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Abstract: Agriculture ranks as one of the top contributors to global warming and nutrient pollution.
Quantifying life cycle environmental impacts from agricultural production serves as a scientific
foundation for forming effective remediation strategies. However, methods capable of accurately
and efficiently calculating spatially explicit life cycle global warming (GW) and eutrophication (EU)
impacts at the county scale over a geographic region are lacking. The objective of this study was
to determine the most efficient and accurate model for estimating spatially explicit life cycle GW
and EU impacts at the county scale, with corn production in the U.S.’s Midwest region as a case
study. This study compared the predictive accuracies and efficiencies of five distinct supervised
machine learning (ML) algorithms, testing various sample sizes and feature selections. The results
indicated that the gradient boosting regression tree model built with approximately 4000 records of
monthly weather features yielded the highest predictive accuracy with cross-validation (CV) values
of 0.8 for the life cycle GW impacts. The gradient boosting regression tree model built with nearly
6000 records of monthly weather features showed the highest predictive accuracy with CV values of
0.87 for the life cycle EU impacts based on all modeling scenarios. Moreover, predictive accuracy was
improved at the cost of simulation time. The gradient boosting regression tree model required the
longest training time. ML algorithms demonstrated to be one million times faster than the traditional
process-based model with high predictive accuracy. This indicates that ML can serve as an alternative
surrogate of process-based models to estimate life-cycle environmental impacts, capturing large
geographic areas and timeframes.

Keywords: life cycle assessment; global warming; eutrophication; machine learning; spatial
assessment; agriculture

1. Introduction

Meeting continuously increasing food and fuel demands while protecting environmental integrity
is a grand challenge. Agriculture as the primary stage for food and fuel production is associated
with a range of environmental pollution issues ranging from global warming to nutrient degradation.
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Specifically, agriculture contributes to 8% of national greenhouse gases (GHGs) [1] and ranks as
a leading contributor to nutrient pollution nationally and globally [2–4]. The estimated economic loss
of environmental damage caused by nitrogen release alone already exceeds $210 billion/year in the
United States (U.S.) [5]. In addition, the continuous increasing of food and fuel demands accompanied
by population growth, energy and water shortages, and weather unpredictability, will further accelerate
environmental pollution from agricultural expansion [6–10]. Ensuring environmentally friendly
agricultural production is important to achieving multiple United Nations’ Sustainable Development
Goals, such as zero hunger, climate action, clean water and responsible production. Globally, food
production ranks as a top contributor to water quality degradation in the form of eutrophication and
hypoxia. To effectively mitigate agricultural pollution, it is urgent to accurately and rapidly assess the
environmental impacts of agriculture.

The life cycle assessment (LCA) is the most prominent research method for quantifying
environmental releases of agricultural supply chains [11–15]. Agricultural LCA is capable of quantifying
environmental releases from both on-farm and supply chain activities, such as fertilizer production.
The systematic scope of LCA is necessary in order to avoid shifting environmental burdens, such as
between global warming and eutrophication impacts [16]. The recent LCA studies indicated that life cycle
environmental releases of crop production present substantial spatial heterogeneity [17–20], as influenced
by weather, soil and farming practices. For example, the reported life cycle nutrient releases of corn in the
Midwest region varied by a factor of 200, spanning from 0.001 to 0.2 kg N-eq/kg of corn [13,17,20–29].
The spatially-explicit life cycle environmental impacts from agricultural production serve as a scientific
basis for locating spatial hot-spots and designing spatially targeted remediation strategies.

Various approaches exist to estimating the life cycle environmental impacts of agricultural
production [30,31]. However, it remains challenging to efficiently estimate, spatially and temporally,
explicit life cycle environmental impacts at the county scale over a large region. The existing approaches
belong to two general groups, based on their fundamental differences in the structure of life cycle inventory.
The first group features the integration of spatially and temporally explicit on-farm releases from
biogeochemical models and supply chain releases from process-based LCA. For crop systems, the existing
crop LCAs utilized biogeochemical models such as the daily CENTURY (DAYCENT) model [1,29,32],
environmental policy integrated climate model (EPIC) [13], and the denitrification-decomposition model
(DNDC) [33,34] to estimate GHG and nutrient releases of corn [22,35], soybeans [35], alfalfa [35],
hybrid poplar [35], switchgrass [22,35], and miscanthus [13,33]. These biogeochemical models are
capable of capturing spatial explicit environmental releases, as influenced by location-specific weather,
soil, topography and farming practices at finer spatial scales, such as farm or county scales [1,36,37].
Despite being powerful, these biogeochemical models are data-intensive and time-consuming,
necessitate expert inputs and often require supercomputer clusters to compute the spatially explicit
environmental impacts over a large region (i.e., the Midwest) [38,39]. The second group utilizes the
input-output structure for the life cycle inventory. The multi-regional input-output LCA approaches,
such as EORA and EXIOBASE [40], are utilized to track the environmental impacts of economic
interdependencies among regions, often at a sector level. Although the input-output LCA approaches
are capable of investigating the environmental impacts of trades over a large geographic area, the life
cycle environmental inventory is often aggregated at a sector level and reside at coarse spatial scales,
such as regional or county scales. EXIOBASE does not track the influences of temporally dynamic
factors such as weather, soil and farming practices on life cycle environmental impacts. Overall,
methods capable of rapidly and accurately estimating spatially and temporally an explicit life cycle
environmental inventory of agricultural production at the county scale over a large region are lacking.

