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Abstract: Flooding is one of the most devastating natural events and leads to enormous and recurring
loss of life, properties, and resources around the globe. With climate change and accelerating
urbanization, flood disasters in China have increasingly affected the sustainable development of
metropolitan areas. Risk assessment is an essential step in flood management and disaster mitigation,
which provide a quantitative measure of flood risk. However, the difficulty of flood risk zoning is
dealing with the uncertainty of the evaluation process and the complicated non-linear relationship
between indicators and risk levels. To address this issue, a fuzzy synthetic evaluation (FSE) method
based on combined weight (CW) was utilized in this paper to generate flood risk maps at a grid-scale
(1 × 1 km). For the case study in the Beijing-Tianjin-Hebei metropolitan area (BTH) in China, fourteen
indicators were selected to construct the flood risk assessment model based on the FSE approach
integrated with ArcGIS. The research demonstrates that moderate, high, and very high risk zones
are distributed in the southeast fluvial plain of the BTH area, accounting for 31.36% of the total
land area. Meanwhile, low and very-low risk zones occupy 68.64% of the total land area, and are
primarily located in the high plateau and mountain regions in the northwest. We analyzed the risk
level of each county and proposed risk mitigation measures based on field investigations. The verified
risk assessment results were spatially consistent with the historical flood disaster records and loss
positions, indicating the accuracy and reliability of the risk assessment map using the FSE approach.
Compared with the IPCC (Intergovernmental Panel on Climate Change) TAR (Third Assessment
Report) and AR5 (Fifth Assessment Report) methods, FSE has significant advantages in handling
uncertainty, complexity, and the non-linear relationship between indices and risk grades. This study
provides a novel quantitative method for flood risk assessment in metropolitan areas and practical
implications for urban flood management.

Keywords: risk assessment; fuzzy synthetic evaluation; combined weight; metropolitan area; flood
mitigation

Sustainability 2020, 12, 1451; doi:10.3390/su12041451 www.mdpi.com/journal/sustainability

http://www.mdpi.com/journal/sustainability
http://www.mdpi.com
https://orcid.org/0000-0003-1419-3168
http://dx.doi.org/10.3390/su12041451
http://www.mdpi.com/journal/sustainability
https://www.mdpi.com/2071-1050/12/4/1451?type=check_update&version=2


Sustainability 2020, 12, 1451 2 of 30

1. Introduction

Flooding is generally considered to be one of the most common and destructive natural disasters,
and has been responsible for major losses to human and social economies [1,2]. A preliminary survey
by the International Disaster Database (EM-DAT) shows that from 1900 to 2016, floods have killed
approximately 7 million people and caused more than $700 billion in damage worldwide [3]. In China,
metropolitan areas have become the strategic cores and future development orientations of new
urbanization, and they play an essential role in globalization and national economic development.
However, acceleration of urbanization and intense human activities has led to dramatically increased
flood risks in the past few decades [4–6]. Worse still, most of the flooded areas in China have been
primarily located in metropolitan areas and urban agglomerations with large populations and advanced
economies [7]. Previous studies have focused on a global [8], national [9], watershed [10], single-city [11]
and community scales [12], but few studies have been conducted at the scale of metropolitan area [13].
Floods have become a major threat to the sustainable development of metropolitan regions in China [14].
Within this context, identifying high risk areas at the regional level and adopting substantive optimum
flood management strategies is of considerable significance to metropolitan areas.

Flood risk assessment is an essential means of flood management and risk mitigation that
demonstrates significant practical values in floodplain management, disaster warning and evacuation,
flood insurance and decision-making [15,16]. In recent decades, numerous methods have been proposed
and applied to flood risk assessment. Traditionally, these approaches can be classified into four primary
types: GIS (Geographic Information System) and remote sensing methods (GRSM) [17], scenario
simulation analysis (SSA) [18], the historical disaster mathematical statistics method (HDMS) [19],
and multi-criteria analysis (MCA) [20,21]. GRMS requires high-resolution remote sensing images,
and thus has not been widely used due to higher costs and difficulties in data acquisition [22]. SSA uses
hydrological/hydraulic models for flood routing simulation, although the impacts of hazard-formative
environments and hazard-affected bodies are generally not considered in risk evaluation results
(except for high-resolution topographic and meteorological data). HDMS uses a substantial amount of
historical disaster data, such as affected population, collapsed buildings and other socio-economic
information, but does not accurately reflect the spatiotemporal variability of flood risk. Additionally,
due to discrepancies in risk perception among experts, different risk indicator division criteria will
generate several risk maps, which causes the MCA method to have high uncertainty.

Currently, the main challenge facing flood risk assessment is the fuzziness and uncertainty
of risk estimation and the complicated relationships between risk indicators and risk levels [1,23].
The aforementioned traditional risk assessment methods cannot handle the uncertainty and ambiguity
efficiently of the evaluation process. To solve this problem, we proposed a fuzzy synthetic evaluation
(FSE) method based on combined weight (CW). FSE is a method that uses fuzzy sets and fuzzy
logic theory to make an overall evaluation of complicated things affected by multiple factors [23,24].
Therefore, FSE can efficiently tackle fuzziness or uncertainty in risk evaluation [23]. FSE has been
widely used in various research fields, but it is rarely utilized in flood risk assessment research.
In this study, we use the FSE method to perform flood risk assessments in the Beijing-Tianjin-Hebei
metropolitan area (BTH) to construct an accurate and reliable risk map.

Furthermore, since different indicators exhibit different contributions to flood risk, the assignment
of indicator weights is crucial to the risk assessment results [15,25]. The two current primary weighting
methods are subjective weighting and objective weighting. The analytic hierarchy process (AHP)
and entropy weight (EW) method are typical representatives of subjective and objective weighting
methods, respectively [26,27]. Nevertheless, AHP is significantly affected by the perception of experts,
and cannot adequately reflect the multiple data provided by risk indicators [15]. On the contrary,
EW excessively depends on the objective data of risk indicators without considering the relative
importance of each indicator to the risk outcome [15]. Therefore, to avoid the limitations of the single
weight method, a combined weight (CW) method with both advantages was proposed and applied in
this research.
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The main objectives of this study are to develop a flood risk assessment model for metropolitan
areas based on the FSE approach, to verify the feasibility of the results using historical flood data
and casualty data, to put forward a combined weight (CW) method based on subjective (AHP) and
objective (EW) weighting methods to improve the scientificity of weight distribution, and finally to
generate risk maps of the BTH area from a grid (1 × 1 km) and propose corresponding mitigation
measures combined with field investigations at the regional level.

2. Study Area and Data

2.1. Study Area

The BTH area is located in northern China and comprises the two central cities and eight prefecture
cities of Hebei Province, including Beijing, Tianjin, Chengde, Zhangjiakou, Qinhuangdao, Tangshan,
Baoding, Langfang, Cangzhou, and Shijiazhuang (Figure 1). This region consists of three geomorphic
units, including the Bashang Plateau, the Yanshan Mountains and Taihang Mountains, and the vast
alluvial plain (part of the North China Plain). The BTH area has the typical characteristics of a warm
temperate semi-humid and semi-arid continental monsoon climate [28]. The mean annual precipitation
is about 500 mm, of which about 80% occurs from June to August [28]. This region is located in the
Haihe River and Luanhe River basins, with a dense river network and artificial channels.

