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Abstract: Rate of penetration (ROP) is one of the most important drilling parameters for optimizing
the cost of drilling hydrocarbon wells. In this study, a new empirical correlation based on an
optimized artificial neural network (ANN) model was developed to predict ROP alongside horizontal
drilling of carbonate reservoirs as a function of drilling parameters, such as rotation speed, torque,
and weight-on-bit, combined with conventional well logs, including gamma-ray, deep resistivity,
and formation bulk density. The ANN model was trained using 3000 data points collected from
Well-A and optimized using the self-adaptive differential evolution (SaDE) algorithm. The optimized
ANN model predicted ROP for the training dataset with an average absolute percentage error (AAPE)
of 5.12% and a correlation coefficient (R) of 0.960. A new empirical correlation for ROP was developed
based on the weights and biases of the optimized ANN model. The developed correlation was tested
on another dataset collected from Well-A, where it predicted ROP with AAPE and R values of 5.80%
and 0.951, respectively. The developed correlation was then validated using unseen data collected
from Well-B, where it predicted ROP with an AAPE of 5.29% and a high R of 0.956. The ANN-based
correlation outperformed all previous correlations of ROP estimation that were developed based on
linear regression, including a recent model developed by Osgouei that predicted the ROP for the
validation data with a high AAPE of 14.60% and a low R of 0.629.

Keywords: rate of penetration; drilling optimization; carbonate reservoir; horizontal wells

1. Introduction

The total cost of drilling a hydrocarbon well is time-dependent [1]. Rig time, which is affected
by many factors, such as rate of penetration (ROP), is considered the most critical parameter for
determining the total cost of drilling. Optimizing ROP has a significant impact on reducing the total
cost [2].

ROP is affected by several parameters, which can be categorized into controllable and
uncontrollable parameters [3]. The controllable parameters include weight-on-bit (WOB), rotation
speed (RPM), pumping rate (GPM), torque (T), and standpipe pressure (SPP) [4,5]. All abbreviations
are listed in Appendix A. The uncontrollable parameters include bit size and drilling fluid type, density,
and rheological properties. The uncontrollable parameters affect each other, which complicates the
quantification of their effect on ROP [6].
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Several models have been generated to predict ROP, bue the accuracy of these models varies
due to variation in the drilling parameters considered in each model, which considerably limits their
applicability [7,8]. The main issue is how the drilling parameters control and affect the ROP [9].
Therefore, understanding the drilling data behavior is considered to be a key factor in the generation
of a good ROP prediction model.

ROP prediction models can be classified into two categories, i.e., traditional models using empirical
correlations and data-driven models [10]. The traditional models are mathematical functions based on
linear regression, while the data-driven models use artificial intelligence (AI) techniques to evaluate
ROP as a function of the drilling parameters, formation characteristics, and/or drilling fluid properties.

1.1. Linear Regression-Based Correlations for Rate of Penetration Estimation

The first mathematical equation for ROP estimation (Equation (1)) was developed by Maurer for
rolling cutter bits [11] and to predict the ROP based on the rock strength, WOB, RPM, and drill bit size.

ROP =
k

S2

(
WOB

db
−

Wt

db

)2

RPM (1)

where ROP is in (ft/hr), K is the proportionality constant, S represents the rock compressive strength,
WOB is in (Klbf), Wt is the threshold bit weight, which is very small compared to the WOB and could
be considered equal to zero for simplification, and db is the drill bit diameter (in).

Bingham [12] developed another ROP model (Equation (2)) to include the effect of rock strength in
the proportionality constant and replaced the second constant in Equation (1) with a varying exponent.

ROP = k
(

WOB
db

)a5

RPM (2)

where K is the proportionality constant, including the effect of rock strength, and a5 is the WOB
exponent.

Neither Maurer’s [11] nor Bingham’s [12] correlations consider the effect of formation compaction,
bit hydraulics, differential pressure, and bit wear on ROP change, which lowers the predictability
accuracy of ROP these correlations.