Machine learning (ML) approaches were applied to various disciplines, such as predicting traffic
speed in urban places and identifying fertilizer recommendation classes. While these studies are valuable,
they demonstrate applications of ML in LCA [41,42]. Machine learning (ML) approaches may present
promising alternatives to traditional approaches for accurately and efficiently estimating spatially and
temporally explicit LCA at the county scale over a large region across multiple years. Distinct from



Sustainability 2020, 12, 1481 3 of 19

traditionally process-based or input-output LCA approaches, ML models are capable of efficiently
computing large datasets at the county scale across multiple years. Although ML techniques have
promising potentials for transforming LCAs, the application of ML models to spatially and temporally
LCA has been limited to date [43–48]. Previously, ML techniques were used to estimate either spatially
generic life cycle release inventory of production processes [48,49], or life cycle toxicity impacts
of chemicals [50]. A few recent studies applied neural networks to examine the life cycle GHG
emissions associated with producing various crops based on literature sources or the spatially generic
emission factors of the Intergovernmental Panel on Climate Change (IPCC) [6,7,51–56]. These valuable
efforts greatly contributed to fusing LCA and ML. However, none of the existing studies assessed
the possibility of using ML techniques for predicting spatially and temporally explicit life cycle
environmental releases.

To fill in the aforementioned knowledge gaps, this study tested and compared five ML approaches
for computing spatially and temporally explicit life cycle environmental impacts at the county scale,
with corn production in the Midwest region as a case study. The research question this study addresses
is which machine learning model will yield highest predictive accuracy and computational efficiency for
estimating the spatially and temporally explicit life cycle environmental impacts of corn. The Midwest
region contains more than 39 million hectares of land and produced more than 80 percent of U.S. corn in
the year 2018 [57]. This study identified the most efficient the and accurate combination of ML approaches
and datasets for predicting spatially explicit life cycle global warming (GW) and eutrophication (EU)
impacts of corn production. To the authors’ best knowledge, this is the first study applying and
comparing ML approaches for predicting the spatially explicit life cycle environmental impacts of
agricultural production.

2. Models and Data Sets

2.1. Overview of Models

Five modeling approaches were tested and compared in this study, including linear regressison
(LR), support vector machine regression (SVR) (Section 2.1.1), artificial neural network (ANN)
(Section 2.1.2), two tree based model, gradient boosted regression tree (GBRT) (Section 2.1.3),
and extreme gradient boosting (XGBoost) (Section 2.1.4) to determine the modeling approach which
presented best predictive accuracy and the highest computational efficiency [58].

2.1.1. Support Vector Machine Regression

Support vector machines (SVMs) are a class of learning based non-linear modeling algorithms
with proven performance in a wide range of practical applications in classification and regression [59,60].
SVMs were initially developed for qualitative modeling problems. With the introduction of an ε-insensitive
loss function, SVMs have been extended to solve quantitative modeling problems. In this study,
the SVM regression (SVR) technique was employed to model the county-level life cycle GW and EU
impacts influenced by climate, soil characteristics, and farming practices features.

Suppose that a training set S containing n data points is given as:

S = {(x1, y1) , ..., (xi, yi) , ..., (xn, yn)} (1)

where xi ∈ Rd, i.e., d-dimensional space, and yi ∈ R. The goal of SVR is to find a function f which can
estimate all these data well. It is equivalent to the following constrained optimization problem:
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min
1
2
||w||+ C

n

∑
i=1

(ξi + ξ∗i )

s.t. yi− < w, xi > −b ≤ ε + ξi

< w, xi > +b− yi ≤ ε + ξ∗i

ξi, ξ∗i ≥ 0

(2)

where w is the normal vector of the hyperplane, ξi and ξ∗i are the slack variables, and C is the coefficient
of the regularization terms. In this case, it is set to equal to 1. wTxi + b is the regression line which
is the center of a tunnel with radius γ = 1

||w|| . Points on the surface so-called support vectors make
up the tunnel. Involving ξi, ξ∗i allows left certain points outside tunnel as errors in order to avoid
over-fitting. ξi, ξ∗i are set as 0.1.