The BTH area is the political, economic, and cultural center of China, and has experienced a
rapid urbanization process since the 1980s [29,30]. The population of the area is 91.2 million (2017),
accounting for 7% of China’s total population. The regional GDP is $127.19 billion, consisting of 9% of
the national total GDP (2017). Urban expansion, intense human activity, and rainstorm weather have
commonly contributed to severe flooding in the area. On 21 July 2012, a 60-year return period of extreme
rainstorms hit the BTH area, with a maximum rainfall of 541 mm in Hebei Town, Fangshan District,
Beijing. This extreme rainstorms resulted in wide waterlogging in urban areas and torrential flooding
in mountain regions, with 115 human casualties and a direct economic loss of $4.88 billion [31,32]. To
cope with the flood and reduce potential loss, a systematic flood risk assessment of the BTH area is of
great practical significance.
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Figure 1. Geographical location map of the Beijing-Tianjin-Hebei metropolitan area (BTH) area. 
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2.2. Indicator Selection and Data Analysis

Regional risk indicator variables differ due to differences in physical geography and socio-economic
characteristics [29]. An indicator that shows a high degree of impact on flood risk in a specific area may
not rank similarly in other regions [33]. According to the conceptual model of risk assessment and the
actual conditions in the BTH area [34–37], 14 risk indicators were determined. Detailed descriptions
and data sources for each indicator are as follows:

• Digital elevation model data (DEM, m): DEM can reflect the absolute elevation and topographic
fluctuations of the study area. In general, flooding is more likely to occur at lower altitudes than
at higher elevations. The original resolution of DEM is 90 × 90 m.

• Slope data (SL, degree): The slope reflects the topographic change and runoff velocity. In general,
steep slopes of the mountain areas promote runoff generation, whereas low-lying level regions
are prone to severe flooding and waterlogging due to poor drainage. SL was extracted from the
DEM data using GIS technique.

• Rainfall intensity data (RI, normalized value): By analyzing the daily precipitation data of
126 precipitation stations in the study area from 1981 to 2010, the maximum three-day precipitation
was calculated to characterize rainfall intensity [38]. Then, spatial interpolation was performed
using Kriging interpolation and the RI was generated.

• Rainstorm frequency (RF, times/year): Rainstorm refers to a heavy rainfall event with precipitation
of more than 50 mm within 24 hours in China. The rainfall frequency of each rain gauge station
was calculated based on the daily precipitation data from 1981 to 2010.

• Drainage density (DD, km/3 km2): Based on the linear density analysis technology of ArcGIS,
the drainage density was analyzed using the river vector data in the study area [16]. The search
radius was 3 km and a data layer of 1 × 1 km was generated.

• Normalized difference vegetation index (NDVI): This indicator can effectively reflect the
distribution of vegetation coverage on the spatial scale of the study area. The vegetation
not only regulates the surface runoff but also prevents soil erosion [39].

• Soil texture (ST): Different soil textures have various infiltration capacities and a specific impact
on surface runoff. In this study, we used the soil infiltration capacity according to the code
values in the Harmonized World Soil Database (HWSD). The soil texture classification criteria in
this database were divided into 13 categories by the US Department of Agriculture (USDA) [1].
As shown in Table 1, a large code value indicates a strong infiltration capacity.

• Gross domestic product (GDP, yuan/km2): GDP indicates the prosperity degree of the national
economy of a country or region, which is an essential indicator of flood vulnerability. In this paper,
we collected the GDP data from 2015 with a resolution of 1 × 1 km.

• Population density (PD, people/km2): This indicator reflects the spatial distribution of human
exposure in the research area in 2015.

• Grain output (GO, kg/hm2): Food is a special commodity and an essential strategic reserve related
to people’s livelihoods. This data mainly considers the grain yield of five crops (wheat, corn, rice,
soybean, and potato) in the study area.

• Road network density (RND, km/km2): The strong hydrodynamic conditions during the flood
will inevitably destroy roads. Furthermore, secondary geological disasters caused by floods,
such as landslides and debris flows in mountainous areas, pose severe threats to road and rail
network systems.

• Per capita disposable income (PDI, 10,000 yuan/people): PDI can reflect the overall socio-economic
level of a region. The higher the PDI, the stronger the disaster resistance and the faster the
post-disaster recovery and reconstruction.

• The ratio of children and the elderly (RCE, %): Children (0 to 14 years old) and older people
(65 years and older) are more vulnerable to flooding due to age and some physiological reasons.
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• Average schooling years (ASY, year): ASY is an important indicator to measure the degree of
popularization of higher education in a country or region (over six years old). Generally, ASY is
positively related to people’s awareness of disaster prevention and reduction.

Table 1. Soil texture (ST) and its infiltration capacity (IC).

ST Sand Loamy Sand Sandy Loam Sandy Clay Loam Loam Sand Clay Silt Loam

IC 13 12 11 10 9 8 7
ST Silt Clay loam Silty clay loam Clay Silty clay Clay (heavy)
IC 6 5 4 3 2 1

Out of the 14 indexes, there are seven hazard indicators (DEM, SL, RI, RF, DD, NDVI, and ST) and
seven vulnerability indicators (GDP, PD, GO, RND, PDI, REC, and ASY), respectively. The 14 indicators
were converted into a grid data layer of 1 × 1 km using the GIS technique (Figure 2), with a total of
180,816 grids. The data sources and original resolutions of the 14 indices are shown in Table 2.

Table 2. Data sources and original resolutions of 14 risk indicators.

Indices Time Original Resolution Data Sources

DEM / 90 × 90 m Computer Network Information Center of the Chinese
Academy of Sciences (http://www.gscloud.cn/)

SL / 90 × 90 m Same as above

RI 1981–2010 Vector data National Meteorological Information Center
(http://data.cma.cn/)

RF 1981–2010 Vector data Same as above

DD 2017 Vector data National Geomatics Center of China
(http://www.ngcc.cn/ngcc/)

RND 2017 Vector data Same as above

NDVI 2018 1 × 1 km Resource and Environment Data Cloud Platform of the
Chinese Academy of Sciences (http://www.resdc.cn/)

GDP 2015 1 × 1 km Same as above

GO / 1 × 1 km Same as above

ST / 1 × 1 km Food and Agriculture Organization of the United Nations
(http://www.fao.org/home/en/)

PD 2015 1 × 1 km Peking University Geographic Data Platform
(https://geodata.pku.edu.cn/)

PDI 2017 County unit Beijing Regional Statistical Yearbook (2018), Tianjin
Statistical Yearbook (2018), Hebei Economic Yearbook (2018)

RCE 2017 County unit Same as above

ASY 2000 County unit Fifth population census data of the National Bureau of
Statistics of the People’s Republic of China (2000)

Notes: digital elevation model data (DEM); normalized difference vegetation index (NDVI); slope data (SL); rainfall
intensity data (RI); rainstorm frequency (RF); drainage density (DD,); soil texture (ST); gross domestic product
(GDP); population density (PD); grain output (GO); road network density (RND); per capita disposable income
(PDI); ratio of children and the elderly (RCE); average schooling years (ASY).