Bourgoyne and Young [13] developed the correlation in Equation (3) for drilling optimization
and ROP estimation based on a multiple regression analysis of detailed drilling data. In this model,
the authors improved ROP predictability by considering the effect of formation strength, depth,
compaction, the pressure differential in the bottom hole, bit diameter, WOB, RPM, bit wear, and bit
hydraulics on the ROP.

dD
dt

= e[a1+
∑8

j=2 a jx j] (3)

where D is the true vertical depth of the well (ft), t is the time, the coefficients a1–a8 are related to
the drilling parameters, x1–x8 denote dimensionless drilling parameters calculated from the actual
collected drilling variables, a1 represents the formation strength parameter, a2x2 and a3x3 account for
the formation compaction, a4x4 models the effect of the differential pressure, a5x5 accounts the effect
of the WOB and bit diameter, a6x6 considers the effect of the RPM, a7x7 models the effect of drill-bit
tooth wear, and a8x8 accounts for the bit hydraulic jet impact. The variable xj can be calculated using
Equations (4)–(10):

x2 = 10, 000−D (4)

x3 = D0.69
(
gp − 9.0

)
(5)

x4 = D
(
gp − ECD

)
(6)
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x5 = ln
[

WOB/db − (WOB/db)t

4.0− (WOB/db)t

]
(7)

x6 = ln
[RPM

100

]
(8)

x7 = −h (9)

x8 =
ρ q

350 µ dn
(10)

where gp denotes the pore pressure gradient of the well (lb/gal), ECD is the equivalent circulation
density of the drilling mud at depth D (lb/gal), h is the fractional tooth height worn away, ρ is the
density of the drilling fluid (lb/gal), q represents the flow rate (gal/min), µ is the drilling fluid viscosity
(cP), and dn represents the bit nozzle diameter (in).

Osgouei [6] used linear regression to modify Bourgoyne and Young’s model to enable prediction
of the ROP for directional and inclined boreholes. This model can be used for holes drilled with either
roller cone or polycrystalline diamond compact (PDC) bits. In their model, Osgouei [6] considered
additional drilling parameters to account for inclination and redefined the same parameters in case a
PDC bit was used instead of a roller cone bit. The generalized form of the Osgouei model is summarized
in Equation (11).

ROP = e[a1+
∑11

j=2 a jx j] (11)

where the functions a2x2–a8x8 are revised forms of the parameters considered by Bourgoyne and Young’s
model and the functions a9x9–a11x11 account for the hole cleaning conditions, which considerably
affect ROP and well drillability, especially in directional and inclined wells [14]. The variables x3–x7

are defined in the same way as in Equations (5)–(9), x2 and x8 can be calculated according to Equations
(12) and (13), respectively, and x9–x11 can be calculated using Equations (14)–(19).

x2 = 8800−D (12)

x8 = ln
[ F j

1000

]
(13)

For roller cone bits,

x9 = ln
[

Abed/Awell

0.2

]
(14)

x10 =

[
vactual
vcritical

]
(15)

x11 = ln
[ cc

100

]
(16)

For PDC bits,

x9 = ln
[

Abed/Awell

0.35

]
(17)

x10 =

[
vactual
vcritical

]
(18)

x11 = ln
[ cc

25

]
(19)

where Abed and Awell are the cross-sectional areas of the cutting’s bed and drilled hole (in), respectively,
vactual and vcritical are the actual and critical velocities of the cuttings, respectively, and cc is the annular
cutting’s concentration. As reported by Osgouei [6], ROP can be estimated with an error of ±25%
compared to the actual ROP, which is considerably high.
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1.2. Application of Artificial Intelligence for Rate of Penetration Estimation

AI techniques are used extensively in applications related to different engineering and scientific
research areas [15–20], including in the petroleum industry where they can solve complicated problems
such as prediction of drill bit wear from drilling parameters [21], real-time predictions of alterations in
drilling fluid rheology [22,23], lithology identification [24], prediction of total organic carbon for the
evaluation of unconventional resources [25–29], estimation of the oil recovery factor [30,31], estimation
of pore and fracture pressures [32,33], evaluation of the static Young’s modulus [34–36], estimation of
the reservoir porosity [37], evaluation of the bubble point pressure [38], and the prediction of formation
tops [39].

