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Abstract: Accurate tourist flow forecasting is an important issue in tourist destinations management.
Given the influence of various factors on varying degrees, tourist flow with strong nonlinear
characteristics is difficult to forecast accurately. In this study, a deep learning method, namely,
Gated Recurrent Unit (GRU) is used for the first time for tourist flow forecasting. GRU captures
long-term dependencies efficiently. However, GRU’s ability to pay attention to the characteristics
of sub-windows within different related factors is insufficient. Therefore, this study proposes
an improved attention mechanism with a horizontal weighting method based on related factors
importance. This improved attention mechanism is introduced to the encoding–decoding framework
and combined with GRU. A competitive random search is also used to generate the optimal parameter
combination at the attention layer. In addition, we validate the application of web search index and
climate comfort in prediction. This study utilizes the tourist flow of the famous Huangshan Scenic
Area in China as the research subject. Experimental results show that compared with other basic
models, the proposed Improved Attention-based Gated Recurrent Unit (IA-GRU) model that includes
web search index and climate comfort has better prediction abilities that can provide a more reliable
basis for tourist destinations management.

Keywords: tourist destinations management; tourist flow forecasting; gated recurrent unit (GRU);
attention mechanism; competitive random search (CRS); encoding–decoding; web search index;
climate comfort

1. Introduction

Since the 2000s, the tourism industry in China has significantly increased given the rapid
development of the Chinese economy. According to statistics, the number of inbound and domestic
tourists in China is increasing annually, and the tourism industry is developing rapidly [1]. Especially
during the peak months, the surge in the number of tourists has brought a series of problems to
tourist destinations management, including unreasonable allocation of resources in tourist attractions
and congestion of tourists. Therefore, accurate tourist flow forecasting is essential for tourist
destination management.

However, daily tourist flow presents a complicated nonlinear characteristic because of the effects
of various factors in varying degrees. Its complicated nonlinearity makes it difficult for existing
methods to deal with the issue in an exact manner. Although accurate tourist flow forecasting remains
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a difficult task, it has attracted attention in the literature. Developing a new forecasting technique is
necessary to obtain a satisfactorily accurate level.

1.1. Traditional Methods in Tourist Flow Forecasting

In recent years, various studies on tourist flow forecasting have resulted in the development
of numerous forecasting methods. The early methods of tourist flow forecasting mainly include
econometric [2] and time-series models [3]. Econometric models mainly include autoregressive
distribution lag model [4], error correction model [5], and vector autoregressive model [6]. Time
series models mainly include autoregressive moving average model [7] and autoregressive integrated
moving average model [8,9]. These methods usually employ historical data to forecast future tourist
flow through a univariate or multivariate mathematical function, which depends mostly on linear
assumptions. These traditional methods have a good effect on tourist flow forecasting with linear
characteristics. However, the prediction effect of these models on complex nonlinear tourist flow
forecasting is inaccurate. Consequently, scholars have started to utilize machine-learning methods
to build nonlinear prediction models, such as support vector regression [10,11] and artificial neural
networks [12,13]. The artificial neural network methods have been used widely in tourist flow
forecasting. These methods emulate the processes of the human neurological system to process
self-learning from the historical tourist flow patterns, especially for nonlinear and dynamic variations.
Accurate predictions can be obtained through repeated training and learning to approximate the real
model. However, limitations are still observed in such methods, especially in addressing the sequence
dependence among input variables in time series prediction.

1.2. Improved Attention-based Gated Recurrent Unit Model in Tourist Flow Forecasting

Recurrent Neural Network (RNN) is the most common and effective tool for time series models,
especially in addressing sequence dependencies among input variables [14]. In the calculation of RNN,
results are interdependent and the current input of the hidden layer is highly correlated with the
last output. However, as the time series progresses, the problem of gradient disappearance becomes
evident. To solve such a problem, a long short-time memory neural network (LSTM) [15] and Gated
Recurrent Unit (GRU) [16] are proposed based on the original RNN. GRU is an improved model of
LSTM, which controls the switch of memorizing and forgetting by setting multiple threshold gates.
LSTM and GRU solve the limitation problem of handling long-term dependencies well. These methods
have led to their successful application on various sequence learning problems, such as machine
translation [17], speech recognition [18], and load forecasting [19,20]. LSTM has also been applied
successfully for the first time in tourist flow forecasting [21]. In the study, LSTM was able to fit the
test datasets and was proved to be superior to autoregressive integrated moving average model and
backpropagation neural network, achieving the best performance in all cases. Therefore, LSTM and
GRU are the most advanced methods for addressing time series prediction problems. LSTM and GRU
can help capture long-term dependencies.