The main purpose of SVR is to represent complicated relationships via non-linear mapping.
The original input space is mapped into a high-dimensional feature space using kernel functions where
it becomes linearly separable. Some common used kernel functions are linear, polynomial, sigmoid,
and radial basis kernel functions (RBF) [61]. The RBF is the most often used kernel function in SVR.

k(xi, xj) = exp(−γ ‖ xi − xj ‖2) (3)

The kernel function can be chosen according to data structure and the aim of project. Due to the small
size of features, Gaussian kernel is used in this study.

Two parameters, C and γ , must be appropriately set in SVR. The accuracy will be very high in the
training stage and very low in the testing stage, when the value of C is set too large, while an extremely
small value of may result in under-fitting, and excessively large value of may lead to over-fitting.

2.1.2. Artificial Neural Networks

Artificial neural networks (ANN) represent a type of computing that is based on the way that the
human brain performs computations [62], which has been extensively used for pattern recognition
and classification [63,64]. It consists of simple computational units called neurons. The numbers of
neurons in the input and output layers are typically fixed by the type of application. The number
of hidden layers and their neurons is typically determined by trial and error [65]. ANN can model
complex non-linear relationships. The extra layers enable the composition of features from lower
layers, giving the potential of modeling complex data with fewer units than a similarly performing
shallow network [66].

The multi-layer perceptron (MLP) is the most frequently used ANN method, which consists of
layered feedforward networks typically trained with static back propagation (see Figure 1).

Figure 1. The architecture of MLP.
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The neuron receives a set of inputs or signals (x), calculates a weighted average of them (z) using
the summation function and weights (w), and then uses some activation function ( f ) to produce
an output, where

z =
n

∑
i=1

wixi (4)

The connections between the input layer and the hidden layer contain weights which are usually
determined through training the system. The hidden layer sums the weighted inputs and uses the
transfer function to create an output value. The transfer function is a relationship between the internal
activation level of the neuron (called activation function) and the outputs. The rectified linear unit
(ReLU) is the most commonly used activation function in deep learning models.

f (x) = x+ = max(0, x) (5)

where x is the input to a neuron. The MLP was trained with back-propagation algorithm (BPA), the most
frequently used in the ANN literature, and was adopted in this study.

The values of the weights are changed by using stochastic gradient descent (SGD) to minimize
a suitable function used as the training stopping criterion. One of the functions most commonly used
in supervised learning is the sum-of squared residuals given by Equation (6):

Loss = ∑N
i=1 (yi − ŷi)

2

n
(6)

where yi and ŷi are the actual and predicted values, respectively.
The current weight change on a given layer is given by Equation (7).The weights will be updated

by following the slope of the error surface downwards towards its minimum.

wnew
i ← wold

i − η(
∂Loss
∂wold ) (7)

where η (usually between 10−6 and 1.0) is the learning rate.
A high learning rate corresponds to rapid learning which may push the training towards a local

minimum or cause oscillation. In turn, when applying small learning rates, the time to reach a global
minimum will be considerably increase [67].

To achieve faster learning and avoid local minima, an additional term, called “momentum,”
is adopted to smooth out the weight changes, which helps to protect network learning from oscillation.
To control the overfitting of a neural network, L2 regularization and dropout are also used in this study.

2.1.3. Gradient Boosting Regression Tree

Gradient boosting regression tree (GBRT) is an ensemble learning method that integrates the regression
tree model with gradient boosting method. It builds a set of decision trees in a greedy manner at training
time and makes a class prediction by majority voting. The algorithm is shown below.

1. Initialize

F0(x) = arg min
γ

N

∑
i=1

L(yi, γ) (8)

where L is the loss function, defined by Equation (10)
2. Compute

rim = −
[

∂L(yi, f (xi))

∂ f (xi)

]
f= fm−1(x)

(9)

through i = 1, ..., N and m = 1, ..., M. The rim are called pseudo-residuals.
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3. Fit a regression tree to target rim giving terminal regions Rmj, for j = 1, ..., J (Rmj is a tree consisting
of J leaf nodes).

γjm = arg min
γ

∑
xi∈Rmj

L(yi, fm−1(xi) + γhm(xi)) (10)

The new multiplier γjm is updated based on the tree fm−1(x) and γjm−1.
4. The new tree is updated by

fm(x) = fm−1(x) + a
Jm

∑
j=1

γjm I(x ∈ Rmj) (11)

I is the indicator function which equals to 1 if x is in the region Rmj. In this paper, we prevent
over-fitting by controlling the learning rate and subsample. We set the learning rate to 0.01 and
subsampling rate to 0.75.