The use of AI techniques for ROP prediction was suggested by Bilgesu et al. [40] to overcome
the weakness of the empirical correlations and to improve the accuracy of ROP predictability.
Bilgesu et al. [40] developed two artificial neural network (ANN) models for ROP estimation in
nine different formations drilled in several vertical wells in the United States. The first model estimated
ROP as a function of bit type and diameter, formation type, bit tooth and bearing wear, mud circulation,
gross hours of drilling, footage, WOB, and RPM, while the second model excluded the bit tooth
and bearing wear from the inputs. The authors reported that both models predicted ROP with very
high accuracy.

Two ANN models were developed by Amar and Ibrahim [41] to estimate ROP as a function of the
depth, WOB, RPM, tooth wear, Reynolds number function, ECD, and pore gradient. Both ANN-based
models predicted ROP with very low average absolute percentage error (AAPE) compared with the
available ROP correlations that were developed based on linear regression.

Coupling of the different AI models with linear regression for ROP optimization for horizontal
wells was suggested by Mantha and Samuel [42]. In their models, Mantha and Samuel [42] used RPM,
WOB, GPM, and gamma-ray (GR) logs as inputs to estimate ROP. All suggested models predicted
the ROP with high accuracy compared to actual field-measured ROP. No empirical correlations were
extracted from these suggested models, and it is still difficult for authors to extract them in order to
test future data.

Elkatatny [43] was the first to develop an empirical correlation for ROP estimation for vertical
wells based on the extracted weights and biases of the optimized ANN model. The developed
empirical correlation evaluated ROP as a function of the RPM, WOB, T, GPM, and standpipe pressure
(SPP) combined with drilling fluid properties, including mud density (MW) and plastic viscosity
(PV). Elkatatny’s [43] correlation predicted ROP with an AAPE of only 4% compared to other ROP
correlations, which predicted ROP using the same data considered by Elkatatny [43] with an AAPE of
more than 10%.

Another model for ROP estimation based on support vector machines was developed by
Ahmed et al. [44]. This model estimated ROP based on RPM, WOB, T, GPM, and SPP and drilling fluid
properties of the MW, PV, funnel viscosity, and solid concentrations. This model also estimated ROP
accurately, with an AAPE of only 2.83%.

This study aimed to develop a new empirical correlation for ROP estimation in horizontal wells
and carbonate formations as a function of RPM, T, and WOB, combined with conventional well log data
including GR, deep resistivity (DR), and formation bulk density (RHOB). The correlations developed
in this study were based on the weights and biases of the trained ANN model, which was optimized
using the self-adaptive differential evolution (SaDE) algorithm.

2. Methods

Artificial neural networks (ANN) are a computing system designed to mimic the way biological
systems such as human or animal brains are behaving [45,46]. ANNs were developed to help with
classification, identification, estimation, and decision-making in various situations using a machine
program. In this study, the simplest ANN form, multi-layered perceptron, which consists of a single
input layer, single or multiple learning layers, and one output layer, was used. Firstly, the ANN
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systems were trained using labeled data (supervised learning) to perform the needed tasks [47], then
the trained ANN model was used to predict the objective variables.

Several parameters control the performance of an ANN model, which comprise the size of the
training dataset, the required training (learning) layers, the training neurons per learning layer, the
training function, and the transfer function. Evaluating the performance of all combinations of these
parameters is a time-consuming process.