However, their ability to process information is still insufficient. Learning from cognitive
neuroscience, researchers introduce attention mechanisms to the encoding–decoding framework [22,23]
to select further from the input series and encode the information in long-term memory to improve
information processing ability. In recent years, related works [24–26] on time series prediction are
improved usually by introducing attention layers into the encoding-decoding framework. The attention
mechanism has also been combined successfully with LSTM and applied to power forecasting [27],
load forecasting [28], and travel time forecasting [29]. However, few articles in tourist flow forecasting
have referred to this combined method. A cause of widespread concern is the work of Li et al. [30],
wherein the attention mechanism was combined with LSTM and competitive random search (CRS)
was used to configure the parameters of the attention layer, which improved the attention of LSTM
to varying degrees of sub-window features in multiple time steps. However, although the attention
mechanism improves the feature attention of LSTM in the time step, it remains insufficient for LSTM
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to pay different attention to sub-window features within different related factors. To solve such a
problem, this study changes the vertical weighting method based on time importance and proposes an
improved attention mechanism, which has horizontal weighting method based on factor importance.
This improved attention mechanism is trained with CRS and then combined with GRU to increase the
degree of attention of GRU to various related factors.

1.3. Web Search Index and Climate Comfort in Tourist Flow Forecasting

In the study of tourist flow forecasting, the prediction accuracy of the model is affected by the
model itself and various factors. Moreover, existing studies have not considered other factors, such
as web search index and climate comfort. Given the rapid development of the internet, people can
easily search for information through search engines. At present, scholars believe that web search
is an important and advanced way to obtain timely data and useful information [31]. When using
the internet to search for data, the search history reflects the content of interest and the behavior that
follows. In recent years, web search data has provided a new source of data and analytical basis for
scientific research, which have been verified by researchers. For example, Choi and Varian have found
in their research on Hong Kong’s tourist flow forecasting that the autoregressive model including
Google search trends can improve prediction accuracy by at least 5% [32]. Prosper and Ryan have found
that Google search trends can significantly improve forecasting results in the tourist flow forecasting
studies on five tourist destinations in the Caribbean [33]. Similarly, Önder and Gunter have found
in the study of tourist flow forecasting in major European cities that the Google search index can
effectively improve the forecasting effect [34]. In view of various meteorological factors affecting tourist
flow, climate comfort has gradually become a hot spot and the focus of tourism-related research. Li et
al. have found in the tourism research on Hong Kong and other 13 major cities in China that climate
comfort has a significant positive impact on the tourist flow in the mainland [35]. Chen et al. have
included climate comfort in the model of Huangshan’s tourist flow forecasting and obtained better
prediction results, indicating that climate comfort is significantly correlated with daily tourist flow [36].
Therefore, in this study, the web search index and climate comfort are used as important factors in
tourist flow forecasting.

This study aims to propose a tourist flow forecasting method based on web search index, climate
comfort, and Improved Attention-based GRU (IA-GRU) model. The CRS and attention mechanism
are used to optimize the attention layer. Then, the selected web search index and climate comfort
are added to improve the forecasting effect of IA-GRU model. The results of this study demonstrate
the effectiveness of this model. The remaining parts of this paper are organized as follows. Section 2
introduces the basic principles of LSTM, GRU, attention mechanism, and IA-GRU model. Section 3
presents the data-processing methods using Huangshan Scenic Area as the research subject. Section 4
discusses the prediction performance of the proposed model and the comparison with other basic
models. Section 5 provides the conclusion.

2. Methods

In this section, we discuss the structure of LSTM and GRU and explain why GRU is chosen as
the prediction model. Then, we provide the outline for the attention mechanism and the details of
the IA-GRU model. In addition, we train the IA-GRU model with a collaborative mechanism, which
combines the attention mechanisms with CRS.

2.1. LSTM (GRU’s Precursor)

LSTM is first proposed for language models in 1997 [15]. LSTM is an RNN with a special structure,
which has the advantage of being able to deal with the long-term dependency of time series. LSTM can
solve the problem of gradient disappearance caused by RNN after multi-level network propagation.

As shown in Figure 1, one tanh layer σ and three layers exist inside LSTM. The three layers
correspond to three gates, namely, the forget gate, input gate, and output gate. The role of the horizontal
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line is to pass ct−1 to ct. The three gates and horizontal lines work together to complete the filtering
and transmission processes of input information.
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Figure 1. Structure of long short-time memory neural network (LSTM).

We denote the input time series as xt, hidden state cells as st, and output sequence as ŷ. LSTM
neural networks perform the computation as follows:

ft = σ(w f · [st−1, xt] + b f ), (1)

it = σ(wi · [st−1, xt] + bi), (2)

c̃t = tanh(wc · [st−1, xt] + bc), (3)

ct = ft ∗ ct−1 + it ∗ c̃t, (4)

ot = σ(wo · [st−1, xt] + bo), (5)

st = ot ∗ tanh(ct), (6)

ŷ = wy · st + by, (7)

where σ and tanh are activation functions applied to the internal structure of LSTM. Equations (8) and
(9) are their calculation processes, respectively, wherein σ stands for the standard sigmoid function.
The output value of the σ layer is between 0 and 1. The output value determines whether the input
information can pass through the gate. A value of zero signifies “let nothing through,” whereas a value
of one means “let everything through!” f , i, o, and c respectively denote the mentioned inner-cell gates,
namely, the forget gate, input gate, output gate, and cell activation vectors, c should be equal to the
hidden vector s. The w terms denote weight matrices, whereas the b terms denote bias terms. The
input gate can determine how incoming vectors xt alter the state of the memory cell. The output gate
can allow the memory cell to have an effect on the outputs. Then, the forget gate allows the cell to
remember or forget its previous state.