5. Output ŷi = FM(xi) by updating the following equation until m reaches M.

fM(xi) =
M

∑
m=1

fm(xi) =
M

∑
m=1

J

∑
j=1

γjm I(x ∈ Rmj) (12)

The multiplier γjm shrinks in small steps again to avoid over-fitting sufficiently. The maximum
depth of the model is set to be 8 to constrain the function space. It controls the complexity of trees.
In general, the GBRT model is voted by majority of M trees to decide the best step function to
approximate the regression line. The total estimators is equal to 2000.

2.1.4. Extreme Gradient Boosting

Extreme gradient boosting (XGBoost) is an improved algorithm based on the gradient boosting
decision tree and can construct boosted trees efficiently and operate in parallel [68]. Compared with
GBRT, XGBoost provides four additional features to achieve better performance. They are: (1) The
weights of each new tree can be scaled down by given constant leaves. It reduces the influence of
a single tree on the final score. (2) In column sampling, which works in a similar way to random forests,
each tree is built using only a column-wise sample from the training dataset. (3) The introduction of the
regularized loss function to avoid overfitting. (4) The loss function is approximated by Taylor expansion
which speeds up the optimization procedure. We want to minimize the following regularized objective
function in order to choose fk.

L =
n

∑
i=1

l(ŷi, yi) +
K

∑
k=1

Ω( fk) (13)

l is the loss function. In order to prevent too large a complexity of the model, the regularization term
Ω is included as follows:

Ω( f ) = γT +
1
2

λ||w||2 (14)

where γ is the complexity of each leaf. T is the number of leaves in the decision tree, and λ is
a parameter to scale the penalty which is set to be 0.85 in this study.

2.2. Datasets and Modeling Scenarios

The predictor variables (Xs) included the features of temperature, precipitation, soil organic content,
soil texture, application rates of nitrogen and phosphorus fertilizers, and farming practices. The outcomes
variables (Ys) were defined as county-level life cycle GW and EU impacts. A total of 10 modeling
scenarios reflecting various combinations of algorithms and features were tested and compared in this
study (Table 1). Modeling scenarios S1A through S5A included total of 32 features, containing monthly
average temperature and precipitation features. Modeling scenarios S1A through S5A included a total of
18 features, containing seasonally average temperature and precipitation features.
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Table 1. A summary of modeling scenarios.

Scenarios Algorithms Model Inputs (Features)

S1A LM monthly temperature (12 covariates),
monthly precipitation (12 covariates),
soil organic content, soil texture (3 covariates),
Nitrogen fertilizer rate, phosphorus fertilizer rate,
percentage of conventional, no tillage (2 covariates)

S2A SVR
S3A MLP
S4A GBRT
S5A XGBoost

S1B LM seasonal temperature (4 covariates),
seasonal precipitation (4 covariates),
soil organic content, soil texture (3 covariates),
Nitrogen fertilizer rate, phosphorus fertilizer rate,
percentage of conventional, no tillage (2 covariates)

S2B SVR
S3B MLP
S4B GBRT
S5B XGBoost

The data on climate, soil characteristics, and farming practices were collected from various
governmental databases for 12 U.S. Midwest states during the years 2000–2008 (Table 2). The monthly
and seasonal average temperature (°C) and precipitation (mm) were obtained from the National
Oceanic and Atmospheric Administration (NOAA)’s [69] National Climatic Data Center (NCDC) [70].
Soil data such as soil organic content and soil texture were extracted from the U.S. Department of
Agriculture Soil Survey Geographic Database (SSURGO) [71]. The nitrogen and phosphorus fertilizer
application rates and tillage practices were obtained from the U.S. Department of Agriculture’s
(USDA) [72] National Agricultural Survey Statistics and the Conservation Technology Information
Center. The life cycle GW and EU impacts of corn production in Midwest states at the county-level
during the years 2000-2008 are reported in our previous work (Lee et al. [17]). The total records are
approximately 8000 over 9 years from 2000 through 2008. After removing records containing missing
values, around 6000 complete records were left. To the authors’ best knowledge, this is the largest
database for spatially explicit life cycle impacts of corn production. The data sources for each feature
are described in Table 2.

Table 2. Data sources for building the predictive model.

Predictors (Xs) Data Description Data Sources

Temperature (°C) Monthly mean temperature (Jan-Dec) NOAA [69]

Precipitation (mm) Monthly mean precipitation (Jan-Dec) NOAA [69]

Soil organic content (%) Percentage of soil organic content
measured in soil depth up to 6 m USDA SSURGO [71]

Soil type: Clay, Sand, Silt (%) Percentage of soil types USDA SSURGO [71]

Nitrogen and phosphorus
fertilizers fertilizer application rate (lbs/acre) USDA NASS [72]

Farming practices (NT & CT) Farming practices in fractions (No Tillage &
Conventional Tillage) USDA [72]

Outcomes (Ys)

Life cycle GW values Life-cycle GW (kg CO2-eq. kg corn−1) Lee et al. [17]

Life cycle EU values Life-cycle EU (mg N-eq. kg corn−1) Lee et al. [17]

2.3. Training, Validation, and Test Approaches

The modeling procedures include four sequential steps: data preprocessing, hyper-parameter
tuning, validation, and testing. The process is shown in Figure 2.
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Figure 2. Key steps for constructing ML models.