Differential evolution (DE) is a robust optimization algorithm which has proved its effectiveness
and accuracy in solving several numerical problems. The need to set initial DE control parameters,
which are problem-dependent and therefore time-consuming, limits the application of DE. In 2005, the
SaDE algorithm was developed by Omran et al. [48], which accelerated the optimization process since
it did not need parameter tuning.

The SaDE algorithm was used in this study to select the optimum ANN design parameters
required to predict ROP. An empirical equation for ROP calculation was also developed based on
the weights and biases associated with the training and output layers and neurons of the optimized
ANN model.

2.1. Data Preparation

In this study, the ANN model was trained using the drilling parameters RPM, T, and WOB,
combined with conventional well log data including GR, DR, and RHOB as inputs to estimate the ROP
as the output. All abbreviations are listed in Appendix A. The data collected in this study were from
two different wells and all data used to train the ANN model (i.e., the inputs) were real-time data that
extracted by the driller in the real-time base, meaning that the predicted ROP based on these variables
was a real-time ROP.

To ensure a highly accurate ROP prediction using the ANN model, the collected data was
preprocessed before being introduced into the ANN model to remove outliers. This step is necessary
for processing any type of data with any AI technique [49]. The data were studied statistically to
remove outliers and the standard deviation was considered to be the main parameter to judge the
validity of the data, where all values within the range of ±3.0 standard deviations were considered
valid; all others were considered outliers and removed from the data. After data preprocessing, 3531 of
the data points collected from Well-A and 3600 of Well-B data points were considered valid for model
training and testing.

2.2. Training the ANN Model

The dataset collected from Well-A (3531 data points) was used to build the ANN model, with 85%
of this data randomly selected to train the ANN model and 15% used for testing the trained model.
These percentages were selected based on the optimization process, as discussed later in this section.

The training dataset was first analyzed statistically to determine the ranges for the different
parameters used to develop the ANN model; the results of this analysis are summarized in Table 1. As
indicated in Table 1, RPM ranged from 59.8 to 132, T was between 3.06 and 7.81 kft.lbf, WOB was from
5.55 to 24.3 klbf, GR was between 8.80 and 69.5 API, RHOB ranged from 2.13 to 3.02 g/cm3, and ROP
was from 6.53 to 53.2 ft/hr. The ranges of the training data, as summarized in Table 1 were very
important and needed to be considered when predicting ROP. To ensure high accuracy during ROP
predictions, the new input dataset used for the ROP estimation had the same range as the training data.

Figure 1 compares the relative importance of the input parameters used to train the ANN model.
The inputs used in this study were selected based on their relative importance to the ROP. As shown in
Figure 1, the T and WOB had good correlation coefficients with the ROP, i.e., 0.67 and 0.61, respectively.
RPM and DR had acceptable correlations with the ROP. Although GR and RHOB had low correlation
coefficients of 0.07 and 0.13, respectively, with the ROP, they were considered as inputs in this study
because they both directly affected the ROP. Changes in GR and RHOB gave indications about the
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change in the lithology, which led to a change in ROP. The use of GR to improve ROP predictability for
horizontal wells was suggested previously by Mantha and Samuel [42].

Table 1. The statistical parameters for the training dataset (85% of the data collected from Well-A).

Statistical
Parameters

RPM
(rpm)

T
(kft.lbf)

WOB
(klbf)

GR (API) DR (Ω.m) RHOB
(g/cm3)

ROP
(ft/hr)

Minimum 59.8 3.06 5.55 8.80 0.64 2.13 59.8
Maximum 132 7.81 24.3 69.5 965 3.02 132

Range 72.2 4.75 18.8 60.7 963.9 0.89 72.2
Standard Deviation 17.5 0.75 2.64 8.5 212.4 0.16 17.5

Sample Variance 306 0.57 6.99 72.9 45114 0.02 306
Kurtosis −1.14 0.16 1.55 1.96 6.09 −0.87 −1.14

Skewness −0.49 −0.44 −0.94 1.27 2.49 −0.10 −0.49
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After preprocessing the training data, the SaDE algorithm was applied to optimize the ANN
model to select a combination of ANN design parameters to predict ROP with the minimum AAPE
and highest correlation coefficient (R) and coefficient of determination (R2).

