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Abstract: Cities are the keystone landscape features for achieving sustainability locally, regionally,
and globally. With the increasing impacts of urban expansion eminent, policymakers have encouraged
researchers to advance or invent methods for managing coupled human–environmental systems
associated with local and regional sustainable development planning. Although progress has been
made, there remains no universal instrument for attaining sustainability on neither regional nor local
planning scales. Previous sustainable urbanization studies have revealed that landscape configuration
metrics can supplement other measures of urban well-being, yet few have been included in public data
dashboards or contrasted against local well-being indicators. To advance this sector of sustainable
development planning, this study had three main intentions: (1) to produce a foundational suite of
landscape ecology metrics from the 2007 land cover dataset for the City of Toronto; (2) to visualize and
interpret spatial patterns of neighborhood streetscape patch cohesion index (COHESION), Shannon’s
diversity index (SHDI), and four Wellbeing Toronto indicators across the 140 Toronto neighborhoods;
(3) to quantitatively assess the global collinearity and local explanatory power of the well-being and
landscape measures showcased in this study. One-hundred-and-thirty landscape ecology metrics
were computed: 18 class configuration metrics across seven land cover categories and four landscape
diversity metrics. Anselin Moran’s I-test was used to illustrate significant spatial patterns of well-being
and landscape indicators; Pearson’s correlation and conditional autoregressive (CAR) statistics were
used to evaluate relationships between them. Spatial “hot-spots” and/or “cold-spots” were found
in all streetscape variables. Among other interesting results, Walk Score® was negatively related to
both tree canopy and grass/shrub connectedness, signifying its lack of consideration for the quality
of ecosystem services and environmental public health—and subsequently happiness—during its
proximity assessment of socioeconomic amenities. In sum, landscape ecology metrics can provide
cost-effective ecological integrity addendum to existing and future urban resilience, sustainable
development, and well-being monitoring programs.

Keywords: crime; data dashboard; landscape indicators; premature mortality; spatial autoregressive
modeling; streetscapes; sustainable urbanization; Toronto; urban design; urban landscape; urban
planning; walk score

1. Introduction

Cities are the keystone landscape features for achieving sustainability locally, regionally, and
globally. In 2017, the United Nations predicted that the global population will grow to 9.7 billion
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inhabitants by 2050, and 11 billion inhabitants by 2100; however, it will be cities that absorb a majority
of the foreseen population growth in the developed and developing world [1]. As of 2008, homo
sapiens became more of an urban species rather than rural [2], and now there are 28 megacities
(population >10 million) and several nations with 100% urban population [3]. In a shocking prophecy
by Michael Batty [4], the global population is predicted to be 70% urban in 2050 and 100% urban
in 2092. Although cities have been recognized as leaders in socioeconomic well-being, catalysts for
educational and technological growth, and centers for historic preservation, culture and the arts [5–7],
their connected structure has been found to simultaneously degrade Earth’s life-supporting systems [8].
Urbanization, directly and indirectly, metabolizes Earth’s healthy environmental resources and disturbs
life-supporting ecosystem services great distances from urban centers [9–16]. Consequently, land cover
change associated with population growth, rural to urban migration, a desire for greater material
well-being, and poor waste management are having the greatest impacts on Earth’s life-supporting
biogeochemical systems and thus its planetary boundaries [10,15,17–25].

With the increasing impacts of urban expansion eminent [4,11,13,26], policymakers have
encouraged researchers to advance or invent methods for managing coupled human–environmental
systems associated with local and regional sustainable development planning [27]. Furthermore, for
roughly two decades now, the planning community has seen a need for sustainable development
initiatives that go beyond lip-service and put concepts into action [28–30]. Despite uncertainty about
operationalization, the field of planning acknowledges that sustainable development is an influential
concept and should shape future methodology and practice [31–33]. That said, although effort and
progress have been made, there remains no universal instrument for attaining sustainability on neither
regional nor local planning scales [34]. As suggested by Jianguo Wu [5–7], landscape ecology is
likely the most relevant place-based and solution-driven discipline for moving humanity towards
sustainability across space and time. Landscape ecology emphases two main principles of landscape:
(i) patterns, or the physical configuration of its elements (i.e., urban land connectivity); and (ii) processes,
or its biogeophysical functions (i.e., disrupted hydrological cycle) that modify or result from its spatial
structure [35]. Despite numerous environmental management, conservation, restoration, urban and
regional planning projects incorporating landscape ecology tools and methods, work remains for
landscape sustainability science to move theory into everyday planning practice [36,37].

Indicators and their combined forms, indices, are essential tools for calibrating landscape structure
during sustainable urbanization, urban resilience, environmental planning and management projects.
At local and regional scales, indicator-based assessment of landscape function is a fundamental
approach for evaluating relationships during sustainable landscape planning [38,39]. An evaluation
metric takes the form of a rapidly employable single-number characterization of a location at a given
time [40], which have been embraced widely for urban design, ecosystem management, natural resource
conservation, sustainable urbanization, environmental and regional planning purposes [8,14,23,41].
Spatial planning investigations of human-dominated landscapes have been further understood using
analytical tools for quantifying landscape structure (e.g., FRAGSTATS) and spatial analysis software
(e.g., SAM) [14,41]. That said, few urban ecology studies serve as examples of how landscape patterns
respond to indicators of urban well-being and resilience at local and regional scales. Lastly, because
spatial autocorrelation [42] is inherently present during urban well-being assessments, appropriate
inferential statistical methods (i.e., spatial autoregression) must be considered to correct for its
accompanying errors.

Cultivating knowledge on how to optimize the urban mosaic is mandatory for creating urban
resilience and sustainable cities. Urban patterns and processes offer both problems and solutions for
sustainable development; however, they allow an opportunity to test questions related to what is the
‘optimal’ urban form [26]. Previous sustainable urbanization studies have revealed that landscape
configuration metrics can supplement other measures of urban well-being (i.e., [43]), yet few have
been included in public data dashboards or contrasted against local well-being indicators. To advance
this sector of sustainable development planning, this study had three main intentions: (1) to produce
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a foundational suite of landscape ecology metrics from the 2007 land cover dataset for the City of
Toronto; (2) to visualize and interpret spatial patterns of neighborhood streetscape patch cohesion index
(COHESION), Shannon’s diversity index (SHDI), and four Wellbeing Toronto indicators across the
140 Toronto neighborhoods; and (3) quantitatively assess global collinearity and local explanatory
power of the well-being and landscape measures showcased in this study. A goal of this study
was to justify adding landscape ecology metrics into urban resilience, sustainable development, and
well-being monitoring programs. This paper was also created to deliver sustainability scientists, spatial
analysts, urban planners and designers an applied example for systematically assessing, describing,
and monitoring sustainable landscape function across space.