To preprocess the raw data, we performed some trivial data cleaning, such as removing the missing
values from the data using case-wise deletion. Categorical variables were one-hot encoded, while
the numeric variables were normalized. The training step is equivalent to tuning the parameters for
each model to seek the best fitted hyper-parameter combination. We call the parameters for the model
hyper-parameters for distinguishing them from parameters of the data set. In order to find the best
performing hyper-parameter combination, the grid search method was used. Two hyper-parameters,
C and r, have to select the optimal value from two chooses of each kind. The grid, in this case, can be
imagined as a 2 by 2 matrix. The names of hyper-parameters are taken to be the columns, and the
two possible choices are taken to be the rows. The algorithm chooses one hyper-parameter from
each kind at a time becoming a unique combination. Every model used in this study has different
hyper-parameters. The different models should be assigned a distinct hyper-parameter grid. The grid
search method would try every combination of preset parameters until it accessed all the combinations
once. Preset parameters are given by experience. The algorithm would record every result from every
hyper-parameter combination, and eventually return the best result and the related hyper-parameter
combination. The best-performed parameter set would settle for the corresponding ML model.

After the first round of grid search, the rough selection provides a range of high performing
hyper-parameter. This happens only if the hyper-parameters are continuous. For higher precision,
the range is divided into several instances depending on the computer’s power. In this study,
we divided the hyper-parameters, such as the bag fraction for the GBRT model, into 10 instances.

In order to address the overfitting concern, we constructed models using a stricter 3-fold
cross-validation methodology, in which we divided the three folds into training (two folds) and test
(one fold) sets. The construction of the folds for cross-validation was created using the same stratification
procedure. The process repeated three times until every fold was used as a validation fold once.
The output from the 3-fold cross-validation would be the average of all folds of cross-validation results.
Three metrics were used to evaluate the predictive accuracy of machine learning models, including
cross-validation correlation, mean square error, and coefficient of determination:

(i) Cross-validation correlation coefficient (Corr, see Equation (15)),

corr =
σyi σŷi

σyi ŷi

=
∑(yi − ȳ)2 ∑(ŷi − ¯̂y)2

∑(yi − ȳ)(ŷi − ¯̂y)
(15)

was adopted to measure the strength of relationship between label yi and prediction ŷi.
(ii) Mean-square-error (MSE, see Equation (16))

MSE =
1
n

n

∑
i=1

(yi − ŷi)
2 (16)

measures the average of the errors between yi and ŷi. This metric was involved to be the measure
of training, testing, and cross-validation performance.
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(iii) Coefficient of determination (R2, see Equation (17))

R2 = 1− ∑n
i=1(yi − ŷi)

2

∑n
i=1(yi − ȳi)2 (17)

was used to evaluate how well the regression line represents the data. The computational
efficiency was determined by the required time for training ML models and for using ML models
for predicting spatially and temporally explicit life cycle environmental impacts, based on the
computer configuration of Intel i7-4790k CPU, 8 GB memory at 2400 Mhz and Nvidia GTX 970
graphic card. Finally, we are able to calculate the scores under different metrics. The relative
importance of input parameters such as weather, soil, and farming practices on life cycle GW
and EU were ranked by sorting their corresponding coefficients. All the algorithms and metrics
are adopted from Python package scikit-learn [73].

3. Results

3.1. Predictive Accuracy

3.1.1. Influences of Input Variables

The models built on monthly features generally yielded higher predictive accuracy than the
models built on seasonal features for the same ML algorithms. For example, both cross-validation
(CV) correlation and R2 values of S1A (linear model based on monthly features) were larger than those
of S1B (linear model based on seasonal features) for the life cycle GW. Similarly, both CV correlation
and R-squared values of S1A were larger than those of S1B for the life cycle EU. The same trends of
CV correlation and R-squared values were observed for the remaining modeling algorithms (Table 3),
including XGBoost, GBRT, SVR, and MLP. Consistently, XGBoost and GBRT using monthly features
achieved lower MSE values than their corresponding algorithms with seasonal features. The only
exception was that LM, SVR, and MLP with monthly features presented slightly higher MSE values
than their corresponding algorithms with seasonal features.