σ(x) =
1

1 + e−x , (8)

tanh(x) =
ex
− e−x

ex + e−x . (9)
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2.2. GRU

Given the complex structure of LSTM, the training of LSTM RNN often takes a lot of time. To
improve the training speed and capture long-term dependencies efficiently, GRU is proposed as an
improved model of LSTM in 2014 due to its simple structure and easy training [16]. The structure of
the GRU is shown in Figure 2. Unlike LSTM, GRU has only two gates, namely, reset gate r and update
gate z.
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Figure 2. Structure of Gated Recurrent Unit (GRU).

We denote the input time series as xt, hidden state cells as st, and output sequence as ŷ. GRU
neural networks perform the computation as follows:

rt = σ(wr · [st−1, xt]), (10)

zt = σ(wz · [st−1, xt]), (11)

s̃t = tanh(w · [rt ∗ st−1, xt]), (12)

st = (1− zt) ∗ st−1 + zt ∗ s̃t, (13)

ŷ = wy · st. (14)

The reset gate r determines the proportion of the output state st−1 at the previous moment in the
new hidden state s̃t. The new hidden state s̃t is obtained by performing a nonlinear transformation
of the tanh activation function on the output state at the previous moment st−1 and the input at the
current moment xt. The update gate z mainly affects the proportion of the current hidden state st in the
new hidden state s̃t. Concurrently, the update gate z controls the proportion of s̃t and st−1 in the final
output state st.

2.3. Attention Mechanism

When observing a scene in the real world, humans typically focus on certain fixation point at first
glance. Their attention is always concentrated on a certain part of the focus. The human visual attention
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mechanism is a model of resource allocation, providing different attention to different areas. The
attention mechanism is proposed by imitating the principle of human vision’s attention distribution;
then, the attention mechanism is combined with the encode–decode framework [22] to complete the
process of attention change. The focus of this study is to assign different attention weights to different
related factors through the attention mechanism and continuously optimize the weights to improve
the prediction effect of the model. The attention mechanism attached to the encode–decode framework
is exhibited in Figure 3 (see Section 2.4 for details).
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Figure 3. Attention mechanism.

Figure 3 illustrates how the attention mechanism is combined with the encode–decode framework.
We attach attention weights W1,W2, . . . ,Wn to input variables x1,x2, . . . ,xn, transform the attention
weights into intermediate semantics C1,C2, . . . ,Cn through encoding, and then transform the
intermediate semantics into new attention weights W1

′,W2
′, . . . ,Wn

′ through decoding.

2.4. IA-GRU Model

When the GRU model constructs tourist flow forecasting, the entire training process is continuously
learning and memorizing the effects of various related factors on the target value. The proposed
IA-GRU model in this study combines the attention mechanism with GRU. On the basis of the ability of
GRU to handle time series prediction problems, the IA-GRU model assigns different attention weights
to different related factors and continuously optimizes them to improve the learning and generalization
abilities to achieve the purpose of improving the prediction effect of the model.

Figure 4 consists of two parts. The left part shows the process of GRU modeling and training,
whereas the right part shows the process of attention mechanism with CRS to optimize attention
weights. In the left part, we obtain the input data. Then, we add an attention layer to GRU on the basis
of how human vision processes input information through the attention mechanism. The introduced
attention mechanism can quantitatively attach weights to related factors with different importance to
avoid distraction. Finally, the weighted input data is sent to the GRU layers to obtain the predicted
value. The prediction error is also calculated. Moreover, the predicted errors are regarded as feedback
and sent to direct the process of optimizing attention weights. In the right part, the randomly generated
attention weights set is binary encoded. Then, the champion attention weights subset is selected
according to the error feedback, and the new attention weights are reconstructed. Finally, the updated
attention weights set is decoded, whereas the optimal attention weights are sent to the attention layer.
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The concrete steps of the modeling and training of GRU and the combined attention mechanism
and CRS used to optimize the attention weights are presented as follows:

(1) Modeling and training of GRU
Step 1: n columns of input data are obtained, corresponding to n related factors: xt =

(x1
t , x2

t , . . . , xn
t ).

Step 2: attention weights are defined: Wi = (W1
i , W2

i , . . . , Wn
i ).