Different design parameters of the ANN model were studied during the optimization process,
including the percentage of the training and testing data, training function, transfer function, number
of hidden layers, and the number of neurons associated with every hidden layer. The effect of using
5% to 95% of the data collected from Well-A for training was evaluated during model optimization.
The predictability of different training functions, such as Levenberg–Marquardt backpropagation,
BFGS (Broyden–Fletcher–Goldfarb–Shanno) Quasi-Newton backpropagation (trainbfg), conjugate
gradient, Bayesian regularization backpropagation, gradient descent with adaptive learning rate
backpropagation, and gradient descent with momentum backpropagation, was evaluated. The effects
on training accuracy of transfer functions log-sigmoid (logsig), tan-sigmoid, and pure-line were also
evaluated. The use of 1–3 hidden layers, with 5–30 neurons per layer, was also studied.

The optimization process was conducted using SaDE in MATLAB®. Based on the results of the
optimization process, the use of the trainbfg function to train the ANN model and the logsig transfer
function with a single hidden layer with 26 neurons, as listed in Table 2, optimized the ANN model for
ROP prediction. The structure of the suggested ANN model for ROP prediction is shown in Figure 2,
which shows that the ANN model had an input layer with 6 neurons (one neuron for every input
variable), a single layer with 26 neurons, and one output layer with a single output neuron (i.e., ROP).
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Table 2. Combination of the optimum ANN design parameters for ROP prediction.

Parameter Value

Training function trainbfg
Transfer function logsig

Number of hidden layers 1
Number of neurons 26
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Figure 2. The suggested artificial neural network (ANN) model for rate of penetration (ROP) prediction.
The model had an input layer with 6 neurons for the 6 inputs, a single (hidden) training layer with
26 neurons, and one output layer with a single neuron as the output ROP. The letter b denotes the
biases nodes.

An empirical correlation based on the weights and biases of the optimized ANN model with the
design parameters, as listed in Table 2, was then developed. In this step, the optimized ANN model
was converted from a black box to a white box for easy use and to program the developed correlation
for future use.

2.3. Testing and Validation of the Developed ANN-Based Correlation

After developing the empirical correlation, the remaining 531 data points of Well-A, which
represented 15% of the Well-A data, were used to test the developed ANN-based correlation, which
was then validated using the 3600 unseen data points collected from Well-B. Before testing or validating
the developed correlation, the ranges of the testing and validation datasets were investigated and
confirmed to fall within the range of the data used to train the ANN model, which is summarized
in Table 1. This step was very important to ensure that the ROP was accurately predicted. The
predictability of the developed ANN-based correlation for ROP for the validation data was compared
with the predictability of four commonly used empirical correlations for ROP estimation, namely,
Maurer’s [11], Bingham’s [12], Bourgoyne and Young’s [13], and Osgouei’s [6] correlations, as presented
earlier in Equations (1)–(3), and (11).
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2.4. Evaluation Criteria

Four metrics were considered in this study to evaluate the predictive power of the developed
ANN model and ANN-based empirical correlation for ROP estimation, namely, AAPE, R2,
R, and a visualization check of the match between the actual and the predicted ROP. These
metrics were considered sufficient to evaluate the predictability of the ROP for training, testing,
and validation datasets.

3. Results and Discussion

3.1. Training the ANN model

The ANN model developed in this study was trained using 3000 datasets, including RPM, T,
WOB, GR, DR, and RHOB as inputs to predict the ROP as an output. The training data was randomly
selected from Well-A data and represented 85% of the total data available from Well-A. The SaDE
algorithm was used to optimize the ANN model to predict the ROP; Table 2 summarizes the optimum
ANN parameters for ROP estimation.