http://www.gscloud.cn/
http://data.cma.cn/
http://www.ngcc.cn/ngcc/
http://www.resdc.cn/
http://www.fao.org/home/en/
https://geodata.pku.edu.cn/
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Figure 2. Spatial distributions of 14 flood risk indicators in the BTH area. (a) Digital elevation model data (DEM, m); (b) normalized difference vegetation index
(NDVI); (c) slope data (SL, degree); (d) rainfall intensity data (RI, normalized value); (e) rainstorm frequency (RF, times/year); (f) drainage density (DD, km/3km2); (g)
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3. Methodology

3.1. Overall Framework of the Evaluation Procedure

We adopted a fuzzy synthetic evaluation (FSE) to eliminate the possible fuzziness or uncertainty
that may exist in flood risk assessment in the BTH area. The structure and process of this paper consist
of four parts: data collection and preprocessing, indicator selection and analysis, fuzzy synthetic
evaluation, and verification analysis. Figure 3 shows the detailed procedure of flood risk assessment in
the BTH area based on the FSE method.
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3.2. Fuzzy Synthetic Evaluation (FSE)

Fuzzy Synthetic Evaluation (FSE) is a kind of method that uses fuzzy mathematic theory to make
an overall evaluation of complicated things that are affected by multiple factors [23]. The method
has been applied to flood risk assessment to eliminate the fuzziness or uncertainty that may exist
in the assessment process [40]. Furthermore, FSE converts qualitative evaluation into quantitative
evaluation by utilizing fuzzy set theory and fuzzy logic, thereby allowing it to obtain precise evaluation
results [23–35]. Three significant analytical processes are indispensable to implementing the FSE
approach: fuzzification, fuzzy inference, and defuzzification, respectively. Fuzzification is the process
of converting the determined values of the input quantity of a fuzzy controller into corresponding
fuzzy linguistic variables. Fuzzy inference process combines membership functions (MFs) and
control rules to output a fuzzy relation matrix. Defuzzification is the process that maps fuzzy sets to
corresponding crisp sets based on different fuzzy operators in order to obtain final results. In this paper,
the above three processes correspond to fuzzy classification, membership functions, and comprehensive
evaluation, respectively.

3.2.1. Fuzzy Classification

During the application of FSE in risk assessment, flood risk was divided into five grades
according to actual requirements, namely, very low, low, moderate, high, and very high, respectively.
Discontinuous points (di) were then obtained, using the statistics of standard deviation or mean value
from the original values of each indicator [23,24].

The interval values of several indicators, such as SL and DEM, were determined based on the
actual situation of the research area. Discontinuities of the SL refer to the five-grades division method
proposed by the Agricultural Division Committee of China in the Technical Regulation of Land Use
Status Survey of 1984. Considering that the slopes of the coastal plain and the lacustrine plain in the
east of the research area are almost zero, a 0.2-degree discontinuity was inserted to identify these highly
hazardous regions. Thus, discontinuities of the SL were classified as 0.2◦, 2◦, 6◦, 10◦, and 20◦. Moreover,
interval values of DEM were ultimately divided into 5, 50, 500, 1000, and 1500 mm, which were based
on an overall analysis of the topography and geomorphology of the study area and combined with
geomorphic classification standards of China.

The critical values of GO and ST were generated by the method of natural breaks (Jenks),
which is based on ArcGIS. Jenks is a clustering method that sets boundary values at a position
where the difference is relatively evident according to the inherent natural group features of the data.
It aims to reduce the variance in each category and maximize the variance between different classes.
The discontinuous points (di) of all indicators in the BTH area are shown in Table 3.
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Table 3. Fuzzy classification of risk assessment indicators in the BTH area.

Flood Disaster Risk Indicators
Fuzzy Classification (Discontinuities) Indicator

Attributesd1 d2 d3 d4 d5

Hazard

Digital elevation model data (DEM, m) 1500.00 1000.00 500.00 50.00 5.00 negative

Slope data (SL, degree) 20.00 10.00 6.00 2.00 0.20 negative

Rainfall intensity data
(RI, Normalized value) 0.21 0.37 0.53 0.69 0.85 positive

Rainstorm frequency
(RF, times/year) 0.50 1.50 2.50 3.50 4.50 positive

Drainage density (DD, km/3 km2) 0.00 0.12 0.24 0.36 0.48 positive

Normalized difference vegetation index
(NDVI) 0.90 0.81 0.72 0.63 0.54 negative

Soil texture (ST) 13.00 12.00 11.00 9.00 7.00 negative

Vulnerability

Gross domestic product
(GDP, yuan/km2) 50.00 200.00 1000.00 3000.00 5000.00 positive

Population density (PD, people/km2) 1.00 200.00 400.00 800.00 1600.00 positive

Road network density (RND, km/km2) 0.00 0.55 1.10 1.65 2.20 positive

Grain output (GO, kg/hm2) 967.94 2581.17 4463.27 6668.02 8872.77 positive

Per capita disposable income
(PDI, 10000 yuan/people) 2.64 2.29 2.01 1.76 1.55 negative

Ratio of children and the elderly
(RCE, %) 23.00 25.00 26.00 27.00 28.00 negative

Average schooling years (ASY, year) 9.40 8.80 8.20 7.60 7.20 negative

The indicator attributes refer to the relationships between the indicators and the flood risk degrees. Positive indicators indicate a higher flood risk degree, and negative indicators indicate
the opposite.
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3.2.2. Membership Function and Comprehensive Evaluation

A fuzzy set quantizes the fuzziness through membership functions (MFs), eliminating the
uncertainty and obtaining a fuzzy evaluation matrix [41,42]. Therefore, determining suitable
membership functions is critical to risk assessment results. There are many types of membership
functions, including triangular waveforms, trapezoidal waveforms, Gaussian waveforms, bell-shaped
waveforms, sigmoidal waveforms, S-curve waveforms, and so on. According to previous studies,
if a system has a significant dynamic variation in a short period, it is more appropriate to utilize a
triangular or trapezoidal waveform [23]. Therefore, considering that floods are short-duration events,
it is ultimately necessary to select the trapezoidal and triangular waveforms in order to define the
piecewise functions.

As shown in Figure 4, uij is the membership degree of the indicator i at the grade j. It is not difficult
to find that the actual data xi of an indicator that has two membership degrees (ui2 and ui3). However,
it can be derived that xi has only one membership degree according to the principle of maximum
membership degree in the fuzzy operator. Thus, FSE converts fuzziness and uncertainty into accuracy
and certainty through membership functions based on fuzzy set and fuzzy logic theory. As shown
in Appendix A, Equations (A1)–(A3) and (A4)–(A6) are used to calculate the fuzzy membership of
positive and negative indicators, respectively.
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3.2.3. Comprehensive Evaluation

Once the membership functions are determined, a membership function matrix (Rk) is generated
according to Equations (A1)–(A6) that combines the actual values of all indicators. The resulting
vector Bk is the product of the weight vector W and the fuzzy relation matrix Rk, and its mathematical
derivation is as follows:

Bk = W ×Rk = [ w1, w2, . . . , wi] ×


u11 u12 . . . u15

u21 u22 . . . u25

. . . . . .
. . . . . .

ui1 ui2 . . . ui5

 = [ b1, b2, b3, b4, b5] (1)

where W is the weight vector of indicators (its calculation process is described in detail below).
The element of Bk is the comprehensive membership degree, which indicates the extent to which each
evaluation unit (or grid) belongs to the five risk assessment levels. In this paper, risk assessment grade
is ultimately determined by the maximum membership. Therefore, the comprehensive flood risk level
(CFRL) of each evaluation unit can be obtained by inputting Equation (2) in the GIS environment.