Step 3: the input data are weighed at the attention layer: x̃t = (x1
t W1

i , x2
t W2

i , . . . , xn
t Wn

i ).
Step 4: x̃t is sent to GRU neural networks to acquire the final predicted value.
(2) Combined attention mechanism and CRS optimizing attention weights
According to the genetic algorithm, the purpose of CRS is to generate the optimal parameter

combination in the attention layer. The process of CRS is elaborated in Figure 4. CRS comprises four
parts, which are introduced as follows:

In Figure 4, attention weights set W is provided in “A,” while being translated into WB through
binary code in “B.” The subset Wi denotes attention weights and is transferred into GRU neural
networks in the left part, wherein it produces a corresponding loss value according to a predicted error
in the networks. Then, the champion attention weights subsets WB

i and WB
i are selected according

to the loss of WB in “C,” and its subset combination is traversed repeatedly. Finally, a new attention
weight WB

k is rebuilt in “D.” The three random operators in the dotted box are introduced to illustrate
how WB

k is rebuilt.
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The concrete steps of CRS are stated as follows:
Step 1: attention weights set of size M = 36 are randomly generated: W = (W1, W2, . . . , Wi, . . .WM).
Step 2: subset Wi is sent to the attention layer, whereas W is binary encoded: WB =

(WB
1 , WB

2 , . . . , WB
i , . . . , WB

M).
Step 3: the prediction error is calculated based on the true value y and the predicted value ŷ from

the GRU model: Loss(ŷ(W), y).
Step 4: according to the error feedback, the champion attention weights subsets WB

i and WB
j are

selected. Each subset comprises binary strings and is evenly divided into n segments, where n is
the number of related factors mentioned in the first part of this section. Correspondingly, WB

i and
WB

j are represented by WB
i = (F1

i , F2
i , . . . , Fn

i ) and WB
j = (F1

j , F2
j , . . . , Fn

j ). F1
i and F1

j are part of WB
i and

WB
j , respectively.

Step 5: the segments of WB
i and WB

j are randomly selected. For instance, segment n-1 of the two is

selected, that is, Fn−1
i and Fn−1

j . However, the number of selected subsections is not fixed.

Step 6: genetic recombination of Fn−1
i and Fn−1

j are obtained. Fn−1
i and Fn−1

j are represented by
binary codes with a length of six, and the two are randomly exchanged on the corresponding six indices
to obtain the recombined segment Fn−1

k . For example, Fn−1
i = (0, 1, 0, 0, 1, 1) and Fn−1

j = (1, 0, 1, 0, 0, 1)

are exchanged on the odd index to obtain Fn−1
k = (1, 1, 1, 0, 0, 1). The indices where actual exchanges

transpire are decided randomly.
Step 7: a genetic mutation is imitated and the genotype of Fn−1

k is reversed. For instance, 0 is
reversed to 1. Then, Fn−1

k = (0, 0, 0, 1, 1, 0) replaces the corresponding Fn−1
i in WB

i , forming WB
k that is

inserted into WB.
Step 8: WB is decoded to acquire the updated attention weights set: W′ =

(W1
′, W2

′, . . . , Wk
′, . . . , WM

′).
Step 9: Steps 2–8 above should be repeated until the preset number of epochs is reached.
The entire process from the selection of input data to the training and optimization of the IA-GRU

model is shown in Figure 5 (see Section 3 for concrete steps for selecting input data).
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3. Data Preparation

This study takes the Huangshan Scenic Area as an example of a famous Chinese scenic spot.
Huangshan is listed as one of UNESCO world natural and cultural heritage sites in 1990. Moreover,
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Huangshan has been selected as one of the first global geoparks in 2004. A total of 3.38 million local
and foreign tourists have visited Huangshan in 2018.

In this study, we use the daily historical data of the Huangshan Scenic Area from 2014 to 2018 as
experimental data. The data includes (1) Basic data: the total number of tourists in the past, target total
number of tourists, number of online bookings, weather, official holiday, and weekends; (2) the Baidu
index of keywords: Huangshan, Huangshan weather, Huangshan tourism guide, Huangshan tourism,
Huangshan scenic area, Huangshan tickets, Huangshan first-line sky, Anhui Huangshan, Huangshan
weather forecast, and Huangshan guide; (3) climate comfort: composed of average temperature,
average relative humidity, and average wind speed. The data (1) is obtained from a research project
in cooperation with the Huangshan scenic area. The data (2) is obtained from Baidu Index Big Data
Sharing Platform (http://index.baidu.com/v2/index.html?from=pinzhuan#/). The data (3) is obtained
from the China Meteorological Data Network (http://data.cma.cn/).

3.1. Basic Data

To learn as many data features and tourist flow rules as possible, the data from 2014 to 2017 were
selected as the training set and the data from 2018 were selected as the test set.