Table 3. Cross-validation (CV) correlation, R2, and mean-square-error (MSE) values of all
modeling scenarios.

Scenario A S1A S2A S3A S4A S5A
LM SVR MLP GBRT XGBoost

GW
CV corr 0.45 0.68 0.64 0.80 0.78
MSE 0.58 0.40 0.44 0.27 0.28
R2 0.20 0.45 0.40 0.63 0.61

EU
CV corr 0.65 0.80 0.74 0.87 0.86
MSE 20 14 18 10 9
R2 0.42 0.60 0.50 0.75 0.73

Scenario B S1B S2B S3B S4B S5B
LM SVR MLP GBRT XGBoost

GW
CV corr 0.35 0.63 0.64 0.78 0.76
MSE 0.55 0.38 0.37 0.28 0.30
R2 0.11 0.39 0.40 0.61 0.58

EU
CV corr 0.63 0.74 0.74 0.84 0.83
MSE 22 17 18 10 11
R2 0.39 0.53 0.49 0.71 0.62
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3.1.2. Influences of Modeling Algorithms

Based on Table 3, GBRT presented the superior predictive accuracy. GBRT showed the highest
CV correlation value (0.8) and R squared score (0.63), and the lowest MSE value (0.27) among all five
models for the life cycle GW. Similarly, GBRT showed the highest CV correlation (0.87) and R squared
score (0.75), and the lowest MSE value (10) among all five models for the life cycle EU. XGBoost was the
second-best choice in terms of predictive accuracy. When the XGBoost model was applied for predicting
life cycle GW, it produced the second-highest CV correlation value (0.78), the second-highest R squared
score (0.61), and the lowest MSE value (0.28). Similarly, when the XGBoost model was used for
predicting life cycle EU, it produced the second-highest CV correlation value (0.86), the second-highest
R squared score (0.73), and the lowest MSE value (9). In contrast, the benchmark linear model exhibited
the lowest predictive accuracy for both GW and EU. For example, the linear model had the lowest CV
correlation value (0.45) and R2 scores (0.2), and the highest MSE (0.58) among all five models for life
cycle GW. Similarly, the linear model showed the lowest CV correlation (0.65) and R squared (0.63),
and the lowest MSE (0.27) among all five models for the life cycle EU. Overall, XGBoost, GBRT, SVR,
and MLP all showed higher predictive accuracy than the benchmark linear model, indicating that
these models were capable of capturing non-linearity and complex interactions among features.

3.1.3. Influences of Sample Sizes

Figures 3 and 4 presented the influences of training data size on models’ predictive capabilities.
The CV correlation values for predicting life cycle GW exponentially increased for all model algorithms
when the sample size increased from 100 to 4000. The CV correlation values for predicting life cycle GW
reached the peak values at a sample size of round 4000. When the sample size continuously increased
beyond 4000, the peak point, the CV correlation values slightly decreased. The CV correlation values
for predicting life cycle EU dramatically increased for all model algorithms when the sample size
increased from 100 to 5000. Additionally, the CV correlation values for GB and XGBoost exceeded 0.85
when 5000 input datasets were used to generate the models.

Figures 3 and 4 also confirmed that GBRT and XGBoost presented the highest predictive accuracy
while the linear model always had the lowest predictive accuracy. For the same sample sizes across
different algorithms, the GBRT model consistently showed the highest predictive accuracy among
all models for both the life cycle GW and EU. The XGBoost model always ranked as the second-best
fitted model, whose CV correlation values were slightly lower than the GBRT model under the same
sample sizes.

Figure 3. The influences of training sample sizes and algorithms on CV correlation values for life
cycle global warming potential.
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Figure 4. The influences of training sample sizes and algorithms on CV correlation values for life
cycle eutrophication potential.

3.2. Predictive Efficiency

All five models were a million times more efficient than the traditional process-based LCA models
for estimating spatially explicit life cycle GW and EU. With the configuration of an Intel i7-4790k
CPU, 8 GB memory at 2400 Mhz, and a Nvidia GTX 970 graphic card, the training time for five
distinct algorithms ranged from 0.02 to 112 s for each simulation of hyper-parameter combination.
While the linear model required the shortest duration of 0.02 s/simulation, GBRT needed the longest
duration of 112 s/simulation for model training(Table 4). The predictive time for all models was less
than 1 s. The total training and prediction times for all five models were less than 4 h for estimating
spatially explicit life cycle GW and EU at the county scale in the entire Midwest region. In contrast,
the traditional process-based LCA model approach relying on detailed bio-geochemistry models, such
as EPIC, DNDC, and DAYCENT, may require months to estimate spatially explicit life cycle GW and
EU for a large region such as the entire Midwest [17,39].