CFRL = Con(max(b1, b2, b3, b4, b5) = b1, 1,
Con(max(b1, b2, b3, b4, b5) = b2, 2,
Con(max(b1, b2, b3, b4, b5) = b3, 3,
Con(max(b1, b2, b3, b4, b5) = b4, 4, 5))))

(2)
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3.3. Calculation of the Weights for Indices Based on the CW Method

The commonly used weight distribution methods mainly include subjective weight (entropy
weight, EW) and objective weight (analytic hierarchy process, AHP). Although the EW method can
genuinely reflect the useful information offered by each evaluation index, it relies excessively on
actual data. On the contrary, the AHP method is proven to determine weights comprehensively by
considering the subjective attributes of the data, but it may not accurately reflect the useful information
provided by the data [15]. In order to address the contradiction between objective and subjective
weight and make full use of the advantages of both, a combined weight (CW) method combining EW
and AHP was proposed and applied in our flood risk assessment research. The theoretical knowledge
of the entropy is beyond the scope of this paper, but a comprehensive and detailed introduction can be
found in a previous work of Shannon [43]. The main calculation steps of the CW are summarized in
Appendix B.

4. Results and Discussions

4.1. Weight Calculation Results

Using the weight calculation steps listed in Section 3.3., we used the CW method to calculate the
weights of 14 risk indicators. Initially we constructed judgment matrixes for each criterion layer by
using the pairwise comparison method, which we based on importance rankings of the risk indicators
by 10 experts in the field of risk assessment (Table 4). The largest eigenvalue (λmax) of the judgment
matrix and its corresponding maximal eigenvector could then be calculated by the weighted sums
approach. The judgment matrix was considered to be satisfactory only when the consistency ratio
(CR) was less than 0.1 [44]. After verification, all CRs in this paper were less than 0.1 (Table 4),
which fully demonstrates that the weight calculation results based on AHP were reasonable and
reliable. The calculation result of the AHP weight is shown in Table 4. Subsequently, we used the
Model Builder in ArcGIS to construct the calculation procedure of the CW method, and the weight of
the AHP and EW of the 14 risk indicators were calculated, respectively. Based on this, the combined
weights were finally generated (Table 5).

Table 5 indicates the inconsistencies between AHP and EW weights. DEM and SL were considered
essential factors influencing flood risk in AHP weightings and thereby are assigned larger weighting
values. However, the weights of both were relatively small in the EW method; this is mainly because
the southeast part of the study area is a vast alluvial plain (part of the North China Plain), while the
west and north are mountainous areas. In terms of spatial heterogeneity, compared with other risk
indicators (such as GDP, RI, and RF), DEM’s and SL’s variability are relatively moderate. According
to the basic principle of the EW method, since DEM and SL provide less useful information on risk
assessment, the weights of both are inevitably relatively low. On the contrary, GDP and PD have
larger weights in both methods, which is because the social economy and population are the primary
hazard-bearing bodies, while on the other hand the spatial distribution of GDP and PD in the study
area is hugely uneven. Therefore, it is scientifically reasonable for DEM and SL to be assigned as
larger weights.

Furthermore, this paper proposes a combined weighting method based on the AHP and EW
methods that not only considers the contributions and relative significance of different risk indicators
to the final risk level, but also makes full use of the useful information offered by the risk indicators.
The combination weighting method is put forward to take advantage of subjective and objective
weights and to make the weighting results more reasonable.
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Table 4. Judgment matrixes in the analytic hierarchy process (AHP) method.

Indicator Hazard Vulnerability

Hazard 1 4/3
Vulnerability 3/4 1

λmax = 2; CI = 0; RI = 0; CR = 0

Indicator RI RF DEM DD SL NDVI ST

RI 1 1 2 2 3 4 5
RF 1 1 2 2 3 4 5

DEM 1/2 1/2 1 2 3 3 4
DD 1/2 1/2 1/2 1 2 3 4
SL 1/3 1/3 1/3 1/2 1 2 3

NDVI 1/4 1/4 1/3 1/3 1/2 1 3
ST 1/5 1/5 1/4 1/4 1/3 1/3 1

λmax = 7.215; CI = 0.036; RI = 1.320; CR = 0.027

Indicator GDP PD GO RND PDI RCE ASY

GDP 1 1 3 4 5 7 8
PD 1 1 3 4 5 7 8
GO 1/3 1/3 1 3 4 5 7

RND 1/4 1/4 1/3 1 3 5 5
PDI 1/5 1/5 1/4 1/3 1 4 5
RCE 1/7 1/7 1/5 1/5 1/4 1 3
ASY 1/8 1/8 1/7 1/5 1/5 1/3 1

λmax = 7.574; CI = 0.096; RI = 1.320; CR = 0.073

Table 5. Weight outputs based on different methods.

Indicator AHP (Analytic
Hierarchy Process)

EW
(Entropy Weight)

CW
(Combined Weight)

DEM 0.0999 0.0062 0.0058
SL 0.0485 0.0024 0.0011
RI 0.1450 0.0224 0.0303
RF 0.1450 0.0192 0.0260
DD 0.0777 0.0224 0.0162

NDVI 0.0343 0.0496 0.0159
ST 0.0206 0.0504 0.0097

GDP 0.1313 0.3133 0.3843
PD 0.1313 0.3414 0.4188

RND 0.0438 0.0651 0.0266
GO 0.0712 0.0954 0.0635
PDI 0.0279 0.0018 0.0005
RCE 0.0142 0.0078 0.0010
ASY 0.0094 0.0028 0.0002

4.2. Distribution Characteristics of Flood Risk in the BTH Area

Based on the calculation approach mentioned above, the spatial distribution map of flood hazard,
flood vulnerability, and flood risk in the BTH area were generated at a grid scale (1 × 1 km). As shown
in Figure 5c, the comprehensive flood risk in the research area is roughly centered on the Beijing
area, demonstrating a “petal-like” distribution pattern. Very high risk zones are mainly located in
the central, eastern and southwestern regions of the study area, including most of the counties or
districts in Beijing, Tianjin, and Tangshan and accounting for approximately 22.23% (24,871 km2) of
the total area. Furthermore, very high risk areas also lie in river valleys and the piedmont alluvial
plain areas of the Taihang and Yanshan mountainous regions, most of which are scattered in dots
and bands. High risk zones alternate with the very high risk zones distributed predominantly in
the eastern and southern parts of the study area covering approximately 7.25% (13,104 km2) of the
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total area. Specifically, these areas include some districts and counties in Shijiazhuang, Tangshan,
and Qinhuangdao. Moreover, the research results clearly show that a total of 29.48% of the regions are
under very high or high flood risk, and that these are regions with dense populations and developed
social economies.