(1) Total number of tourists in the past
The total number of tourists in the past is selected as one of the related factors of the prediction

model, given that the annual and even daily tourist flow shows a certain regularity. The impact of past
tourist flow on the current tourist flow may have a lag period. Thus, a correlation analysis was made
between the past total number of tourists with different lag periods and the target total number of
tourists. In this study, the maximum lag period was two years. Based on previous experience, the total
number of tourists in the past with a correlation index greater than 0.440 was selected as the input
variable. Table 1 shows the correlation analysis results with a confidence level of 0.01.

Table 1. Correlation analysis results of the total number of people.

Lag Period 0 1 2 3 4 5 6 7 . . .

Correlation 1.000 0.718 0.443 0.324 0.243 0.197 0.256 0.341 . . .

Lag Period 365 366 367 368 369 370 371 372 . . .

Correlation 0.522 0.350 0.280 0.212 0.147 0.187 0.267 0.201 . . .

Therefore, the total number of tourists in the past with a lag period of one day, two days, and
365 days were selected as the input variables, that is, the total number of tourists yesterday x1, the
total number of tourists the day before yesterday x2, and the total number of tourists on the day of last
year x3.

(2) Number of online bookings
Given the internet’s rapid growth, its impact on people’s lifestyles is increasingly evident. Online

operations are becoming persistently convenient. To a great extent, the number of online bookings can
reflect the trend of the total number of tourists. Therefore, the number of online bookings was selected
as the input variable x4.

(3) Weather
The weather is the decisive factor for outbound tourism, wherein the weather is either good or bad

for tourists. Therefore, the weather is selected as the input variable x5 in the form of a dummy variable:
x5 = { 0

1, where 0 represents non-severe weather, such as sunny, cloudy, and drizzle; 1 represents
severe weather, such as moderate rain, heavy rain, moderate snow, heavy snow, and blizzard.

(4) Official holiday
Traveling on holidays is a common phenomenon. Whenever a holiday arrives, the number of

tourists in famous scenic spots consistently soars. Therefore, holidays were selected as input variable
x6 in the form of a dummy variable:

http://index.baidu.com/v2/index.html?from=pinzhuan#/
http://data.cma.cn/
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x6 = { 0
1, where 0 indicates an ordinary day; 1 indicates official holiday.

(5) Weekend
A week cycle comprises seven days. Monday to Friday is weekdays and Saturday and Sunday

are rest days. Going out and traveling on rest days are common phenomena. Therefore, the weekend
was selected as the input variable x7 in the form of a dummy variable:

x7 = { 0
1, where 0 represents a working day; 1 represents the rest of the day.

3.2. Baidu Index of Keywords

Baidu is the largest search engine in China and has the most users. When searching for
consumer behavior in China, Baidu search has higher predictive power than Google search [37].
This study selects the keywords that tourists commonly use in the Baidu search engine to search
the key analysis object. We search for the keyword “Huangshan” in Baidu’s keywords-mining tool
(http://stool.chinaz.com/baidu/words.aspx), and find the top-10 keywords related to Huangshan in the
top 100 rankings, namely, Huangshan, Huangshan weather, Huangshan tourism guide, Huangshan
tourism, Huangshan scenic area, Huangshan tickets, Huangshan first-line sky, Anhui Huangshan,
Huangshan weather forecast, and Huangshan guide. Considering that the Baidu search has a lagging
effect on tourist flow, a correlation analysis between the above Baidu index of keywords with different
lag periods and the target total number of tourists is performed. Similarly, the maximum lag period is
two years. Accordingly, the Baidu index of keywords with a correlation index greater than 0.440 is
selected as input variable. The analysis results are shown in Tables 2 and 3.

Table 2. Correlation analysis results of the top five keywords.

lag Period Huangshan Huangshan
Weather

Huangshan
Tourism Guide

Huangshan
Tourism

Huangshan
Scenic Area

0 0.510 0.107 0.523 0.107 0.330
1 0.552 0.180 0.597 0.206 0.367
2 0.556 0.236 0.614 0.281 0.356
3 0.491 0.221 0.569 0.278 0.299
4 0.432 0.198 0.510 0.262 0.242
5 0.393 0.178 0.462 0.241 0.202
6 0.330 0.146 0.411 0.160 0.172
7 0.280 0.125 0.374 0.115 0.150
. . . . . . . . . . . . . . . . . .