The training data and their corresponding actual and ANN predicted ROP values are summarized
in Figure 3 as a function of well depth. The results in Figure 3 show that the ANN model predicted the
ROP for the training dataset of Well-A with a low AAPE of 5.12% and a considerably high R of 0.960,
confirming a good match between the actual and predicted ROP curves, indicating high accuracy of
the developed ANN model in estimating ROP.
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ANN-derived ROP for the training dataset (Well-A). The letter “X” in the depth’s axis was used to hide
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Figure 4 shows a cross-plot of the actual ROP versus the predicted ROP for the training dataset
(85% of Well-A data), indicating high accuracy of the ANN model in estimating the ROP with an R2

of 0.921.
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3.2. Developing the ANN-Based Correlation

The proposed ANN-based empirical model was given by Equations (20)–(27).

ROPn =
N∑

i=1

w2i

1

1 + e−(w1i,1 RPMn+w1i,2 Tn+w1i,3 WOBn+w1i,4 GRn+w1i,5 DRn+w1i,6 RHOBn+b1i )
+ b2 (20)

where ROPn is the normalized ROP, N represents the number of neurons in first hidden layer (26
neurons), i denotes the index of each neuron in the hidden layer, as shown in Table 3, w1i is the weight
associated with input and hidden layers for each input parameter, b1i denotes the biases associated
with the input and training layers, w2i is the weight associated with the hidden and output layers,
RPMn, Tn, WOBn, GRn, DRn, and RHOBn represent the normalized RPM, T, WOB, GR, DR, and RHOB,
respectively, and b2 is the bias associated with the hidden and output layers, which was 0.248 in this
case. All weights and biases needed for Equation (20) are listed in Table 3.

The normalized input parameters in Equation (20) were calculated using Equations (21)–(26).

RPMn = 0.0277(RPM− 59.76) − 1 (21)

Tn = 0.421(TORQUE− 3.0633) − 1 (22)

WOBn = 0.1066(WOB− 5.5520) − 1 (23)

GRn = 0.0329(GR− 8.8038) − 1 (24)

DRn = 0.0021(DR− 0.6449) − 1 (25)

RHOBn = 2.2589(RHOB− 2.1345) − 1 (26)

The value of ROPn, as calculated by Equation (20), was the normalized ROP, which was converted
to the real ROP using Equation (27).

ROP =
ROPn + 1

0.0429
+ 6.5345 (27)



Sustainability 2020, 12, 1376 10 of 19

Table 3. Weights and biases for the first hidden layer of the ANN-based ROP model.

i w1i,1 w1i,2 w1i,3 w1i,4 w1i,5 w1i,6 b1i w2i

1 0.472 −1.869 3.127 −1.312 0.232 −0.621 6.431 0.190
2 −0.778 −3.454 1.887 6.725 −2.769 −6.941 −5.566 −0.299
3 3.037 −4.214 −2.902 −5.927 1.752 −0.969 −4.733 0.396
4 3.279 2.073 −4.944 2.953 −0.896 6.679 −5.680 −0.654
5 −1.167 0.034 1.637 −4.192 −0.988 −3.395 2.298 −1.056
6 −5.614 0.971 −4.185 −2.940 −0.165 2.019 3.522 0.418
7 4.712 1.857 2.161 3.803 −1.979 −0.936 −3.041 0.859
8 −0.795 0.183 0.660 −4.797 −13.842 1.330 −14.488 −0.945
9 3.732 −4.144 −3.459 −1.063 3.321 −3.952 −1.752 −0.451