2. Study Area

This research incorporated all 140 neighborhoods as individual streetscapes for the City of Toronto,
located in the province of Ontario, Canada (Figure 1). The City is central to Southern Ontario’s
megalopolis, dubbed the “Golden Horseshoe,” which is a band of ever-increasing population growth
and subsequent urbanization wrapping the Provincial coastline of Lake Ontario [44–48]. As a leading
port city on the Laurentian Great Lakes of North America, with access to the Atlantic Ocean by way
of the Saint Lawrence Seaway, and land connections via major railways, Toronto was historically a
place of mercantile prosperity and has grown into Canada’s most populated, culturally diverse, and
economically important city [49–52]. The 140 distinct neighborhoods have unique identities stemming
from different demography and responding built and natural forms [52–55]. With an area of 641km2,
a population of 2.95 million in July 2018, and a density of 4457 persons/km2, the City of Toronto
shares similarities with other North American metropolises as Montreal, Chicago, Philadelphia, and
Washington at 4916, 4594, 4512, and 4301persons/km2, respectively [56–58]. However, Toronto is
differentiated from other North American cities because it is seen as one of the fastest-growing urban
centers, if not the fastest [51,59,60]. Increasing urbanizing pressures, the Greater Toronto Area (GTA) is
encircled by 800,000 hectares of protected land, known as the Greenbelt, which includes such natural
amenities as the Niagara Escarpment, Oak Ridges Moraine, and protected countryside [61].

The City of Toronto has been dubbed the most resilient city in the world [62], yet it is projected that
its population growth will require innovative and adaptable urban sustainable development initiatives.
Toronto’s good reputation as a livable city and prosperous urban region is linked to its economic and
social welfare and the goods and services that are provided to its citizens [63]. In example, an effort
has been made to preserve its natural spaces and support Torontonians’ connection to nature; the
greenspace ravine systems and parks comprise nearly 17% of the city’s net area [64–67]. However,
over the last few decades Canadian societies, specifically in Toronto, have been changing. Economic,
social, and environmental trends are posing significant challenges to securing improved well-being
and promoting equitable and sustainable order within Canadian communities [68,69]. Toronto is
beginning to show signs of distress (i.e., congested streets) and imbalance in areas such as housing and
income security; without immediate action, the trends unfolding are likely to lead to a further decline
in the City’s well-being [51]. There is a need to evaluate current conditions and to determine the future
path towards sustainability for Toronto’s 140 neighborhoods using measurements of well-being. With
its interesting human and physical geography, growing population, and confined limits to growth,
Toronto’s complex coupled urban landscapes are fashionable for examining how patterns of streetscapes
relate to urban well-being.
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Figure 1. Study area map of the 140 neighborhood-landscapes (streetscapes) in Toronto, Canada (43◦39’N,
79◦20’W). Source neighborhood Geographic Information System (GIS) data freely downloadable from
the City of Toronto’s Open Data Portal website (http://open.toronto.ca/).

3. Materials and Methods

3.1. Wellbeing Toronto Indicators

Indicators and their composite versions indices are being used across spatial scales to address
multiple planning and policy-making objectives, and are considered indispensable in the science and
practice of sustainability [70–75]. These metrics are often quantitative expressions of spatial-temporal
sustainability, resilience, or well-being in context to a system’s current state. At the international level,
a call for these indicators happened at the Rio Earth Summit in 1992, which has resulted in a plethora of
public and private organizations responding at all scales of application [33,72,76,77]. From Chapter 8.6
of Agenda 21 [78] “Countries could develop systems for monitoring and evaluation of progress towards
achieving sustainable development by adopting indicators that measure changes across economic,
social and environmental dimensions” (66). Regarding unifying methods for assessing sustainable
urbanization, the International Organization for Standardization (ISO) is leading the way with ISO
37120:2018 [Sustainable cities and communities—Indicators for city services and quality of life] and
ISO 37122:2019 [Sustainable cities and communities—Indicators for smart cities] initiatives [79,80].
Although not free of charge, ISO has organized and standardized a set of indicators for city quality
of life, resilience, services and ‘smart cities’; furthermore, these standards act as proxies to help
cities support policy creation and priority planning initiatives. Despite the aforementioned efforts,
critical reviews of indicators and indices employed at the local level consider them ‘sub-optimal’ tools
for technical assessment, public participation, and use [70,73]. Specifically, when using indicators
and indices errors come from confusion or disagreement around variable selection, directionality,

http://open.toronto.ca/
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normalization, weighting, and aggregation, as well as boundary delineation, stake-holder inclusion,
spatial analysis needs, and best practices [71,72,75,81–85].

Specific to Canada, in 2016 and reiterated in 2018, the federal government has shown a strong
commitment to developing technically sound evidence-based indicators for making progress toward
Sustainable Development Goals [86]. This, of course, builds on a long-standing history of indicator
creation and use in Canada from the internationally acclaimed Ecological Footprint [87] to the Canadian
Index of Well-being [68] to the Wellbeing Toronto discussed more herein. In response to the growing
need to measure well-being, the City of Toronto (the municipal government of Toronto) launched
“Wellbeing Toronto” in 2011, a web-based measurement and visualization data dashboard that helps
evaluate community well-being across a multitude of factors such as, crime, housing, and transportation
(Figure 2). Wellbeing Toronto was developed to provide information to citizens and decision-makers
and to enable a better understanding of how their communities function, based on the metrics
provided [88]. This spatial decision-making tool uses a modified online geographic information
system (GIS) to visualize a suite of well-being indicators across the City’s 140 neighborhoods. The free
application allows users to select and/or combine various indicators, which appear instantaneously
on a map of Toronto and produce a variety of graphs and tables, all of which are free to download.
Without going into detail about its unresolved flaws, Wellbeing Toronto’s shortcomings impacting this
study relate to: its inability to normalize count data (i.e., assaults) by even the most common method
(i.e., population, area) circumventing the effects of different sized area units (i.e., Modifiable Areal Unit
Problem; MAUP [89]); and its low representation of ecological integrity, environmental public health,
ecological services, and biogeophysical indicators.
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Figure 2. Screenshot of the City of Toronto’s mapping data dashboard, Wellbeing Toronto. Publicly
accessible at: http://map.toronto.ca/wellbeing/.

