314 5.2 17 0.80 0.7961 0.5
6 0.20 0.1937 3.2 18 1.20 1.2418 3.5
7 1.10 1.2107 10.1 19 2.00 1.8937 5.3
8 1.80 2.0310 12.8 20 0.10 0.0864 13.6
9 0.40 0.4213 5.3 21 1.20 1.3000 8.3

10 0.40 0.3938 1.6 22 0.60 0.6374 6.2
11 0.40 0.3896 2.6 23 0.10 0.1132 13.2
12 0.10 0.1129 12.9 24 0.30 0.3571 19.0

III-2

1 0.60 0.6138 2.3 13 0.40 0.4134 3.3
2 0.90 1.0336 14.8 14 0.20 0.1763 11.9
3 1.30 1.2861 1.1 15 0.30 0.3224 7.5
4 4.10 3.8630 5.8 16 2.40 2.3100 3.7
5 0.40 0.4267 6.7 17 0.10 0.0913 8.7
6 3.30 3.0492 7.6 18 1.30 1.2763 1.8
7 0.30 0.3215 7.2 19 0.70 0.6847 2.2
8 0.50 0.5553 11.1 20 0.20 0.1965 1.8
9 1.80 1.8647 3.6 21 0.30 0.2934 2.2

10 1.50 1.4682 2.1 22 0.90 0.9738 8.2
11 1.70 1.7134 0.8 23 0.40 0.4318 8.0
12 1.90 2.1040 10.7 24 0.30 0.3221 7.4
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Table A2. Cont.

Sample
Number

Measured
Value (m)

Predicted
Value (m)

Relative
Error (%)

Sample
Number

Measured
Value (m)

Predicted
Value (m)

Relative
Error (%)

III-3

1 0.10 0.1002 0.2 13 0.10 0.1132 13.2
2 0.40 0.4231 5.8 14 1.00 1.1016 10.2
3 2.10 2.1430 2.0 15 1.90 2.1034 10.7
4 0.10 0.0972 2.8 16 0.70 0.6978 0.3
5 1.00 1.0434 4.3 17 1.20 1.0967 8.6
6 0.10 0.1109 10.9 18 0.20 0.1846 7.7
7 0.10 0.0883 11.7 19 0.60 0.6324 5.4
8 0.80 0.7966 0.4 20 2.70 2.9647 9.8
9 0.80 0.7990 0.1 21 1.10 1.2155 10.5

10 0.40 0.4235 5.9 22 0.50 0.4863 2.7
11 1.90 2.0137 6.0 23 0.40 0.4129 3.2
12 0.20 0.2106 5.3 24 0.30 0.3336 11.2

III-4

1 0.20 0.2130 6.5 13 0.10 0.0954 4.6
2 1.40 1.3765 1.7 14 0.20 0.1861 7.0
3 0.50 0.5111 2.2 15 0.40 0.4213 5.3
4 0.20 0.2200 10.0 16 0.40 0.4255 6.4
5 1.20 1.2135 1.1 17 0.20 0.2131 6.6
6 0.70 0.6813 2.7 18 0.10 0.0876 12.4
7 0.20 0.2164 8.2 19 0.20 0.2137 6.9
8 0.00 0.0720 - 20 0.20 0.2190 9.5
9 0.40 0.4422 10.6 21 0.00 0.0000 -

10 0.30 0.3231 7.7 22 4.00 4.2347 5.9
11 1.90 2.1348 12.4 23 0.80 0.7889 1.4
12 0.10 0.1090 9.0 24 1.10 1.2011 9.2

III-5

1 0.20 0.2115 5.7 13 2.80 2.7648 1.3
2 1.10 1.1341 3.1 14 0.40 0.4344 8.6
3 1.60 1.6340 2.1 15 0.50 0.5346 6.9
4 2.90 3.1021 7.0 16 1.10 1.2123 10.2
5 1.80 1.7746 1.4 17 0.20 0.2223 11.2
6 1.90 2.0314 6.9 18 1.10 1.1576 5.2
7 0.60 0.5876 2.1 19 4.30 4.5318 5.4
8 0.60 0.6123 2.1 20 0.70 0.7264 3.8
9 0.10 0.1155 15.5 21 0.10 0.1105 10.5

10 1.10 1.1684 6.2 22 1.20 1.1800 1.7
11 2.30 2.4320 5.7 23 0.40 0.4232 5.8
12 0.40 0.4259 6.5 24 2.10 2.1770 3.7

IV-1

1 0.10 0.1085 8.5 13 0.40 0.4322 8.0
2 0.90 0.9326 3.6 14 4.00 3.8461 3.8
3 0.20 0.2138 6.9 15 0.80 0.7866 1.7
4 0.30 0.2763 7.9 16 0.10 0.1147 14.7
5 0.70 0.6834 2.4 17 1.80 1.8329 1.8
6 0.20 0.1866 6.7 18 0.40 0.3820 4.5
7 0.40 0.4213 5.3 19 0.30 0.2911 3.0
8 1.90 2.0076 5.7 20 3.30 3.4122 3.4
9 1.20 1.2103 0.9 21 0.20 0.1763 11.9

10 1.10 1.1137 1.2 22 1.10 1.1740 6.7
11 2.10 2.0360 3.0 23 0.10 0.1096 9.6
12 0.10 0.0923 7.7 24 0.40 0.3885 2.9
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Table A2. Cont.