The moderate risk zones mainly lie in the transition zone between mountains and plains,
accounting for about 9.50% (17,179 km2) of the total area. The central and western regions of
Shijiazhuang, the central and eastern regions of Baoding, and the southern areas of Qinhuangdao are
all moderate risk zones. In addition, the very low and low risk zones are spread over vast areas of
the northern and western parts of the study area, including Zhangjiakou, Chengde, western parts of
Beijing, Baoding, Shijiazhuang, and most of Cangzhou. These areas are mainly located in the Taihang
and Yanshan mountainous areas, which have sparse populations and relatively backward economies.
The surface areas of the very low and low risk zones are 111,886 and 13,776 km2, occupying 61.02%
and 7.62% of the total area, respectively. Moreover, other risk levels are distributed sporadically across
a wide range of very low and low risk areas.

According to disaster risk theory, the flood risk in an area is the result of the interaction of physical
geographical elements and socio-economic factors [45]. Therefore, spatial distribution maps of flood
risk that consider hazard or vulnerability indices alone are neither integrated nor objective. In order to
compare the differences between these indices, we generated a flood hazard map (Figure 5a) and a
flood vulnerability map (Figure 5b), respectively, based on the FSE approach. Although the spatial
distribution of hazards and the comprehensive flood risk map had similar trends, the differences were
noticeable in certain regions that are significantly affected by the socio-economic indicators. There are
areas with low hazard intensity that may also have high flood risk. For example, most areas in Baoding
and Shijiazhuang in the southwest of the study area are the high and very high risk zones, although
their flood hazards are moderate or even low. This is due to their dense populations, transportation,
property, and crops, and small floods would cause severe casualties and flood losses.

In contrast, hazards that strike in regions with low exposure and vulnerability will not become
disasters, or at least there will be no catastrophic flood disasters. The primary reason is that these
areas are sparsely populated and economically backward (such as Qinglong Manchu Autonomous
County in the north of Qinhuangdao), and although the probability of being inundated is relatively
high, there are few casualties and property losses. Therefore, comprehensive flood risk zoning should
consider not only hazardous factors such as precipitation, topography, rivers, and so on, but also
vulnerability factors such as population, property, crops, and so on. Such a risk zoning map could be
more representative of the actual flood risk of the study area.

To provide a more specific spatial distribution of flood risk from administrative units and to
identify the susceptibility of each county or district towards risk, the flood risk of each county or
district was classified into five categories based on the GIS technique. As shown in Figures 6 and 7, we
can better identify higher risk counties or districts using this method, and we can determine which
regions should pay significant attention and urgently improve their capabilities of disaster prevention
and mitigation. Risk information at the county level provides scientific guidance for the government
and non-governmental organizations to prioritize the allocation of flood control resources. Moreover,
it offers accurate risk backgrounds for urban planning, evacuation drills, and insurance companies.

According to the estimation results, the risk level of the southeast region is higher than that of
the northwest region in general. High and very high risk zones are mainly distributed in densely
populated and economically developed plain areas, while very low and low risk zones are mainly
located in sparsely populated and economically backward mountainous regions. Moderate risk zones
primarily lie in the transition zone between mountains and plains due to their moderate populations
and relatively developed economies.



Sustainability 2020, 12, 1451 16 of 30
Sustainability 2020, 12, x FOR PEER REVIEW 16 of 30 

 
Figure 5. Flood risk map based on the fuzzy synthetic evaluation (FSE) method in the BTH area. (a) Flood hazard map; (b) flood vulnerability map; (c) flood risk 

map. 

 

 

 

 

Figure 5. Flood risk map based on the fuzzy synthetic evaluation (FSE) method in the BTH area. (a) Flood hazard map; (b) flood vulnerability map; (c) flood risk map.



Sustainability 2020, 12, 1451 17 of 30
Sustainability 2020, 12, x FOR PEER REVIEW 17 of 30 

 
 

1 Xiahuayuan 21 Nankai 41 Lingshou 61 Gu’an 

2 Heping 22. Dongcheng 42 Wanquan 62 Rongcheng 

3 Yishouyingzi  23 Hedongqu 43 Xinhuaqu 63 Zhuolu 

4 Chongli 24 Zanhuang 44 Shenze 64 Miyun 

5 Kangbao 25 Mengcun 45 Haixing 65 Xingtang 

6 Wuqiao 26 Nanpi 46 Wangdu 66 Laoting 

7 Hongqiao 27 Luanping 47 Qiaoxi 67 Yuxian 

8 Shanhaiguan 28 Zhangbei 48 Dongguang 68 Huailai 

9 Qiaoxi 29 Laishui 49 Fengning 69 Mancheng 

10 Hebeiqu 
30 Jingxing-

kuangqu 
50 Qingyuan 70 Qianxi 

11 Laiyuan 31 Jingxing 51 Funing 71 Yanqing 

12 Fuping 32 Mentougou 52 Pingshan 72 Huairou 

13 Guyuan 33 Yangquan 53 Weichang 73 Pingquan 

14 Kuancheng 34 Shunping 54 Xiongxian 74 Shijingshan 

15 Beidaihe 35 Xicheng 55 Yongqing 75 Lunan 

16 Huaian 36 Chengde 56 Qiaoxi 76 Gaoyang 

17 Chicheng 37 Boye 57 Suning  

18 Longhua 38 Qiaodong 58 Caofeidian  

19 Shuangluan 39 Xinglong 59 Anci  

20 Hexiqu 40 Dachang 60 Yanshan  

Figure 6. Risk level distribution of each county. (No. 43 is Xinhua District of Cangzhou; No. 47 is Qiaoxi District of Shijiazhuang; No. 47 is Qiaoxi District of 
Zhangjiakou). 

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
1
4
7

10
13
16
19
22
25
28
31
34
37
40
43
46
49
52
55
58
61
64
67
70
73
76

Co
un

tie
s

Series1 Series2 Series3 Series4 Series5

Figure 6. Risk level distribution of each county. (No. 43 is Xinhua District of Cangzhou; No. 47 is Qiaoxi District of Shijiazhuang; No. 47 is Qiaoxi District of
Zhangjiakou).



Sustainability 2020, 12, 1451 18 of 30
Sustainability 2020, 12, x FOR PEER REVIEW 18 of 30 

 
 

77 Luancheng 97 Lianchi 117 Wuji 137 Sanhe 

78 Yuanshi 98 Lixian 118 Lianchi 138 Xiqing 

79 Xinhua 99 Luquan 119 Xinji 139 Chaoyang 

80 Luannan 100 Gaoyi 120 Hejian 140 Baodi 

81 Lulong 101 Jingxiu 121 Guye 141 Changping 

82 Qinglong 102 Xuanhua 122 Zunhua 142 Fengrun 

83 Anguo 103 Xianxian 123 Gaocheng 143 Luanxian 

84 Dacheng 104 Xushui 124 Jinzhou 144 Fengnan 

85 Qingxian 105 Zhaoxian 
125 
Guangyang 

145 Renqiu 

86 Anxin 106 Gaobeidian 126 Fangshan 146 Tongzhou 

87 Pinggu 107 Lubei 127 Ninghe 147 Shunyi 

88 Yuhua 108 Wenan 128 Fengtai 148 Jixian 

89 Changli 109 Chang’an 129 Dingzhou 149 Daxing 

90 Huanghua 110 Tangxian 130 Jinnan 150 Qian’an 

91 Xianghe 111 Cangxian 131 Dongli 
151 
Binghaixinqu 

92 Botou 112 Quyang 132 Bazhou 152 Wuqing 

93 Yixian 113 Yutian 133 Zhengding  

94 Shuangqiao 114 Xinle 134 Haidian  

95 Yunhe 115 Haigang 135 Jinghai  

96 Kaiping 116 Zhuozhou 136 Beicheng  

Figure 7. Risk level distribution of each county. (No. 79 is Xinhua District of Shijiazhuang).