365 0.322 0.099 0.350 0.170 0.156
366 0.363 0.118 0.396 0.236 0.183
367 0.376 0.123 0.413 0.259 0.185
368 0.362 0.118 0.404 0.259 0.165
369 0.346 0.115 0.385 0.246 0.144
370 0.292 0.098 0.337 0.171 0.115
371 0.244 0.089 0.298 0.124 0.086
372 0.253 0.106 0.293 0.170 0.085

http://stool.chinaz.com/baidu/words.aspx
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Table 3. Correlation analysis results of the last five keywords.

lag Period Huangshan
Tickets

Huangshan
First-Line Sky

Anhui
Huangshan

Huangshan
Weather Forecast

Huangshan
Guide

0 0.232 0.209 0.372 0.188 0.354
1 0.281 0.198 0.462 0.324 0.463
2 0.275 0.184 0.542 0.420 0.500
3 0.243 0.166 0.527 0.397 0.473
4 0.217 0.147 0.489 0.354 0.426
5 0.209 0.135 0.455 0.329 0.383
6 0.195 0.128 0.376 0.272 0.301
7 0.153 0.118 0.312 0.239 0.237
. . . . . . . . . . . . . . . . . .

365 0.206 0.114 0.260 0.199 0.158
366 0.208 0.114 0.322 0.261 0.241
367 0.194 0.112 0.355 0.280 0.258
368 0.184 0.106 0.362 0.264 0.255
369 0.182 0.102 0.356 0.260 0.244
370 0.168 0.097 0.301 0.212 0.190
371 0.152 0.089 0.253 0.178 0.146
372 0.135 0.081 0.273 0.218 0.167

As shown in Tables 2 and 3, the Baidu index of keyword with a lag period of two days has
the highest correlation with the actual total number of tourists. Thus, we chose the Baidu index of
Huangshan, Huangshan tourism guide, Anhui Huangshan, and Huangshan guide with a lag period of
two days as input variables x8, x9, x10, and x11, respectively.

3.3. Climate Comfort

Climate comfort is an important environmental factor that affects tourists’ travel. Therefore, we
select climate comfort as the input variable x12. Climate comfort is the climatic condition in which
people can maintain the normal physiological process and feel comfortable without any help of heat
and cold [38]. The degree of human comfort is closely related to meteorological conditions, which
are the comprehensive feeling of temperature, humidity, and wind in the meteorological field. The
equation for calculating climate comfort is presented as follows [39]:

Q = 1.8t− 0.55(1.8t− 26)(1− h) − 3.25v + 32. (15)

In Equation (15), t is the average temperature (◦C), h is the average relative humidity (%), v is the
average wind speed (m/s), and Q is the climate comfort.

4. Experiments and Results

4.1. Building IA-GRU Model

In the IA-GRU model, except for the attention layer, parameters used in GRU neural networks
can be learned by standard backpropagation through time algorithm with mean squared error as the
objective function. According to previous experience and the results of repeated experiments, the
IA-GRU model has six layers, namely, one attention layer, four GRU layers, and one fully connected
layer. Moreover, the total number of neurons in four GRU layers was 128, 64, 64, and 32, respectively.
The activation function of the fully connected layer is the Scaled Exponential Linear Units function.
The number of training epochs in GRU layers is 500, and the mini-batch size of the training dataset is
64. According to the results of trial and error, the number of epochs in CRS was 15. Therefore, the
IA-GRU model has been established in this study.
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4.2. Results and Discussion

The proposed IA-GRU model is compared with some basic models, such as Back Propagation
Neural Network (BPNN), LSTM, GRU, Attention-LSTM (A-LSTM), and Attention-GRU (A-GRU). The
dataset of the IA-GRU model and basic models includes basic data x1–x7, Baidu index of keywords
(1–4 keywords) x8–x11, and climate comfort x12. To evaluate the predictive performance of each model,
we choose the average absolute percentage error (MAPE) and the correlation coefficient (R) as the
evaluation indicators. MAPE represents the prediction error, and R represents the degree of correlation
between the predicted value and the true value. The smaller the MAPE, the smaller the deviation
between the predicted value and the true value; the closer R is to 1, the higher the degree of correlation
between the predicted value and the true value. The equations are presented as follows:

MAPE =
1
n
(

n∑
i=1

|
yi − ŷi

yi
|) × 100, (16)

R =

n∑
i=1

yi ŷi√
n∑

i=1
yi2

√
n∑

i=1
ŷi2

. (17)

In the equations, yi represents the true value and ŷi represents the predicted value.
In this section, we apply the data x1–x12 to IA-GRU model and basic models to testify the validity

of the IA-GRU model on tourist flow forecasting. The overall experimental results are shown in
Table 4, and the daily true and predicted values are shown in Figure 6. IA-GRU model with MAPE
was lower than the others and R is higher than the others, which signifies that the prediction effect of
the IA-GRU model is better than the abovementioned basic models. With regard to MAPE, IA-GRU
was 7.77% lower than BPNN, in which MAPE was the highest. With regard to R, IA-GRU was 0.0299
higher than BPNN, in which R was the lowest. Furthermore, by comparing IA-GRU with A-GRU,
we found that the former had a lower MAPE and a higher R, which indicates that the improved
attention mechanism proposed in this study played a significant role. By comparing GRU with LSTM
or comparing A-GRU with A-LSTM, the results show that the prediction effect of GRU was better than
that of LSTM. However, R of the A-GRU model is lower than the R of the A-LSTM model. BPNN was
not chosen in this area given that its MAPE was too high for forecasting at 28.58%. In summary, the
IA-GRU model had the best prediction effect.