Sample
Number

Measured
Value (m)

Predicted
Value (m)

Relative
Error (%)

Sample
Number

Measured
Value (m)

Predicted
Value (m)

Relative
Error (%)

IV-2

1 2.00 2.2414 12.1 13 0.20 0.2002 0.1
2 1.30 1.3336 2.6 14 1.50 1.6643 11.0
3 2.90 2.9067 0.2 15 0.30 0.2765 7.8
4 0.10 0.1060 6.0 16 1.80 2.0314 12.9
5 1.30 1.3045 0.3 17 4.10 4.1036 0.1
6 0.20 0.2104 5.2 18 0.00 0.0000 -
7 0.30 0.2861 4.6 19 1.40 1.4326 2.3
8 0.20 0.2310 15.5 20 0.20 0.1913 4.4
9 0.60 0.6210 3.5 21 0.40 0.4140 3.5

10 0.10 0.1098 9.8 22 1.30 1.2631 2.8
11 2.40 2.4464 1.9 23 0.10 0.0861 13.9
12 0.60 0.5811 3.2 24 0.20 0.2029 1.4

IV-3

1 1.20 1.2037 0.3 13 0.10 0.1101 10.1
2 0.70 0.7260 3.7 14 0.10 0.0887 11.3
3 0.40 0.3926 1.9 15 1.10 1.1754 6.9
4 0.40 0.3865 3.4 16 0.40 0.4313 7.8
5 0.80 0.7769 2.9 17 0.50 0.5833 16.7
6 1.00 1.0830 8.3 18 0.70 0.6810 2.7
7 0.60 0.5790 3.5 19 1.90 1.7975 5.4
8 0.10 0.0869 13.1 20 1.10 1.0132 7.9
9 0.40 0.4221 5.5 21 2.30 2.3220 1.0

10 0.30 0.3504 16.8 22 0.40 0.4357 8.9
11 0.20 0.1864 6.8 23 0.10 0.0963 3.7
12 0.40 0.4317 7.9 24 2.70 2.6872 0.5

IV-4

1 0.60 0.5961 0.7 13 0.40 0.4235 5.9
2 0.30 0.3127 4.2 14 1.20 1.1843 1.3
3 0.90 1.0237 13.7 15 1.20 1.0978 8.5
4 0.40 0.4325 8.1 16 1.70 1.8647 9.7
5 0.20 0.1863 6.9 17 0.20 0.2351 17.6
6 0.40 0.3764 5.9 18 0.40 0.4685 17.1
7 0.10 0.1077 7.7 19 0.20 0.2206 10.3
8 0.10 0.0861 13.9 20 0.70 0.8109 15.8
9 1.80 1.8803 4.5 21 0.20 0.1909 4.6

10 5.20 4.8975 5.8 22 1.60 1.5507 3.1
11 1.20 1.2101 0.8 23 0.50 0.5070 1.4
12 0.10 0.0980 2.0 24 0.50 0.4868 2.6

IV-5

1 1.90 2.1133 11.2 13 0.10 0.1133 13.3
2 4.30 4.4106 2.6 14 0.20 0.1941 3.0
3 2.10 2.1055 0.3 15 2.80 3.0476 8.8
4 0.00 0.0000 - 16 1.10 1.2044 9.5
5 1.90 1.7927 5.6 17 1.10 1.1665 6.0
6 0.30 0.3104 3.5 18 1.90 2.0431 7.5
7 0.80 0.7885 1.4 19 0.10 0.0971 2.9
8 1.10 1.1130 1.2 20 1.80 1.7990 0.1
9 0.60 0.5841 2.7 21 4.40 4.1731 5.2

10 0.80 0.7695 3.8 22 0.80 0.9136 14.2
11 0.50 0.4862 2.8 23 0.10 0.1073 7.3
12 0.30 0.3164 5.5 24 1.00 1.0719 7.2
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Table A2. Cont.