The comparison across five algorithms indicated trade-offs existed between computational efficiency
and predictive accuracy for both the life cycle GW and EU. The linear model was the most efficient
approach but presented the lowest predictive accuracy for both the life cycle GW and EU. In contrast,
GBRT required the longest training time, but yielded the highest predictive accuracy for both impacts.
In addition, although the time required for training GBRT for each hyper-parameter combination was
three times longer than for training XGBoost, the CV correlation value for GBRT was only improved
over 0.2 than for XGBoost.

Table 4. Time consumed for training and predicting each model in seconds.

LM SVR MLP GBRT XGBoost

GW Training 0.02 4.11 65.4 112 33.8
Predicting 7 × 105 0.13 1 × 103 0.09 0.06

EU Training 0.03 4.72 33.1 128 41.6
Predicting 6 × 105 0.04 5 × 104 0.02 0.09

3.3. Key Influential Factors

The GBRT results showed that nitrogen and phosphorus application rates, soil organic content,
and clay and silt types of soil were the top influencing factors for life cycle GW impacts (Figure 5).
Nitrogen fertilizers contributed to life cycle GW impacts directly by causing on-farm nitrous oxide
(N2O) emissions from volatilization and denitrification processes in soil [74,75], and indirectly by
emitting GHGs from supply chain activities such as manufacturing nitrogen fertilizers [76]. Phosphorus



Sustainability 2020, 12, 1481 12 of 19

fertilizers contributed to life cycle GW primarily by generating GHGs from supply chain activities
such as manufacturing phosphorus fertilizers [76]. Moreover, soil characteristics also had a significant
role in regulating GHG emissions. Recent studies based on field experiments [77,78] and mechanistic
model (i.e., DNDC) [70] suggested that soil organic matter increased the availability of nitrogen and
carbon to soil microorganisms, consequently enhancing N2O emissions. Furthermore, finer-textured
soils, such as clay or silt soils, which tend to retain more water, often resulted in higher N2O emissions
due to higher denitrification rates in soil [79]. Additionally, meteorological factors such as temperature
also had a significant contribution to life cycle GW. For instance, March’s temperature potentially
influenced the shift of the N2O:N2 ratio [80], thereby increasing N2O emissions during the freeze-thaw
cycle [81].

The present study also found that the top influencing factors of life cycle EU impacts were
precipitation in February, soil organic content, the temperature in May, and precipitation in May and
June (Figure 6). Precipitation can promote the penetration of nutrients through soil layers and wash
away the nutrients from topsoil, thereby increasing nutrient leaching and runoff [82]. The contributions
of precipitation to life cycle GW impacts were consistent with previous studies examining N fluxes in
the watersheds of the contiguous U.S. [83,84] and Lake Michigan Basin [85], and field-based studies in
the U.S. Midwest [86], where N losses to water bodies were higher during wet seasons/years compared
to dry seasons/years. Furthermore, few studies [87,88] explained that soil organic carbon can lead to
the accumulation of carbon and nutrients in the soil, subsequently resulting in more nutrients available
for leaching and runoff, which corroborates the findings of this study. Amery and Vandecasteele also
reported that lower phosphate binding capacity to soil organic portion may increase susceptibility to
phosphorus leaching [89].

Figure 5. The top influential features for life cycle global warming potential.

Figure 6. The top influential features for life cycle eutrophication potential.
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4. Discussion

4.1. Syntheses of Machine Learning Modeling Comparison

The comparison among all modeling scenarios indicated that the GBRT algorithm along with
4000 records of monthly features yielded the highest predictive accuracy for life cycle GW. The model
based on the GBRT algorithm with 6000 records of monthly features showed the highest predictive
accuracy for the life cycle EU. It is interesting to note that predictive accuracy was improved at the
cost of simulation time. Although GBRT showed the highest predictive accuracy, GBRT required
the longest training time. Compared with GBRT, the XGBoost model had slightly lower predictive
accuracy but significantly lower computational time. Additionally, more training datasets (larger
than 6000) will likely enable higher predictive accuracy for the life cycle EU. However, more training
datasets (larger than 4000) cannot further improve the predictive accuracy for life cycle GW. Overall,
when predictive accuracy is the key criterion, the GBRT model is the best choice. In contrast, when both
predictive accuracy and model efficiency are top concerns, the XGBoost model is highly recommended.
The majority of the existing machine learning applications in LCA used the ANN approach and did
not compare performances between ANN and other ML approaches. However, our study found that
BRT and XGBoost models showed higher predictive accuracy than the ANN approach for estimating
corn’s life cycle global warming and eutrophication impacts.