To accomplish this study’s main intentions and supplementary goals, four of the 2011 Wellbeing
Toronto indicators were selected from the data dashboard for contrasting against themselves and
landscape ecology metrics. Specifically, the four urban well-being metrics chosen to showcase streetscape
relationships were: assaults, home prices, premature mortality, and Walk Score. From the Safety
domain, 2011 assaults were sourced from Toronto Police Service; there were 15,179 assaults in total
across the City, with a minimum of nine, average of 108, and maximum of 712 in one neighborhood. To
avoid spurious findings caused by MAUP, the 2011 assault counts were divided by their corresponding
neighborhood population. From the Housing domain, home prices were sourced from Realosophy.com,

http://map.toronto.ca/wellbeing/
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represents the average price (CAD) for residential real estate sold during the 2011-2012 timeframe. The
average neighborhood home price minimum was $204,104, the mean was $548,193, and the maximum
was $1,849,084. From the Health domain, premature mortality was sourced from Toronto Public
Health from the 2006–2008 period and represents all-cause premature mortality per 100,000 population.
Population data used here come from Statistics Canada, 2006 Census of Canada. For clarification,
Canada’s premature mortality is a measure of unfulfilled life expectancy with an age expectation
set to 70; the premature mortality rate is the sum of potentially lost years of individuals per 100,000
people [90]. Descriptive statistics for premature mortality reflected 108 (min), 217 (mean), and 615
(max). Lastly, from the Civics and Equity domain, Walk Score was sourced from walkscore.com; Walk
Score is scaled from 0-100 based on walking routes and proximity to socioeconomic amenities such as
grocery stores, schools, parks, restaurants, and retail. With increased values representing improved
walkability, 2011 Walk Scores across the 140 neighborhoods had a minimum value of 42, average of 72,
and maximum of 99.

3.2. Streetscape Configuration and Diversity

Neighborhood-landscapes (streetscapes) are inherently interconnected geophysical, biological,
and socioeconomic systems, and connect to human behavior through geographical identity. Because of
this, and the readily available well-being data from the Wellbeing Toronto data dashboard, this urban
spatial aggregation scale was deemed suitable for this study. Although there is no omnipresent rule for
“landscape scale,” or in this case streetscapes Richard T.T. Forman [91] suggested that a “landscape” is
“a kilometers-wide mosaic over which local ecosystems recur.” The area descriptive statistics across
the 140 Toronto neighborhoods are: 0.42 km2 (min), 4.59 km2 (mean), and 37.53 km2 (max). Within
each of the 140 neighborhood streetscapes, land cover class configuration and landscape diversity
metrics were calculated using fine spatial and categorical resolution land cover data created for the
City of Toronto in 2007 [92]. Produced from high-resolution QuickBird (Digital Globe) satellite imagery,
combined with planimetric data, this land cover raster layer has 0.6 m (1.9685 ft) pixels allowing for
single tree detection [93]. Although accuracy details for this data file could not be found, the same
research group and methods applied to New York City rendered an overall classification accuracy of
96% [14,94]. This high-resolution land cover data set was classified into eight land cover categories:
(1) tree canopy, (2) grass/shrub, (3) bare earth, (4) water, (5) buildings, (6) roads, (7) other paved surfaces,
and (8) agriculture (Figure 3). The 2007 land cover yielded the following compositions for the Toronto
categories: tree canopy (27.9%), grass/shrub (23.4%), other paved surfaces (16.9%), buildings (16.1%),
roads (12.5%), water (1.6%), agriculture (0.9%), bare earth (0.7%).

Land cover configuration and landscape diversity metrics were computed using the freeware
FRAGSTATS (ver. 4.2; [95]), which processes numerical expressions that correspond to a landscape’s
land use and land cover patterns. Hundreds of metrics for quantifying landscape composition,
configuration, and diversity have been developed for use in a countless number of planning,
socioeconomic and environmental science research applications [16,91,96,97]. Based on literature
relevance and past experiences, for each of the 140 Toronto streetscapes, 130 landscape ecology metrics
were computed to serve as a foundational suite for the City of Toronto (Data S1): 18 class configuration
metrics across seven of the City’s eight land cover categories and four landscape diversity metrics.
Metrics for agriculture were not included due to very limited neighborhood representation. The 18 class
configuration metrics computed for each of the seven land cover types were: class area (CA), percentage
of landscape (PLAND), patch density (PD), largest patch index (LPI), landscape shape index (LSI), mean
patch area (AREA_MN), area-weighted mean patch area (AREA_AM), area-weighted mean shape
index (SHAPE_AM), area-weighted mean patch fractal dimension (FRAC_AM), perimeter-area fractal
dimension (PAFRAC), area-weighted core area distribution (CORE_AM), area-weighted core area index
(CAI_AM), area-weighted mean Euclidean nearest neighbor distance (ENN_AM), clumpiness index
(CLUMPY), percentage-of-like-adjacency (PLADJ), patch cohesion index (COHESION), landscape
division index (DIVISION), and effective mesh size (MESH). Additionally, the four landscape diversity
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metrics were: Patch richness density (PRD), Relative patch richness (RPR), Shannon’s diversity index
(SHDI), and Shannon’s evenness index (SHEI).
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Figure 3. Map of 2007 land cover for Toronto, Canada. Source land cover data freely downloadable
from the City of Toronto’s Open Data Portal website (http://open.toronto.ca/).