Table 4. Experimental results of different models.

Models MAPE(%) R

IA-GRU 20.81 0.9761
A-GRU 21.71 0.9674
A-LSTM 22.87 0.9711

GRU 25.43 0.9547
LSTM 25.57 0.9480
BPNN 28.58 0.9462
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Figure 6. The actual and predicted values of 2018. (a) The actual and predicted values of season 1;
(b) the actual and predicted values of season 2; (c) the actual and predicted values of season 3; (d) the
actual and predicted values of season 4.

To further verify the prediction effect of the IA-GRU model, the comparative experiments in this
study were divided into four categories, that is, the prediction results of different models including
datasets 1, 2, 3, and 4. Dataset 1 contains basic data, dataset 2 contains basic data and Baidu index
of keywords (4 keywords), dataset 3 contains basic data and climate comfort, and dataset 4 contains
basic data, Baidu index of keywords, and climate comfort. Dataset 4 is the dataset mentioned in the
previous paragraph.

Tables 5–9 exhibit the experimental results of different models including datasets 1–4. The increase
in keywords in Tables 6 and 7 is in accordance with the correlation index in Section 3.3 from high to
low. The results show that more keywords make the prediction more accurate. As shown in Tables 5–9,
the prediction effect of IA-GRU model is better than the other basic models on each dataset, wherein
the predicted value had a higher correlation with the real value. In the four datasets, the IA-GRU
model had the lowest MAPE on dataset 4 and the highest R, which signifies that the Baidu index of
keywords and climate comfort further improve prediction accuracy.

Table 5. The results with dataset 1.

Models MAPE(%) R

IA-GRU 22.43 0.9736
A-GRU 24.55 0.9696
A-LSTM 25.46 0.9660

GRU 27.36 0.9494
LSTM 27.91 0.9659
BPNN 30.17 0.9460
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Table 6. The results with dataset 2.

Models
MAPE(%)

One Keyword Two Keywords Three Keywords Four Keywords

IA-GRU 22.34 22.04 22.40 21.33
A-GRU 23.74 23.68 23.19 23.54
A-LSTM 24.59 24.38 24.09 23.89

GRU 27.16 25.86 24.99 25.54
LSTM 27.43 27.40 27.66 26.78
BPNN 29.81 29.87 29.24 28.78

Table 7. The results with dataset 2.

Models
R

One Keyword Two Keywords Three Keywords Four Keywords

IA-GRU 0.9677 0.9707 0.9720 0.9761
A-GRU 0.9644 0.9673 0.9713 0.9678
A-LSTM 0.9678 0.9740 0.9662 0.9736

GRU 0.9533 0.9563 0.9517 0.9532
LSTM 0.9688 0.9485 0.9724 0.9725
BPNN 0.9464 0.9397 0.9445 0.9528

Table 8. The results with dataset 3.

Models MAPE(%) R

IA-GRU 21.48 0.9688
A-GRU 22.67 0.9663
A-LSTM 23.89 0.9766

GRU 25.62 0.9538
LSTM 26.89 0.9504
BPNN 28.86 0.9542

Table 9. The results with dataset 4.

Models MAPE(%) R

IA-GRU 20.81 0.9761
A-GRU 21.71 0.9674
A-LSTM 22.87 0.9711

GRU 25.43 0.9547
LSTM 25.57 0.9480
BPNN 28.58 0.9462

To further analyze the prediction accuracy of the IA-GRU model, we performed a monthly analysis
of the experimental results of different models using dataset 4, as shown in Tables 10 and 11. As shown
in Table 10, the annual average error of the IA-GRU model was lower than that of basic models, whereas
the error of all models from May to October is lower than the annual average error. In May, June, and
July, the error of the IA-GRU model was lower than that of basic models. All models exhibited high
errors in January, February, March, April, and December. One of the reasons may be that they were
in the off-peak period. Moreover, the actual value is small, which is likely to cause high numerical
deviations. Overall, the IA-GRU model is relatively stable. In February, April, May, June, July, and
November, the IA-GRU model had the lowest error. Although the prediction of the IA-GRU model
was not the best in other months of the year, it was not the worst. For example, the error in January
was 8.48% higher than the minimum error, but 10.44% lower than the maximum error. The errors in
March, September, and October were close to the minimum error, wherein the gap between the error
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and the minimum error in these three months is less than 2%. The performance of IA-GRU model in
December was similar to that in January. IA-GRU model had the largest error in August, which was
2.22% higher than the lowest error. In August, the gap between the two errors is relatively small. The
reason may be that a certain gap exists in the correlation index of the Baidu index between the training
and test sets. Through correlation analysis, as shown in Table 12, we find that the correlation index of
the Baidu index of the training set is low, but the correlation index of the Baidu index of the test set is
high, which may cause a certain bias in the feature learning of the Baidu index. As shown in Table 11,
the R of the IA-GRU model was the highest in January, February, April, May, and November, and the R
from January to December was greater than 0.95. Such values are closely related to the annual average
R. Thus, the IA-GRU model was relatively stable, compared to other models.