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
77
80
83
86
89
92
95
98

101
104
107
110
113
116
119
122
125
128
131
134
137
140
143
146
149
152

Co
un

tie
s

Series1 Series2 Series3 Series4 Series5

Figure 7. Risk level distribution of each county. (No. 79 is Xinhua District of Shijiazhuang).



Sustainability 2020, 12, 1451 19 of 30

4.3. Results Validation

In order to verify the overall flood risk assessment results, 126 historical flood records and the
submerged areas of two historical floods in the Haihe River Basin were applied, most of which were
provided by water conservancy departments. A few typical flood data were obtained through field
investigations. During field surveys, high-precision GPS (PromarkTM 500) was used to record point
data of historical floods to ensure accuracy. The historical floods were converted into vector format
and the inundation areas were obtained by using the “Extract by Mask” tool in ArcGIS (Figure 8).
Subsequently, the accuracy of the risk assessment results was verified through a comparative analysis
with historical flood data.

The black diamond symbols in Figure 8a show the locations where 126 historical floods occurred,
including both measured and field investigations. The blue triangle symbol in Figure 8a represents the
locations of casualties in historical floods in data released by the governments of Beijing and Hebei
Province from a death toll exceeding 110. Through overlay analysis, we precisely calculated the risk
level of the grid cells where the historical flood coordinate points were located. Based on the above
approach, we found that 88.1% of the historical flood records and 95.5% of the locations of casualties
were distributed in the moderate to very high risk zones, and that less than 4% of the historical flood
records and only 4.5% of casualties were located in the very low and low risk areas (Tables 6 and 7).
This consistency suggests that the flood risk assessment results using the FSE method were convincing.

Due to the difficulty in obtaining historical flood data, the historical flood hydrological records
collected in this paper mainly detail the Taihang and Yanshan mountains. The reliability of the
risk assessment results in mountainous areas was proved by superposition analysis. Subsequently,
we used the submerged area of two historical floods in the Haihe River Basin to further verify the risk
assessment results. Figure 8b,c display the submerged area (blue lines) of the historic floods of 1939
and 1963, respectively. The flood in 1939 resulted in most of the southeastern part of the study area
being submerged, covering approximately 31,713 km2 and accounting for 17.54% of the total area.
The submerged area of the 1963 flood was mainly located in the south-central part of the study area,
with an area of 24,342 km2 occupying 13.46% of the total area. The results of layer overlay analysis are
shown in Tables 6 and 7. For the 1939 flood, 66% of the inundation area was consistent with moderate
to very high risk zones. The results of the superimposed analysis of the 1963 flood are generally in
accordance with the 1939 flood, and 65.80% of the regions overlap with moderate to very high risk
zones (Table 8). Compared with the 1939 flood, high and very high risk zones in the 1963 flood were
12.60% more than in the 1939 flood, and moderate risk areas were 10.70% less than the 1939 flood
(Table 8). Additionally, the low and very low risk areas of the two historical floods were both about
27% (Table 8). The principal reason is that these areas (such as the coastal area of the research area and
parts of Cangzhou) are sparsely populated and economically backward, and although the probability
of being inundated is relatively high, few casualties and property losses would occur here. Spatially,
the inundation area data support the accuracy of the flood risk assessment result.

Consistent matching of the historical flood records with the overall flood risk results,
as demonstrated through the above analysis, powerfully illustrates the reliability and accuracy
of the FSE method proposed in this paper.
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Table 6. Results verification using historical flood records.

Risk Levels Very High High Moderate Low Very Low

Historical floods (%) 34.13 15.87 38.10 8.73 3.17

Table 7. Death location of a historical flood and its corresponding risk levels.

Risk Levels Very High High Moderate Low Very Low

Dead points (%) 77.50 11.70 6.30 2.70 1.80

Table 8. Results validation using the inundation areas of the 1939 and 1963 floods.

Historical
Floods

Inundated
Area (km2)

Percentage of
Total Area (%)

Overlapping Ratio with Different Risk Levels (%)

Very High High Moderate Low Very Low

1939 31713 17.54 34.90 15.50 15.60 6.40 27.70
1963 24342 13.46 22.30 17.20 26.30 7.30 27.00

4.4. Comparison with other Methods

There are multiple conceptual models and methodologies related to flood risk assessment,
although risk assessment is a global concept [16]. In order to further analyze and demonstrate the
advantages of the proposed method in this paper, the IPCC TAR (Third Assessment Report) and AR5
(Fifth Assessment Report) methods were compared to the FSE method.

In the IPCC TAR approach, risk is assessed using a multiplicative formula of hazard and its
probability of occurrence along with its vulnerability [46,47]. Furthermore, vulnerability is evaluated
from socio-economic indicators and in a linear form of exposure, sensitivity, and adaptive capacity.
The formula according to TAR [46,47] is described as

Risk = Hazard × Vulnerability (3)

where
Vulnerability = Exposure + Sensitivity − Adaptive Capacity (4)

In the IPCC AR5 approach, risk is defined as the results of the interaction of hazards with
vulnerability and exposure of human and natural systems [48], and its conceptual model expression is
Equation (5).

Risk = Hazard × Exposure × Vulnerability (5)

IPCC AR5 gives a detailed definition of related notions of the risk involved in the above formula [48].
According to its description, vulnerability encompasses a variety of concepts and elements including
sensitivity or susceptibility to harm, and lack of capacity to cope and adapt [48]. The vulnerability is
described as Equation (6).

Vulnerability = Sensitivity − Adaptive Capacity (6)

Therefore, the calculation formula of two IPCC methods are as follows:

RiskTAR = [
∑

(H ∗WH)] × [
∑

(E ∗WE) +
∑

(S ∗WS) −
∑

(AC ∗WAC)] (7)

RiskAR5 = [
∑

(H ∗WH)] × [
∑

(E ∗WE)] × [
∑

(S ∗WS) −
∑

(AC ∗WAC)] (8)

where RiskTAR and RiskAR5 are the flood risk of the TAR and AR5 approaches, respectively; the values of
the H, E, S, and AC represent the indicators of hazard, vulnerability, sensitivity, and adaptive capacity,
respectively; WH, WE, WS, and WAC indicate the weights of H, E, S, and AC, respectively.
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To implement the two approaches, we reclassified flood risk indicators based on the judgments of
experts and the definitions of terminology for conceptual models proposed by IPCC [46–48] (Table 9).
Flood risk is determined by indicators in four domains (hazard, exposure and adaptive capacity) and
corresponding weights according to the IPCC calculation formula. However, the IPCC AR5 method
does not restrict any fixed boundary for assigning a specific indicator to a particular domain. In this
study, two scenarios were created by applying the AR5 in respect to the opinions of four experts.
In Scenario 2 of the AR5 (Table 9), the indicator grain output (GO, the red font in Table 9) is moved
from the exposure domain to the sensitivity domain, according to the perception of two other experts.

Table 9. Distribution of indicators among different domains in IPCC methods.