To accomplish this study’s intentions and goals, by showcasing how landscape ecology metrics
relate to urban well-being, five land cover (tree canopy, grass/shrub, buildings, roads, other paved
surfaces) class COHESION measures and the landscape diversity metric SHDI were showcased in
the forthcoming data analysis section (Figure 4). Specifically, COHESION at the class-level measures
the physical connectedness of the corresponding land cover type; its score ranges between 0 and 100
and increases as the patch type become more aggregated and physically connected [98]. Although
other relationships await to be explored within the plethora of landscape ecology metrics computed
herein, COHESION was chosen to showcase in this study due to its traction already gained in the
sustainable development and spatial planning communities. To that end, Meerow and Newell [43]
included forest cover COHESION as one of their model criteria to capture physical connectedness of
wildlife habitat across census tracts during their spatial planning effort to improve urban resilience in
Detroit. Precedingly, in a macroscale assessment of sustainable urbanization for Europe, Shaker [8]
used COHESION to compute the physical connectedness of CORINE urban morphological zones
for each country landscape. From that study, increased connectivity of urban cover COHESION
was simultaneously linked to improved human well-being while deteriorating ecosystem well-being.
SHDI [99], the most popular diversity index based on information theory and commonly used in
landscape studies [23], is a rather abstract mathematical model that is most useful when comparing
different landscapes or the same landscape over time [96]. The single number values of SHDI grow
without limits; SHDI increases as the quantity of land cover classes present increases and/or their

http://open.toronto.ca/
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proportions become more equal [96]. The premise behind showcasing relationships between SHDI
and well-being indicators was centered around the increasing importance of understanding how
landscape diversity of urban design relates to inhabitants’ living conditions. Accompanying maps
and statistical figures for the five class COHESION metrics and SHDI are provided in Appendix A
(Appendices A.1–A.3).Sustainability 2020, 12, 997  8  of  25 
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Figure 4. Streetscapes of the five land cover class COHESION metrics and one landscape diversity
SHDI metric showcased in this study. Values in the lower-right corner are raw metric scores
corresponding to its descriptive statistic. Upper-left corner labels match the City of Toronto’s universal
neighborhood identification number enumerated in public spatial and tabular data. Cartographic note:
Neighborhood-landscapes are not equal geographic scale.

3.3. Data Analysis

To accomplish the second and third intentions of this paper, and its complementary goals, a
three-step analysis was created to visualize and showcase relationships between neighborhood
COHESION, SHDI, and four Wellbeing Toronto indicators across the 140 Toronto streetscapes.
Specifically, exploratory spatial data analysis (ESDA), global and local inferential statistical tests
were used and will be explained in detail here. Prior to employing the statistical tests, to meet
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parametric test requirement of Gaussian distributions, all variables evaluated in this study were
appraised using the Shapiro–Wilk test due to its power for determining normality for all types
of distributions and sample sizes [100]. In doing so, variables were determined if transformation
was required, and which mathematical function was most appropriate for reaching a Gaussian
frequency. For variables with straight values or counts, such as property values or number of assaults,
log-transformation was used. For ratio or percentage variables ranging from 0 to 1 or 0 to 100, such as
Walk Score, the empirical logit-transformation was used as it supersedes arcsine variants [101] and is
an improvement over simple logit [102]. The statistical software SPSS (ver. 25, [103]) was used during
this step of data preparation, and database used in the subsequent analysis provided here (Data S2).

First (1), to assess the level of spatial autocorrelation and to visualize local clustering an ESDA
was conducted at global and local levels. Spatial autocorrelation, the lack of univariate stationarity or
independence of an attribute over space, is the result of assessing the first law of geography [42]. Spatial
autocorrelation should be seen as both beneficial and problematic in urban resilience, sustainable
development, and well-being studies. Negatively, spatial autocorrelation violates the assumption of
independence required by traditional parametric tests (i.e., ordinary least squares regression) [104,105].
Positively, nonstationarity (spatial autocorrelation) can provide statistically significant meaning
to geographical patterns of sustainable development, and thus urban resilience and well-being
investigations; furthermore, ‘hotspots’ maps are often created to reflect these spatial relationships [106].
Although other procedures have been created to assess spatial non-stationarity, the original global
Moran’s I-test [107] was used to assess the level of spatial autocorrelation of the selected well-being
and landscape measures across the study area. Additionally, to illustrate the geographic clustering of
the six landscape ecology metrics and four well-being indicators, the local index of spatial association
(LISA) Anselin Moran’s I [108] was conducted. Using ESRI’s ArcMap (ver. 10.4; [109]) Incremental
Spatial Autocorrelation tool, a distance threshold of 3.5 km was established and used for both spatial
autocorrelation tests.

Secondly (2), a two-tailed Pearson’s Product–Moment Correlation test (r) was used to assess
relative statistical relationships between the five land cover class COHESION metrics, SHDI, and four
Wellbeing Toronto indicators (n = 140). Pearson’s correlation coefficients range from 1 to –1, with
values closer to 1 indicating stronger bivariate association. Pearson’s Product–Moment Correlation
test is one of the most common global (without considering geographic location and spatial influence)
parametric tests for understanding bivariate inferential relationships, and a P-value accompanies the
coefficient value signifying its statistical significance. The statistical software SPSS (ver. 25, [103]) was
used during this step of the analysis.

Third (3), bivariate local (considering geographic location and spatial influence) conditional
autoregressions (CAR) were conducted between- the five land cover class COHESION metrics and
SHDI- with the four chosen Wellbeing Toronto indicators (assaults, home prices, premature mortality,
and Walk Score). Since coupled human–environmental systems and data are impacted by a variety of
processes over space, local methods that address the shortcomings of spatial autocorrelation should
be used [105,110,111]. CAR corrects for spatial non-stationarity by calculating the spatial error terms
of the model and adds a distance-weighted function between adjacent response variable values
and the regression’s neighboring values for each explanatory variable [105,112,113]. Coefficient of
determination (R2) was used to compare and contrast relative explanatory power of the bivariate
regressions; standardized beta coefficient (β) was used to corroborate association strength and interpret
relationship directionality. CAR models used an estimated rho per regression and Alpha set to 1.0;
CAR model residuals were assessed ex post facto by global Moran’s I statistic to confirm model
independence. The freeware Spatial Analysis in Macroecology (SAM; ver. 4, [114]) was used during
this step of the analysis.
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4. Results