Table 10. The monthly analysis results with dataset 4.

Months
MAPE(%)

IA-GRU A-GRU A-LSTM GRU LSTM BPNN

1 40.86 32.38 48.92 41.85 40.28 51.30
2 30.73 35.58 38.16 37.47 35.41 46.67
3 25.82 27.82 23.95 29.35 29.18 32.32
4 23.26 26.88 26.95 27.97 30.16 29.25
5 13.72 17.56 17.67 21.45 23.44 33.58
6 14.25 14.27 15.84 18.7 18.34 24.52
7 12.53 14.51 13.27 14.86 16.96 13.55
8 13.38 13.36 11.94 11.71 11.74 11.16
9 18.51 17.03 18.25 23.60 24.48 26.94
10 18.27 17.62 23.14 29.84 30.13 28.15
11 14.17 16.26 16.68 18.11 21.62 21.22
12 24.82 28.24 20.74 30.93 25.79 25.63

Average 20.81 21.71 22.87 25.43 25.57 28.58

Table 11. The monthly analysis results with dataset 4.

Months
R

IA-GRU A-GRU A-LSTM GRU LSTM BPNN

1 0.9538 0.8650 0.9502 0.9132 0.9506 0.8226
2 0.9546 0.9219 0.9443 0.9270 0.9226 0.8804
3 0.9779 0.9751 0.9803 0.9554 0.9498 0.9585
4 0.9673 0.9447 0.9557 0.9309 0.9070 0.9054
5 0.9880 0.9808 0.9823 0.9648 0.9581 0.9348
6 0.9915 0.9895 0.9917 0.9698 0.9682 0.9788
7 0.9845 0.9810 0.9852 0.9764 0.9723 0.9878
8 0.9912 0.9890 0.9938 0.9913 0.9912 0.9918
9 0.9685 0.9709 0.9675 0.9390 0.9319 0.9496
10 0.9860 0.9875 0.9750 0.9718 0.9580 0.9725
11 0.9842 0.9802 0.9806 0.9714 0.9609 0.9685
12 0.9549 0.9582 0.9663 0.9402 0.9459 0.9529

Average 0.9761 0.9674 0.9711 0.9547 0.9480 0.9462

Table 12. Correlation analysis results of keywords in August.

Huangshan Huangshan Travel Guide Anhui Huangshan Huangshan Guide

Training set 0.295 0.445 0.225 0.275
Test set 0.478 0.656 0.061 0.321

In summary, the proposed IA-GRU model based on the Baidu index and climate comfort can
effectively improve the accuracy of tourist flow forecasting. Moreover, the model proposed in this
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study is generally better than other basic models, proving the effectiveness of the model in tourist
flow forecasting.

5. Conclusions

This study proposes IA-GRU model trained with CRS for accurate tourist flow forecasting.
Tourism is an important part of the local, national, and global economies. Thus, good predictive
models are becoming increasingly valuable in tourist destinations management. First, this study is
the first to apply GRU in the field of tourist flow forecasting, wherein an attention layer is added
into GRU neural networks. Then, an improved attention mechanism that weighs different related
factors is proposed. Finally, the improved attention mechanism is combined with GRU, and CRS is
used to generate the optimal parameter combination at the attention layer. As a result, the IA-GRU
model captures long-term dependencies and increases the degree of attention that GRU pays to the
characteristics of sub-windows in different related factors. Concurrently, this study also explores the
application of the Baidu index and climate comfort in prediction models. In selecting the Baidu index
of keywords, Baidu’s keywords-mining tools and correlation analysis methods are used to screen out
relevant keywords with a large correlation index. In synthesizing climatic comfort, the comprehensive
sensation of temperature, humidity, and wind speed in the meteorological field is considered, and
the corresponding climatic comfort is calculated. This study takes the famous Huangshan Scenic
Area as an example to verify the effectiveness of the IA-GRU model with the Baidu index and climate
comfort in tourist flow forecasting. The experimental results prove that the IA-GRU model with the
Baidu index and climate comfort has higher prediction accuracy in tourist flow forecasting than basic
models. Thus, the proposed model can help the administration department in managing the scenic area
efficiently. Although this study has certain limitations, it remains worthy of further study in the future.
For example, a more detailed method of dividing weather dummy variables, a more accurate method
of keywords selection, and a more accurate method of climate comfort calculation can be explored in
future studies. In general, the proposed IA-GRU model is highly suitable for tourist flow forecasting.
Overall, the proposed model provides a significant reference for tourist destinations management and
a new perspective for related research.
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