10 0.502 −10.524 5.801 1.869 −0.852 −6.240 −3.857 0.294
11 −0.317 −5.318 6.544 3.210 1.360 0.461 1.090 −0.326
12 4.212 0.773 0.592 1.958 1.470 2.034 −0.118 −0.388
13 2.910 0.433 3.394 0.904 −1.510 0.177 −0.756 0.195
14 −3.365 −6.367 −1.462 3.218 −5.920 4.702 −1.646 0.416
15 −2.423 3.326 0.483 −3.764 −3.841 −4.881 0.170 −0.324
16 2.190 5.445 0.414 −2.546 0.930 −2.493 −1.045 0.704
17 −1.443 2.033 8.548 4.160 3.550 9.202 −0.189 0.176
18 1.699 −0.890 −0.025 −0.947 −2.317 3.959 −0.119 −0.379
19 −2.209 3.899 −4.020 −7.417 1.532 1.539 −2.022 0.738
20 −1.240 2.891 −3.411 −8.762 1.554 0.939 −3.210 −0.762
21 3.398 −3.788 −4.602 1.518 −1.239 0.043 −0.422 −0.048
22 1.904 −1.289 6.963 −1.661 0.961 −3.726 −4.547 0.378
23 −3.985 1.949 −2.266 1.458 0.686 2.434 −4.530 −1.069
24 −0.462 −1.879 0.058 3.565 1.033 −2.105 −4.423 0.795
25 −0.804 0.043 0.667 −3.192 −10.184 1.230 −11.419 1.249
26 −5.700 −2.821 −1.045 1.765 2.478 −3.574 −6.170 −0.580

3.3. Testing the Developed ANN-Based Correlation

The ANN-based model developed in this study, as summarized in Equations (20)–(27), was then
tested using the remaining unseen 15% of the data of Well-A. Figure 5 compares the actual ROP with
the ROP values estimated using the ANN-based empirical equations (Equations (20)–(27)) for the
Well-A test dataset. As indicated in Figure 5, the ANN-based empirical equations were able to predict
the ROP with high accuracy, as indicated by the low AAPE of 5.80% and the high R of 0.951. Figure 5
shows high accuracy. Also shows high accuracy of the ANN-based correlation, where there was a
good match between the actual and predicted ROP curves.

Figure 6 compares the actual ROP with the predicted value using the ANN-based empirical
correlation. As indicated in Figure 6, the ANN-based equation predicted the ROP for the test dataset
(15% of the data of Well-A) with high accuracy in terms of the R2 (R2 = 0.905).
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3.4. Validation of the Developed ANN-Based Empirical Correlation

The accuracy of the ANN-based empirical correlation predictions using Equations (20)–(27) was
validated using another set of unseen data collected from Well-B. Figure 7 shows the input variables
of RPM, T, WOB, GR, DR, and RHOB used to predict the ROP in Well-B, and also compares the
ROP values predicted using the ANN-based correlation (Equations (20)–(27)) with the actual ROP. As
indicated in Figure 7, the AAPE and R of the predicted ROP were 5.29% and 0.956, respectively. The
low AAPE and high R of the predicted ROP indicated the high accuracy of the developed ANN-based
correlation. A visual check of the actual and ANN-based ROP values in Figure 7 also indicated a
good match between the two curves (i.e., the actual ROP and the ANN-ROP), thereby confirming high
accuracy of the ANN-based correlation.Sustainability 2019, 9, x FOR PEER REVIEW 14 of 20 
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Figure 7. From left to right, RPM, T, WOB, GR, DR, RHOB, and their corresponding actual and
ANN-derived ROP values for the validation dataset (Well-B). The letter “X” in the depth’s axis was
used to hide the exact depth, where “X” is a value from 1 to 9.

Figure 8 compares the actual ROP with the predicted value using the ANN-based empirical
correlations, as summarized in Equations (20)–(27) for the validation dataset (3600 data points
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collected from Well-B). As indicated in Figure 8, the ANN-based equation predicted the ROP for
the validation dataset with a relatively high R2 of 0.914, indicating high accuracy of the developed
ANN-based correlation.
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3.5. Comparison of the Predictability of the Developed ANN-Based Empirical Correlation with
Available Correlations