4.1. Exploratory Spatial Pattern Analysis

Spatial autocorrelation test results differ from each other; however positive scores indicate
similar values are spatially clustered and negative scores indicate unlike values are systematically
separated [115]. For this study, Global Moran’s I-test divulged that all six landscape and four urban
well-being measures used in the analysis had less than 1% chance of occurring randomly across
space (Table 1). Across Toronto’s 140 neighborhoods, Anselin Moran’s-I [108] illustrated statistically
significant spatial “hot-spots” and/or “cold-spots” for all streetscape variables showcased. Discrete
categorical groupings of Local Anselin Moran’s-I indicate that a geographic feature has statistically
significant (0.05 level) clustering of neighboring features with similarly high (high-high; hot-spot) or
low (low-low; cold-spot) attribute values within a defined distance; outliers are recorded when a high
value is surrounded primarily by low values (high-low) or vise-a-versa (low-high) within that same
defined distance [112].

Table 1. Spatial autocorrelation results derived from Global Moran’s I analysis for four Wellbeing
Toronto indicators (circa 2011) and the six showcased landscape configuration metrics.

Global Moran’s I z-Score P-Value

Wellbeing Toronto indicators
Assaults 0.535 13.380 *** < 0.001

Home Prices 0.479 12.038 *** < 0.001
Premature Mortality 0.586 14.685 *** < 0.001

Walk Score 0.837 20.826 *** < 0.001

Landscape class metrics
Tree Canopy (1) COHESION 0.399 10.048 *** < 0.001
Grass/Shrub (2) COHESION 0.287 7.264 *** < 0.001

Buildings (5) COHESION 0.388 9.740 *** < 0.001
Roads (6) COHESION 0.261 6.982 *** < 0.001

Paved Surfaces (7) COHESION 0.308 7.790 *** < 0.001
Landscape diversity metric

Shannon’s Diversity Index (SHDI) 0.260 6.703 *** < 0.001

Technical notes: Landscape ecology metrics computed on 2007 land cover data (COT, 2009) with 0.6 m (1.9685 ft) pixel
resolution, and using.queen contiguity (8-neighbor rule). COHESION:Patch cohesion index. See Leitão et al. (2006)
and McGarigal et al. (2015) for landscape ecology metric details and equations. Spatial clustering was determined
using an established 3.5 km search threshold. *** Denotes < 1% chance random pattern.

The local patterns of the five land cover class COHESION metrics and SHDI varied across Toronto’s
140 streetscapes (Figure 5). Specifically, two statistically significant hot-spots and cold-spots resulted
from the LISA analysis of tree canopy COHESION. The largest of the two hot-spots were found in the
center of the City encompassing four neighborhoods while the other notable hot-spot was found in the
west-center with two neighborhoods. The largest of the two cold-spots, on the south coast of the City,
included 18 neighborhoods of more disconnected tree canopy. Regarding grass/shrub COHESION,
LISA did not render any hot-spots; however, a larger, mildly-disjointed cold-spot was found in the
south-center of the City incorporating over 15 streetscapes of more disconnected grass/shrub land cover.
The LISA map of building COHESION revealed an expected hot-spot in the down-town core/central
business district (CBD), while three small cold-spots showed through. The hot-spot of more connected
buildings in the CBD included 11 neighborhoods. Road COHESION was illustrated via one larger
cold-spot in the center of the City with 10 contiguous streetscapes with more disconnected roads; no
hot-spots were revealed. For paved surfaces COHESION, one smaller significant hot-spot was found
in the central-east part of the City and three main cold-spots also resulted. The LISA map of SHDI
resulted in two prominent hot-spots and cold-spots, with 11 neighborhoods of contiguous low values
in the central part of the City.
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The local patterns of the four Wellbeing Toronto indicators varied across Toronto’s 140 streetscapes
(Figure 6). The LISA analysis for assaults resulted in one large hot-spot and one large cold-spot.
More assaults were clustered in the down-town core/CBD, while less were found in the north-central
neighborhoods. One major hot-spot and two larger cold-spots were illustrated for home prices, with a
large notable cluster of higher-priced homes in the center of the City. The two low-priced clusters for
home prices were found on either end of the City with eight neighborhoods each. The LISA analysis
for premature mortality resulted in one large hot-spot and one large cold-spot. Increased premature
mortality occurred on the south coast of the City, while decreased years lost were found in central-north
streetscapes. One large hot-spot and two large cold-spots were revealed across the City for Walk Score.
The cluster of neighborhoods with higher walkability was found in the center of the City, while two
clusters of lower walkability found on both of its ends.Sustainability 2020, 12, 997  11  of  25 
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Figure 5. Local Anselin Moran’s I index of spatial association for the five land cover class COHESION
metrics and one landscape diversity SHDI metric showcased in this study. The spatial autocorrelation
search threshold was set to a radius of 3.5 km; spatial clustering of high (high-high), low (low-low), or
outliers (low-high, high-low) were statistically significant (0.05 level).
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Figure 6. Local Anselin Moran’s I index of spatial association for the four Wellbeing Toronto indicators
showcased in this study. The spatial autocorrelation search threshold was set to a radius of 3.5 km;
spatial clustering of high (high-high), low (low-low), or outliers (low-high, high-low) were statistically
significant (0.05 level).