4.2. Application of Machine Learning Based Modeling Approaches for Supply Chain Management and
Environmental Policies

Compared with traditional process-based models, the ML models discussed in this study present
unique merits, such as faster execution and reduced storage needs to estimate modeling outputs,
and more flexible integration into other processes and simulation platforms. Such advantages permit
ML models to rapidly complete a high number of simulation runs, thereby making ML models
superior approaches for a range of computationally intensive tasks, such as optimization, prediction,
and validation. For example, it is often infeasible for traditional process-based models to identify the
optimal corn supply chains for corn-based biorefineries in the U.S. Midwest region at a fine spatial
resolution over a large region, due to billions of simulation scenarios reflecting various combinations
of weather, soil, farming practices, and supply scenarios. In contrast, the ML models compressed
the model simulation time from months to seconds, consequently enabling the identification of the
optimal corn supply chains for corn users such as biorefineries and animal sectors at a fine spatial
resolution over a large geographic area.

The ML models in this study are valuable for policy assistance at the county, state, and regional
scales. At the county and state scales, these models are capable of identifying the top polluting counties
and states, and of suggesting spatially targeted remediation strategies. For example, different fertilizer
application rates and tillage practices could be recommended for different counties to approximate
an optimal trade-off level among life cycle GW and EU impacts. The results could also be aggregated
into region scale assessments for supporting regional policies and planning. For example, to support
regional biofuel and land use policies, our ML models could be used for corn supply chain optimization,
corn-based biorefinery siting, and feedstock landscape optimization.

There are also several drawbacks associated with ML models. First, the computational burden
for generating spatially explicit training datasets at fine spatial scales (such as a county) over a large
geographic area (i.e., the Midwest) is substantial. The spatially explicit life cycle analyses at a fine
spatial resolution over a large geographic area are lacking to date. The majority of LCAs that use
spatially explicit biogeochemical models focused on a few farms or a small region due to data and
computational constraints. This study obtained spatially explicit life cycle environmental impacts of
corn at the county scale in the Midwest by integrating process-based LCA and the spatially explicit
EPIC model with supercomputer clusters [17]. The computational burden for generating the spatially
explicit training datasets likely will restrain the adoption of ML models, especially when the computing
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infrastructure is not available for a large number of process-based modeling simulations. However,
this study showed that increasing sample size beyond 4000 would not improve model accuracy for
life cycle GW. This indicated that reducing the sample size to 4000 would be appropriate for reaching
desirable predictive accuracy for life cycle GW, and is capable of reducing computational burden
associated with generating training datasets and fitting ML models. We recommend future studies
to identify the minimal sample size for spatially and temporally explicit LCAs of other crop and
animal systems with machine learning approaches. Second, besides inheriting the uncertainty of
process-based LCA and the EPIC model, the training algorithms also introduce additional uncertainty
to our ML models. The uncertainty of process-based LCA and EPIC models was extensively discussed
in previous studies [17,20]. This study focuses on the uncertainty introduced by training algorithms.
By comparing four different algorithms and cross-validation procedures, this study found that the
GBRT algorithm was the best statistical approach to approximate the traditional process-based model
at a lower computational cost. We recommend future studies to identify the minimal sample size
for spatially and temporally explicit LCAs of other crop and animal systems with machine learning
approaches. Additionally, caution should be taken when applying the ML models generated from this
study to other regions, whose weather, soil, or farming practice values may fall out of the ranges of
our training datasets in the Midwest. In these cases, one should follow the procedures described in
Figure 4 to construct and test ML models before employing them for other regions.

5. Conclusions and Recommendations for Future Work

While machine learning approaches were suggested as alternative approaches for predicting the
life cycle environmental impacts of agricultural production, no studies yet identified the appropriate
sample sizes and most suitable machine learning for predicting spatially and temporally explicit life
cycle environmental impacts. This study comprehensively compared the influences of ML algorithms,
training datasets, and sample sizes on the predicative accuracy and efficiency of ML models for
estimating spatially explicit life cycle GW and EU impacts, with the Midwest corn as a case study.
Among all LCA studies which used ML algorithms, this study included the largest training datasets,
covering over 1000 counties in the Midwest over 9 years. This study found that GBRT and XGBoost
models yielded the highest predictive accuracy for both the life cycle GW and EU. To further improve
predictive accuracy, this study suggests expanding spatially and temporally explicit training datasets,
particularly for spatially explicit life cycle EU. Moreover, the methods demonstrated in this study can
be applied to other crop and animal systems. We recommend future studies to test these methods for
predicting spatially explicit life cycle environmental impacts of soybean, beef, and dairy production,
which are among the top contributors to the national GW and EU impacts. Additionally, the ML
models open up new opportunities in solving computation-intensive challenges, such as optimization,
prediction, and validation. Future interdisciplinary work, based on integrating the ML models in this
study with optimization and economic models, will enable identifying the optimal supply chains,
and supporting spatially and temporally explicit economic and policy analyses.
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