Flood Risk
Scenario 1 Scenario 2

Index Distribution in TAR and AR5 Index Distribution in AR5

Hazard RI, RF RI, RF
Exposure GDP, PD, GO, RND GDP, PD, RND
Sensitivity DEM, SL, DD, NDVI, ST GO, DEM, SL, DD, NDVI, ST

Adaptive Capacity PDI, RCE, ASY PDI, RCE, ASY

The ‘Raster Calculator’ under the ‘Spatial Analyst’ module in ArcGIS was utilized to normalize
the risk indicator layer by using Equations (A8) and (A9). The same weighting method as the
aforementioned CW was applied to calculate the indicator weights of the two scenarios in the IPCC
methods, respectively. Ultimately, flood risk zoning maps of the study area were constructed based on
two IPCC approaches (Figure 9).

As demonstrated in Figure 9, the overall patterns of the two IPCC methods were similar to the
FSE approach, and they all exhibited risk being relatively higher in the southeast of the study area than
in the northwest. However, there were noticeable differences in certain regions. Compared to the FSE
method, the two IPCC methods had significantly lower estimates of very high and high risk areas in
the study area. Figure 5c identifies the urban regions of Beijing, Tianjin, Tangshan, and Shijiazhuang as
very high risk zones, but these areas were classified as moderate risk or low risk areas in AR5 and TAR
methods (Figure 9a,b). In the mountain valleys in the northwest, such as the Zhangjiakou urban area,
concentration of population and property coupled with a frequent occurrence of the flash flooding
will inevitably lead to severe flooding losses. Thus, Figure 5c demonstrates that the FSE approach can
better identify these high to very high risk areas in river valley areas. However, the two IPCC methods
showed apparent deficiencies in the identification of high risk zones in mountainous areas. Moreover,
the calculation results of the two IPCC methods were relative index values rather than the final flood
risk zoning map. Therefore, different classification standards will generate multiple ‘apparent real’
risk maps, which will also increase the uncertainty of evaluation results. We used the classification
methods of standard deviation (Figure 9a) and defined interval (Figure 9c) to obtain two flood risk
zoning maps for the IPCC AR5 approach. Compared with Figure 9a, Figure 9c shows a significant
difference in the spatial distribution of risk levels.
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Based on the above analysis, there are considerable uncertainties in the IPCC methodology.
According to the risk definitions of the two IPCC approaches, flood risk entirely depended on the
magnitude of hazard, exposure, sensitivity, and adaptive capacity. Hence, the distribution of risk
indicators in the four domains (i.e., hazard, vulnerability, sensitivity, and adaptive capacity) inevitably
affected the final risk assessment results. Since IPCC does not limit any fixed boundaries for assigning
specific indicators to one particular domain, different researchers may switch indicators from one
domain to another, which results in uncertainties in the evaluation procedure. Considering the opinions
of experts, two different scenarios were created based on the AR5 method. As shown in Figure 9a,d,
the risk maps generated were significantly different after moving GO from the exposure domain to
the sensitivity domain. In this way, we can use the opinions of different experts to generate a large
number of ‘apparently true’ risk maps theoretically. Nevertheless, from the perspective of experts,
all of these maps were ‘real true’ risk maps in the study area, since experts think that their perceptions
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are correct. It is challenging to identify which risk map is the ‘real truth’ risk map among the number of
risk assessment results. Furthermore, the risk evaluation results calculated by the two IPCC methods
could not directly demonstrate the risk level results. We need to classify index values to get the final
risk map. As a result, multiple ‘apparently real’ risk maps will also be constructed due to the different
index classification methods. All these factors commonly contribute to the uncertainty of the two
IPCC approaches.

In contrast, when the FSE approach is applied to assess risk, it can minimize various uncertainties
by quantifying risks that arise from human perception [23]. The FSE method is based on the fuzzy
set and fuzzy logic theories, which can transform vagueness into certainty in the risk assessment
procedure. Flood risk results depend on the grade interval of each indicator and the waveform
of the membership functions in the FSE approach. Furthermore, the grade intervals were divided
according to the inherent properties of each indicator’s values and the actual situation of the study
area. The waveform pattern of the membership functions was selected based on the intrinsic natural
properties of floods. Therefore, in addition to considering the subjective weighting method in the
weight calculation process, there is little scope for a human to affect the risk output. Moreover,
compared with the two IPCC methods, only one risk map can be generated based on the FSE approach
combined with a specific set of risk indicators, and this can be safely considered as the ‘real truth’ risk
map of the study area. Subsequently, it should be noted that when we used the FSE method to conduct
flood risk assessment research in this paper, we adopted the risk conceptual framework proposed
by the United Nations Department of Humanitarian Affairs (UNDHA) and divided the indicators
into two categories: hazard and vulnerability. The primary purpose of this method is to choose a
more comprehensive and reasonable risk indicator, and further understand the impact of natural and
socio-economic factors on flood risk, without influencing the final risk zoning result.

4.5. Flood Risk Mitigation

One crucial purpose of flood risk assessment is the identification of areas with potential flood
risk, so that sustainable flood management strategies can be undertaken to minimize the damage
caused by floods. Based on the risk zoning map constructed by the FSE approach combined with flood
field investigations, we propose adopting a series of flood management and mitigation measures in
high risk regions at the level of regional risk prevention. These activities include both engineering
and non-engineering.

4.5.1. Engineering Measures

Engineering measures mainly refer to all kinds of buildings and facilities that serve to prevent,
temporarily store, divert, and drain floodwater [49]. During our field survey, it was necessary to carry
out engineering measures in this region.

(1) Dredging the channel in highly aggrading areas severely sedimentary reach: As a river flows
out of the mountains and enters the plains, the hydrodynamic environment is weakened due to the
widening of the river channel and the slowing down of the slope. Sediment aggradation raises the river
bed and increases risk of flooding. Our field investigations revealed that many rivers in Shijiazhuang
and Baoding are seriously silted up, such as the Hutuo River, Dasha River, and the Baiyangdian river
system. Thus, it is essential to restore the natural condition in these ‘hotspots’ of aggradation through
regular strategic dredging.

(2) Upgrading flood protection structures and remove dangerous hydraulic engineering facilities:
Flood protection embankments (artificial levees) have been built along the riverine due to flat terrain
and poor drainage. However, Baoding, Langfang, and the southwest mountainous areas of Beijing
have comparatively low fortification criteria, and can only withstand floods with a recurrence period
of 10–20 years (or even lower). It has been found that there are many dangerous sluices sick-dangerous
sluices and reservoirs that have been in disrepair for a long time in the study area, such as the Yanghe
reservoir (large, Zhangjiakou) and Xiyanghe Reservoir (medium, Qinhuangdao), and this poses a
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serious threat to downstream towns. Therefore, upgrading and removing dangerous water dam
projects is necessary to improve flood prevention capacity.

(3) Delineate flood detention areas and excavate the diversion channels: Due to the superimposed
effect of the flood peaks of the tributaries, the convergence area of the fan-shaped river network
generally forms floodplains, such as the Baiyangdian area in Xiong’an New District. We recommend
establishing flood storage and detention areas in these confluence regions. Furthermore, the field
survey found that there are many tributaries in the upstream of Daqing River, Yongding River, and Ziya
River, but there are few flood discharge channels downstream. Considering the issue of flood discharge,
it is necessary to excavate the diversion channels in Xiong’an New District and Tianjin.