4.2. Global Correlation Coefficients

Using Pearson’s Product–Moment Correlation test (r), statistically significant bivariate associations
between the five land cover class COHESION metrics, SHDI, and four Wellbeing Toronto indicators
were found (Table 2). Correlation coefficients are commonly classified into very positive (> 0.75),
positive (0.75 to 0.50), neutral (0.50 to –0.50), negative (–0.50 to –0.75), or very negative (< –0.75). Since
no statistical relationships were found within either of the “very positive” or “very negative” ranges,
the seven “positive” and “negative” correlations are expounded here. With three coefficients recorded,
home prices exhibited the highest degree of collinearity with significant negative relationships to:
SHDI (r = –0.61, P < 0.01), roads COHESION (r = –0.56, P < 0.01), and paved surfaces COHESION
(r = –0.54, P < 0.01). Another prominent negative coefficient came between Walk Score and grass/shrub
COHESION (r = –0.55, P < 0.01). Three positive bivariate associations were noteworthy, with the
strongest coefficient recorded between assaults and premature mortality (r = 0.74, P < 0.01). A
positive correlation coefficient was also recorded between buildings COHESION and paved surfaces
COHESION (r = 0.62, P < 0.01). Lastly, a positive statistical relationship was found between roads
COHESION and SHDI (r = 0.53, P < 0.01).
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Table 2. Pearson product-moment correlation coefficients (two-tailed) matrix of the four Wellbeing Toronto indicators (circa 2011) and six showcased landscape
configuration metrics across Toronto neighborhoods (N = 140).

Variable J I H G F E D C B A

Description Walk Score Premature Home Price Assaults SHDI Paved Surf Roads Buildings Grass/Shru Tree Canop

A) Tree Canopy (1)
COHESION −0.37 ** −0.26 ** 0.22 ** −0.34 ** −0.39 ** −0.06 −0.25 ** −0.28 ** 0.1 1

B) Grass/Shrub (2)
COHESION −0.55 ** −0.06 −0.42 ** −0.03 0.26 ** 0.46 ** 0.44 ** 0.20 * 1

C) Buildings (5)
COHESION 0.23 ** 0.22 ** −0.30 ** 0.40 ** 0.30 ** 0.62 ** 0.29 ** 1

D) Roads (6)
COHESION −0.24 ** 0.20 * −0.56 ** 0.30 ** 0.53 ** 0.45 ** 1

E) Paved Surfaces (7)
COHESION −0.20 * 0.14 −0.54 ** 0.21 * 0.45 ** 1

F) Shannon’s Diversity
Index (SHDI) 0.01 0.46 ** −0.61 ** 0.44 ** 1

G) Assaults 0.34 ** 0.74 ** −0.41 ** 1
H) Home Prices 0.30 ** −0.34 ** 1

I) Premature Mortality 0.29 ** 1
J) Walk Score 1

Technical notes: Walk Score transformed using Empirical Logit; Home Prices, Premature Mortality, Assaults Log-transformed. COHESION:Patch cohesion index. ** Correlation is
significant at the 0.01 level. * Correlation is significant at the 0.05 level.
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4.3. Spatial Autoregressions

Results of the bivariate CAR analysis allowed for exploring relationships between the five land
cover class COHESION metrics, SHDI and the four Wellbeing Toronto indicators (Table 3). Since many
statistically significant relationships resulted, only the top two positive and negative correlations at the
99% confidence level are expounded for each Wellbeing Toronto indicator. Positively, assaults were
best explained by SHDI (R2 = 0.24, P < 0.001, β = 0.46), trailed by building COHESION (R2 = 0.20,
P < 0.001, β = 0.42). Assaults were only predicted negatively by tree canopy COHESION (R2 = 0.15,
P < 0.001, β = –0.35). At the aforementioned statistical level, home prices did not render positive
correlations. However, negatively home prices and SHDI rendered the strongest model (R2 = 0.38,
P < 0.001, β = –0.59) of the study, followed by the second strongest roads COHESION (R2 = 0.31,
P < 0.001, β = –0.49). At the 99% statistical level, premature mortality was only positively correlated
with SHDI (R2 = 0.25, P < 0.001, β = 0.47); no negative models were rendered at this level. At the
aforementioned statistical level, Walk Score did not render positive correlations. Conversely, Walk
Score was best explained by grass/shrub COHESION (R2 = 0.25, P < 0.001, β = –0.43) and then tree
canopy COHESION (R2 = 0.14, P < 0.001, β = –0.31). Lastly, Global Moran’s I-test of CAR residuals
bared randomness for all statistically significant regressions.

Table 3. Bivariate conditional auto-regressions (CAR) between four Wellbeing Toronto indicators (circa
2011) and the six showcased landscape configuration metrics (N = 140).

Tree Canopy (1) COHESION Grass/Shrub (2) COHESION Buildings (5) COHESION

Wellbeing
Toronto

indicators
β P R-square β P R-square β P R-square

Assaults −0.35 *** 0.15 – 0.42 *** 0.20
Home Prices 0.26 ** 0.09 −0.35 *** 0.17 −0.32 *** 0.12
Premature
Mortality −0.27 ** 0.11 – 0.24 ** 0.10

Walk Score −0.31 *** 0.14 −0.43 *** 0.25 0.20 ** 0.08

Roads (6) COHESION Paved Surfaces (7) COHESION Shannon’s Diversity Index
(SHDI)

β P R-square β P R-square β P R-square

Assaults 0.32 *** 0.14 0.25 * 0.10 0.46 *** 0.24
Home Prices −0.49 *** 0.31 −0.49 *** 0.28 −0.59 *** 0.38
Premature
Mortality 0.22 * 0.09 – 0.47 *** 0.25

Walk Score −0.13 * 0.06 −0.13 * 0.05 –

Technical notes: Landscape ecology metrics computed on 2007 land cover data (COT, 2009) with 0.6 m (1.9685 ft)
pixel resolution, and using queen contiguity (8-neighbor rule). R-square values represent the full model including
space (fit), rho: 0.989, Alpha: 1.0. Levels of significance: *P < 0.05; **P < 0.01; ***P < 0.001; – no relation observed.
COHESION:Patch cohesion index. See Leitão et al. (2006) and McGarigal et al. (2015) for landscape ecology metric
details and equations.