In this section of the study, the accuracy of four currently available empirical equations for ROP
estimation, namely, Maurer’s, Bingham’s, Bourgoyne and Young’s, and Osgouei’s correlations, was
compared to the accuracy of the developed ANN-based empirical correlation in Equations (20)–(27). As
shown in Figure 9, Maurer’s correlation was the least accurate correlation in terms of ROP estimation
according to the validation data, with the highest AAPE of 19.81% and a very low R of 0.625. Bourgoyne
and Young’s correlation predicted the ROP with an AAPE of 14.82% and an R of 0.622, while the ROP
predicted by Bingham’s correlation had AAPE and R values of 14.62% and 0.634, respectively. Osgouei’s
correlation was the best empirical correlation of the available correlations in terms of predicting the
ROP, with the lowest AAPE of 14.60% and an R of 0.629.

The developed empirical correlation based on ANN, which was summarized in Equations (20)–(27),
outperformed all available correlations in predicting ROP for the Well-B validation data, as indicated
by the very low AAPE and very high R values of 5.29% and 0.956, respectively, as shown in Figure 9.
Visual checking of the predicted ROP curves with the different correlations and the actual ROP shown
in Figure 9 indicated an excellent match between the actual and ANN-based empirical correlation
compared to all of the available correlations.
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Figure 9. Comparison of the predictability of Maurer’s, Bingham’s, Bourgoyne and Young’s, Osgouei;s,
and ANN-based correlations for ROP with the actual ROP according to the validation dataset.

Figure 10 shows cross-plots comparing the actual ROP with the ROP values (3600 data points of
Well-B) calculated using the different empirical correlations. As indicated in this figure, none of the
available correlations accurately predicted the ROP, as indicated by the low R2 values between the
actual and predicted ROPs. Maurer’s and Bourgoyne and Young’s correlations predicted the ROP
with R2 values of only 0.390 and 0.387, respectively. Bingham’s and Osgouei’s correlations predicted
the ROP with slightly higher R2 values of 0.402 and 0.396, respectively. The ANN-based correlation
predicted the ROP with a very high R2 value of 0.914.

As shown in Figure 10a–d, the cross-plots of the actual and predicted ROP values using the
previously developed correlations were highly scattered compared to the cross-plot for the ROP values
predicted using the ANN (Figure 10e).
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4. Conclusions

A new correlation to estimate ROP while drilling horizontal wells in carbonation formations was
developed based on the extracted weights and biases of the trained and optimized ANN model. The
ANN model was optimized using a self-adaptive differential evolution algorithm. The developed
correlation estimated ROP as a function of the drilling parameters of the RPM, torque (T), and WOB,
combined with conventional GR, DR, and RHOB well log data. The following observations were made:

• The optimized ANN model predicted the ROP for the training dataset (3000 data points) with an
AAPE of 5.12% and a correlation coefficient (R) of 0.960;

• The developed correlation predicted the ROP for the testing dataset (531 data points) with AAPE
and R values of 5.80% and 0.951, respectively;
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• The developed ROP correlation outperformed a recently developed empirical correlation for
estimating ROP in directional wells (the Osgouei model), which predicted the ROP for the
validation data with a high AAPE and a low R of 14.60% and 0.629, respectively;

• The developed correlation predicted ROP for the validation dataset of Well-B (3600 data points)
with an AAPE of only 5.26% and a high R of 0.956.
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Appendix A

AAPE Average Absolute Percentage Error

AI Artificial Intelligence
ANN Artificial Neural Network

DE Differential Evolution
DR Deep Resistivity

ECD Equivalent Circulation Density
GPM Pumping Rate
GR Gamma Ray

logsig log-sigmoid
MW Mud Density
PV Plastic Viscosity
R Correlation Coefficient
R2 Coefficient of Determination

RHOB Formation Bulk Density
ROP Rate of Penetration
RPM Rotation Speed
SaDE Self-Adaptive Differential Evolution
SPP Standpipe Pressure
SVM Support Vector Machine

T Torque
trainbfg BFGS Quasi-Newton Backpropagation

WOB Weight-on-Bit
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