(4) Use of paleochannels as conduits for water flow during flood events: The paleochannels are
old courses left after river migration. Field investigations found that there were a large number of
paleochannels in Shijiazhuang, Baoding, Cangzhou, Tianjin, and Beijing. Most of the riverbeds are
1~3 m below the flat land, and these can be used as natural conduits for water flow during flood
events. Hence, it is strongly recommended to select several sites as pilot projects in high risk zones to
reactivate the vital role of paleochannels in flood control.

4.5.2. Non-Engineering Measures

All means to reduce flood disaster losses in floodplains through laws, policies, administrative
management, economics, and technologies other than flood-control engineering are collectively referred
to as non-engineering measures. In this study, we propose the following suggestions combined with
the actual situation.

(1) Flood control regulations: Field investigations found that the river channels in Shijiazhuang,
Baoding, and Langfang were chaotic, and that villages and farmland occupied the floodplains that
severely affected the flood discharge capacities of river channels. We recommend the formulation and
implementation of flood zoning management policy.

(2) Land use planning policy: The land use in the research area should be planned reasonably
along with a floodplain zoning management policy. The regions that are classified as high risk zones,
especially very high risk buffer zones of the river channel, should be designated for low-occupancy
land-use planning. In addition, residential and commercial land should be planned to be used in areas
with high altitudes, with urban planning relatively far away from river channels.

(3) Constructing a flood risk transferring mode-flood insurance: Flood insurance is an important
means of flood risk management in floodplains. Essentially, flood insurance is a social or collective
economic compensation method for property damage caused by flood disasters. We suggest that the
government establish a flood insurance system for people living in areas with high risk levels.

(4) Capacity-building for flood resilience: The construction of flood resistance capacity involves
many aspects. Real-time and accurate hydrological monitoring, forecasting, and early warning are all
essential for mitigating losses in all river systems. Furthermore, evacuation drills should be conducted
regularly to improve awareness of flood control and disaster reduction by community citizens. All these
measures can reduce flood risk and economic losses.

5. Conclusions

Rapid urbanization and climate change have led to dramatically increased flood risks in
metropolitan areas over the past few decades. Flood risk assessment as an essential means to
identify regional flood risk levels is crucial for risk management in the future.

In this research, an FSE method based on combined weight was proposed and applied to risk
evaluation in the BTH area. The spatial distribution of flood risk levels in the BTH area was identified
from a grid scale (1 × 1 km). Research demonstrated that moderate, high and very high risk zones
were mainly distributed in the east, central and southwest regions (31.36%), respectively, while low
and very low risk zones were located in the plateau and mountainous regions in the northwest areas
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(68.64%), respectively. The area proportion of each risk level was counted at a county scale, which is of
great significance for reducing flood damage and resource allocation in the BTH area.

To avoid the limitations of a single weighting approach, the combined weight (CW) approach
was proposed integrating AHP with EW methods and provide a new feasible method for scientifically
assigning risk indicator weights. Additionally, corresponding mitigation measures for high and very
high risk zones were put forward at the regional level and combined with field investigations. This is
of great significance to improving urban disaster prevention capabilities and reducing casualties and
economic losses.

The FSE approach had distinct advantages compared with two IPCC methods. The FSE method
is based on fuzzy set and fuzzy logic theory and can eliminate or reduce fuzziness and uncertainty
in risk assessment procedures. Risk output depends on the grade interval of each indicator and the
waveform of the membership function, which is entirely determined by the inherent properties of the
value of each indicator and the characteristics of the flood event. Only one risk zoning map can be
generated that can be safely considered to be the ‘real truth’ risk map of any study area when using the
FSE approach and combining it with a specific set of risk indicators. In future study, the selection and
accuracy of data indicators need to be refined (e.g., using a resolution of 100 × 100 m), and related
algorithms (e.g., deep learning) should be used to construct a risk evaluation model to further improve
the accuracy and objectivity of the risk evaluation results.
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Appendix A. Membership Functions of Flood Risk Assessment in the BTH Area

ui1(xi) =


1 (0 ≤ xi ≤ d1)
d2−xi
d2−d1

(d1 < xi < d2)

0 (xi ≥ d2)

(A1)

ui j(xi) =



0 xi ≤ d j−1 or xi ≥ d j+1
xi−d j

d j−d j−1
d j−1 < xi < d j

1 xi = d j
d j+1−xi
d j+1−d j

d j < xi < d j+1

(A2)

ui5(xi) =


0 (xi ≤ d4)
xi−d4
d5−d4

(d4 < xi < d5)

1 (xi ≥ d5)

(A3)

ui1(xi) =


1 (xi ≥ d1)
xi−d2
d1−d2

(d1 < xi < d2)

0 (xi ≤ d2)

(A4)
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ui j(xi) =



0 xi ≥ d j−1 or xi ≤ d j+1
d j−1−xi
d j−1−d j

d j < xi < d j−1

1 xi = d j
xi−d j+1
d j−d j+1

d j+1 < xi < d j

(A5)

ui5(xi) =


0 (xi ≥ d4)
d4−xi
d4−d5

(d5 < xi < d4)

1 (xi ≤ d5)

(A6)

Here, xi is the original data of evaluation units in each indicator.

Appendix B. Detailed Calculation Steps of Combined Weight for Risk Assessment

(1) The judgment matrix X = (xij)m×n is constructed with m evaluation indicators and n flood risk
assessment levels.

X =


x11 x12 · · · x1n
x21 x22 · · · x2n

...
...

. . .
...

xm1 xm2 · · · xmn

 (A7)

(2) Considering different indicators have different orders of magnitude and dimensions, it is
necessary to standardize indicators so that they are under the same evaluation system. Normalized
processing for positive and negative indicators use the formula (16)–(17), respectively.

yi j =
xi j −min(xi j)

max(xi j) −min(xi j)
(A8)

yi j =
max(xi j) − xi j

max(xi j) −min(xi j)
(A9)

where, max(xij) and min(xij) represent the maximum and minimum values of an indicator, respectively.
(3) The entropy value ej of each indicator can be calculated by the following formula:

e j = −
1

ln m

m∑
i=1

pi j ln pi j (A10)

where, pi j = yi j/
m∑

i=1
yi j and pij lnpij is defined to zero when pij is equal to zero.

(4) We use the entropy value to calculate the entropy weight of the evaluation indicator:

z j =
1− e j

n−
n∑

j=1
e j

(A11)

where, j = 1, 2, . . . , n and satisfy
n∑

j=1
z j = 1.

(5) Then, the analytic hierarchy process moderate to calculate the indicator weights and the
consistency check is performed using the following formula. Detailed calculation steps of this method
can refer to the research of [16,20].

CR =
CI
RI

(A12)
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CI =
λmax − n

n− 1
(A13)

where, CR represents the consistency ratio and CI indicates the consistency index. RI is the random
consistency index that is computed by Saaty from a sample of 500 matrixes randomly generated [25].

(6) Finally, combining the weight results of the AHP and EW methods, formula (16) is used to
calculate the combined weight of the risk indicators.

w j = h j ∗ z j/
m∑

j=1

h j ∗ z j (A14)

where, hj and zj represent the subjective and objective weights calculated by using AHP and EW
methods, respectively.
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