5. Discussion

5.1. Importance of Relationships

The results of the correlation matrix revealed noteworthy findings between the Wellbeing Toronto
indicators. Walk Score (walkability) was positively correlated to assaults. It is presumed Walk Score
measures the number of urban amenities within a distance as well as pedestrian affability. The more
walkable a neighborhood is the more likely people use walking as their mode of transportation. This
ultimately increases the number of human targets in public spaces as well as increased time they
spend outdoors, therefore providing greater opportunities for assaults to occur [116]. Walk Score and
home prices were also positively correlated, which is not surprising given the fact that proximity to
amenities, schools, parks, retail, etc. are key characteristics associated with higher property value.
Location and price are often considered to be the two most important factors when looking at real
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estate; the more walkable an area is the more attractive it is perceived to be. Therefore, neighborhoods
with a greater perceived quantity of socioeconomic amenities have improved market values [117];
however, seldom is the quality of those socioeconomic amenities or factors of environmental well-being
considered. Home prices and assaults were found negatively associated. This can be attributed to safer
neighborhoods having greater market demand and subsequent property values. Furthermore, several
studies have found crime rates to be more prevalent in areas with lower socioeconomic status [118,119].
Home prices, a proxy for wealth, and premature mortality were found negatively associated. This
corroborates the literature that people with low socioeconomic status have greater premature mortality
than those with higher socioeconomic status [120]. Lastly, Walk Score and premature mortality were
positively correlated. This is an interesting finding as it implies that risk of premature death from crime
(i.e., assaults) and population-related accidents (i.e., pedestrian-car collisions) outweigh the health
benefits of a walkable neighborhood. Of course, this finding is preliminary but suggests a fertile area
for forthcoming research.

The results of the correlation matrix show interesting findings between the landscape ecology
metrics. Tree canopy COHESION was negatively correlated with both COHESION of roads and
buildings. This can be explained by the fact that tree canopy fragmentation and loss is often attributed
to urban densification [121]. This is important as urban development lacking urban greenspace and
subsequently tree canopy can have many social and physical health implications [122]. Furthermore,
preserving urban tree canopy is important as it can also counter urban heat island effect, improve
air quality, reduce the needs for heating and cooling of residential homes, and mitigate urban noise
pollution [14,123]. Tree canopy COHESION and SHDI were also negatively associated. This is likely a
result of spaces with denser tree canopy being disturbed less with regard to development and therefore
tend to have fewer land cover classes. Moving on, grass/shrubs COHESION were positively correlated
with COHESION of buildings, roads, paved surfaces, and SHDI. This can be explained by urban
densification and urban greenspace becoming a key part of smart growth and new urbanist building
standards. Research suggests that urban green spaces promote healthier communities as it facilitates
physical activity, encourages better mental health and improvements in general well-being of people
living in cities [124,125]. Lastly, buildings COHESION was positively correlated with COHESION of
roads and paved surfaces, and SHDI. This finding was not surprising as buildings require the presence
of infrastructure such as roads and paved sidewalks to support the populations utilizing these business,
office, and residential spaces.

When looking at relationships between well-being and landscape indicators, the corroborating
results of the global collinearity and local CAR analyses revealed several noteworthy findings. For
example, Walk Score was negatively related to both tree canopy and grass/shrub connectedness,
signifying its lack of consideration for quality of ecosystem services and environmental public health,
and subsequently happiness, during its proximity assessment of socioeconomic amenities. This is
reinforced by the fact that Walk Score was positively correlated to buildings COHESION. Consequently,
the more connected buildings, the more built-related and contained amenities present, therefore higher
Walk Score. These results convey the need for a “Green Walkscore” or “Walk Quality Index” that
captures all spheres of urban sustainability. Tree canopy COHESION was negatively associated with
premature mortality. As tree canopy becomes more connected streetscapes become cooler, local oxygen
levels increase, and phytoremediation lessens toxic gasses and particulate matter reducing negative
health effects [14]. Premature mortality experienced a positive correlation to COHESION of buildings
and roads, and SHDI. Therefore, the more connected the built environment the greater likelihood for air
quality issues such as higher concentrations of fine particulate matter [126]. Also noteworthy was the
positive correlation between tree canopy COHESION and home prices. Several studies have indicated
that greater presence of urban trees is significantly associated with higher home values [127–129].
This is explained by the presence of trees and dense canopy having improved ecological function and
services; flora mitigating pollution levels that have a pernicious influence on property values. As
expected with “not in my backyard” theory, lower home prices were found in more connected built
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streetscapes as evident by negative correlations between home prices and COHESION of buildings,
roads, and paved surfaces. Lastly, assaults were positively correlated to COHESION of buildings, roads,
and paved surfaces; albeit, assaults negatively associated with tree canopy connectivity (tree canopy
COHESION). The literature is mixed regarding relationships between urban vegetation patterns and
crime, suggesting research is still needed [119,130].

5.2. Sustainable Urbanization: Building Resilience

Local, regional and global sustainability depends critically on cities. Cities are being exponentially
stressed by increasing population density and the compounding effects of global climate change.
Therefore, it is imperative that cities actively lead the way as forces of change for advancing the
sustainable development effort. Despite relationships found among variables in this study, and the
issues associated with urbanization mentioned, the big question is how results from studies like
this one get operationalized in cities. Prevailing urban theorems acknowledge that natural and
human systems are completely reliant on one another. Homo Urbanus, a taxonomy metonym for the
urbanized human [2], depends on natural capital and ecological services. Similarly, Earth’s natural
systems now depend on humanity’s willingness to create planning and policy strategies for conserving
our life-supporting biogeochemical systems across space and time. If the urban footprint expands
unchecked, through globalized metabolic scenarios of natural landscapes due to increased material
well-being demand, it will lead to systematic collapse of life as we know it. To advance positive behavior
changes, countries, regions, and cities have created data dashboards to share their governmental data
with their stakeholders. These online indicator tools can serve as feed-back mechanisms for improving
a location’s condition, yet improvements remain. That said, the promise of open data portals, and
larger what they stand for, are what will forever change the ways people view, visit, live, and die,
within urban areas.