Sample
Number

Measured
Value (m)

Predicted
Value (m)

Relative
Error (%)

Sample
Number

Measured
Value (m)

Predicted
Value (m)

Relative
Error (%)

V-1

1 0.30 0.3174 5.8 13 1.90 2.0348 7.1
2 0.20 0.1867 6.7 14 0.20 0.2160 8.0
3 0.60 0.6673 11.2 15 0.60 0.6231 3.9
4 0.40 0.4176 4.4 16 1.80 1.9677 9.3
5 1.80 1.9135 6.3 17 0.20 0.1995 0.3
6 0.40 0.3652 8.7 18 1.30 1.3549 4.2
7 0.10 0.0837 16.3 19 0.40 0.3956 1.1
8 1.10 1.1966 8.8 20 0.60 0.6394 6.6
9 0.20 0.2135 6.7 21 0.30 0.3166 5.5

10 0.80 0.7869 1.6 22 0.20 0.2237 11.9
11 0.40 0.4345 8.6 23 0.40 0.4130 3.2
12 0.40 0.3799 5.0 24 0.80 0.7668 4.2

V-2

1 0.10 0.0868 13.2 13 0.10 0.1012 1.2
2 1.90 2.0754 9.2 14 0.30 0.2741 8.6
3 0.00 0.0036 - 15 0.90 0.8635 4.1
4 0.20 0.2129 6.5 16 0.20 0.1869 6.6
5 0.60 0.5655 5.8 17 1.20 1.3230 10.3
6 0.20 0.2311 15.6 18 1.40 1.4686 4.9
7 0.60 0.5880 2.0 19 0.20 0.2148 7.4
8 1.10 1.0864 1.2 20 1.00 1.0465 4.7
9 0.30 0.3358 11.9 21 4.00 4.3920 9.8

10 0.10 0.1056 5.6 22 1.60 1.6343 2.1
11 0.50 0.4686 6.3 23 0.40 0.3864 3.4
12 4.30 4.9357 14.8 24 2.10 2.0861 0.7

V-3

1 0.00 0.0000 - 13 0.40 0.4317 7.9
2 0.10 0.0969 3.1 14 1.30 1.2765 1.8
3 0.20 0.1864 6.8 15 1.20 1.2210 1.8
4 2.40 2.3556 1.9 16 0.10 0.1125 12.5
5 0.70 0.7436 6.2 17 5.20 4.9361 5.1
6 0.10 0.0941 5.9 18 1.70 1.7654 3.8
7 0.40 0.4430 10.8 19 0.40 0.3575 10.6
8 0.10 0.0865 13.5 20 0.70 0.6690 4.4
9 0.10 0.1106 10.6 21 0.20 0.2147 7.4

10 0.80 0.7842 2.0 22 1.80 1.9345 7.5
11 0.10 0.1045 4.5 23 0.20 0.2144 7.2
12 0.10 0.0879 12.1 24 4.10 3.8160 6.9

V-4

1 2.80 2.9726 6.2 13 1.10 1.1249 2.3
2 3.30 2.7489 16.7 14 1.10 1.1592 5.4
3 0.30 0.2537 15.4 15 1.10 1.1498 4.5
4 2.30 2.4276 5.5 16 0.10 0.0840 16.0
5 0.50 0.4861 2.8 17 1.10 1.2486 13.5
6 2.10 2.0452 2.6 18 2.90 3.0465 5.1
7 0.10 0.0984 1.6 19 0.70 0.7238 3.4
8 1.90 2.0675 8.8 20 0.50 0.4731 5.4
9 0.30 0.3529 17.6 21 0.10 0.0823 17.7

10 1.90 1.8643 1.9 22 0.10 0.1039 3.9
11 1.10 1.2342 12.2 23 1.20 1.2728 6.1
12 0.10 0.0930 7.0 24 0.20 0.1637 18.2
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Table A2. Cont.

Sample
Number

Measured
Value (m)

Predicted
Value (m)

Relative
Error (%)

Sample
Number

Measured
Value (m)

Predicted
Value (m)

Relative
Error (%)

V-5

1 0.80 0.8637 8.0 13 0.10 0.0900 10.0
2 2.70 2.8150 4.3 14 2.00 2.2093 10.5
3 1.90 1.8938 0.3 15 0.50 0.5076 1.5
4 0.80 0.6812 14.9 16 4.40 4.6037 4.6
5 0.40 0.4193 4.8 17 1.30 1.2138 6.6
6 0.30 0.2941 2.0 18 0.30 0.3204 6.8
7 0.20 0.1738 13.1 19 1.20 1.1760 2.0
8 0.40 0.4229 5.7 20 1.80 1.7681 1.8
9 0.40 0.3843 3.9 21 1.00 1.0375 3.8

10 0.40 0.3715 7.1 22 0.40 0.4638 16.0
11 1.20 1.1534 3.9 23 1.50 1.6032 6.9
12 0.90 0.8633 4.1 24 0.70 0.6821 2.6
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