One of the greatest limitations to planning-based indicator programs is the low representation of
ecological integrity, environmental public health, ecological services, and biogeophysical indicators.
In doing so, the environmental sphere of sustainability is largely left out of the decision-making
process. While communities are engaged in the enactment of policies and techniques consistent with
sustainable development, if environmental metrics are not included equally in decision-making then
results are biased toward socioeconomics. Since few local initiatives show evidence of successfully
integrating all three spheres of sustainability, this study aimed to advance this sector of sustainable
development planning by creating a foundational suite of landscape ecology metrics for the City of
Toronto. These neighborhood design data are provided with this paper and will be given directly to
city government, in hopes that landscape ecology metrics will be included in future decision-making
and policy development. Although other urban resilience research has used landscape configuration
to more fully capture environmental quality, landscape ecology metrics remain virtually nonexistent in
public data portals or dashboards. At minimum, due to the importance of preserving, restoring, and
connecting urban greenspace, and because of the results of this study, the five land cover (tree canopy,
grass/shrub, buildings, roads, other paved surfaces) class COHESION measures should be added to
Wellbeing Toronto. The truthful representation and understanding of built and natural environments
through open data portals is an invaluable gift to the urban experience: as they are likely the best
chance at creating city-wide resilience and strides towards sustainability. In sum, landscape ecology
metrics can provide cost-effective ecological integrity addendum to existing and future urban resilience,
sustainable development, and well-being monitoring programs.

Open-data platforms are so much more than just repositories of information. On the surface,
they may appear to simply provide a pre-determined collection of demographic information, but
when correctly taken up analytically as in this study, they can help us understand complex coupled
human–environmental systems. Since Agenda 21’s call for sustainable development monitoring and
evaluation programs, leading cities and countries have created data dashboards and open data portal.
In example, the Canadian cities of Montreal, Halifax and Vancouver; American cities of Houston and
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New York; and country-wide efforts like in Denmark, practice thoughtful data dissemination. Although
often scarce of environmental representation, these online data dashboards still provide brief snapshots
into the inner-working of their locations. It is just a matter of time before these online tools include
landscape pattern characteristics of their study areas, that span the individual to the neighborhood, city,
province, and country-wide scale. Though, a data-driven approach to city-building is only being used
in select cases. Within the site of this study, Toronto’s Sidewalk Labs stands testament to district-wide
sustainable development via a data-driven approach and smart city philosophy. If open data portals
expanded to include more design-based indicators, such as those calculated and showcased in this
study, it would drive more informed and reflexive decision-making when it comes to managing
human-dominated landscapes. Beyond the two-dimensions evaluated with the landscape ecology
metrics of this study, future urban well-being and sustainable urbanization research should consider
all aspects of the space syntax [131]. Specifically, landscape surface metrics [132] and other urban
analytics for describing and analyzing traits of spatial configuration [133,134] should be considered.

6. Conclusions

Sustainable development is the theme of our time, and Canada is poised to become a world-leader
in reaching sustainability. Although Canada continues to move scientific theory into applied practice,
work remains to achieve sustainable communities across Canada’s cities and regions [135]. At the
city-level, Toronto serves as an interesting site for examining both the inter-strata connectivity of
human and natural systems in the wake of urbanization, as well as the current connectivity and spatial
distributions of phenomena across historic and distinctly defined neighborhood identities. Due to its
rapid population growth, restricted physical geography, overwhelmed infrastructure, poor air quality,
increasing natural disasters (i.e., flooding), and already high density of people and urban structures, it
is imperative that Toronto become the most sustainable city in Canada. Urban sustainable development
in Canada is mandatory for the longevity of its regions, the country, and the world, as it would help
to produce a long-term, mutually beneficial relationship between civilization and life-supporting
planetary resources. Although true, there remains no unanimous method for achieving sustainability
at neither regional nor local planning scales. Lastly, there remains no consensus regarding how best to
design sustainable development index models or how best to use them for policy and decision-making
across spatial scales, especially at the local government level [32,70,71,136].

A research study across the 140 neighborhood-landscapes (streetscapes) of Toronto was presented
through three main intentions. Its foundational goal was to calculate landscape ecology metrics from
the 2007 land cover dataset for the City of Toronto; for use in sustainable development planning
strategies and to bolster its Wellbeing Toronto data dashboard. In doing so, 130 landscape indicators
were generated: 126 land cover class configuration and four landscape diversity metrics. Note that
other relationships await discovery using this free database; thus, forthcoming germane research
should consider its adoption. To showcase the value of the data created, a three-step spatial analysis
was created to accomplish the second and third intentions of this paper, and its complementary goals.
Specifically, spatial patterns of streetscape COHESION, SHDI, and four Wellbeing Toronto indicators
were spatially evaluated and visualized using Global and Local Moran’s I, respectively across the 140
neighborhoods. Next, Pearson’s Product–Moment Correlation test (r) was used to globally assess
relative statistical relationships between the five land cover class COHESION metrics, SHDI, and
four Wellbeing Toronto indicators. Third, to correct for errors caused by spatial autocorrelation and
corroborate global coefficients, bivariate correlations between landscape and well-being indicators were
made using local conditional autoregression. Lastly, it is hoped that this paper will serve sustainability
scientists, spatial analysts, urban planners and designers an applied example for systematically
assessing, describing, and monitoring sustainable landscape function across space.

Supplementary Materials: The following are available online at http://www.mdpi.com/2071-1050/12/3/997/s1,
Data S1: Three data items including CSV file, GIS shapefile, and source FRAGSTATS document for the raw
FRAGSTATS metrics calculated (n = 140); Data S2: CSV file of non-transformed landscape class configuration

http://www.mdpi.com/2071-1050/12/3/997/s1
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COHESION, landscape diversity SHDI, and four normalized and transformed Wellbeing Toronto indicators
database (n = 140).
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Appendix A

Appendix A.1

Streetscapes of the five land cover class COHESION metrics and one landscape diversity
SHDI metric showcased in this study. Values in the lower-right corner are raw metric scores
corresponding to its descriptive statistic. Upper-left corner labels match the City of Toronto’s universal
neighborhood identification number enumerated in public spatial and tabular data. Cartographic note:
Neighborhood-landscapes are set to the same geographic scale.

Appendix A.2

Choropleth maps illustrating the five land cover class COHESION metrics and one landscape
diversity SHDI metric for Toronto, Canada. Cartographic note: Choropleth categories represent quantiles
across the 140 neighborhood-landscapes (streetscapes).

Appendix A.3

Histograms and boxplots for the five land cover class COHESION metrics and one landscape
diversity SHDI metric calculated for the 140 Toronto streetscapes. Boxplots illustrate quartiles and
interquartile range (whiskers are ± 1.5 * interquartile range), confidence diamond for mean value, and
shortest half bracket. Observations beyond the whiskers are considered outliers.
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