SUPPORTING INFORMATION:

Thorough multianalytical characterization and quantification of micro-and nanoplastics from Bracciano Lake's sediments

Andrea Corti ¹, Virginia Vinciguerra ¹, Valentina Iannilli ², Loris Pietrelli ², Antonella Manariti ¹, Sabrina bianchi ¹, Antonella Petri ¹, Mario Cifelli ¹, Valentina Domenici ¹, Valter Castelvetro ^{1*}

- ¹ Dipartimento di Chimica e Chimica Industriale, via Moruzzi 13, 56126 Pisa (Italy); (AC: andrea.corti@unipi.it; VV: virgi-vinci@hotmail.it; SB: sabrina.bianchi@unipi.it; AP: antonella.petri@unipi.it; AM: antonella.manariti@ unipi.it; MC: mario.cifelli@unipi.it; VD: valentina.domenici@unipi.it)
- ² ENEA Casaccia, Via Anguillarese, 301, 00123 Rome (Italy); (VI: valentina.iannilli@enea.it; LP: loris.pietrelli@enea.it)
- * Correspondence: valter.castelvetro@unipi.it.

S1. ATR-FTIR analysis of plastic fragments collected as the sieve fraction between 2 and 5 mm

 Table SI1. Characteristic IR absorptions of polyethylene (compare with figure SI1)

Wavenumber (cm ⁻¹)		Vibrational mode
Theoretical	Observed (BR1B3-f ₁)	
2915, 2845	2916, 2849	v _s CH
1472, 1462	1471	$\delta_s CH_2$
730, 717	718	ρ CH ₂

Figure SI2. ATR spectrum of the BR2C2- f_3 fragment.

Table Siz. Characteristic in absorptions of polypropylene(compare with right e Siz)			
Wavenumber (cm ⁻¹)		Vibrational mode	
Theoretical	Observed (BR2C2-f ₃)		
2950, 2915, 2838	2953, 2922, 2875, 2839	v _s CH	
1455	1456	$\delta_s CH_2$	
1377	1377	δ₅ CH₃	
1166	1167	δ _s CH, ρ CH ₃ , ν _s C-C	
997	999	ρ CH ₃ , δ _s CH ₃ , δ _s CH	
972	974	ρ CH ₃ , ν _s C-C	
840	841	ρ CH ₂ , ν _s C-CH ₃	
808	809	ρ CH ₂ , ν _s C-C, ν _s C-CH	

Table SI2. Characteristic IR absorptions of polypropylene(compare with figure SI2)

Figure SI3. ATR spectrum of the BR2B2-f₁ fragment.

Figure SI41. ATR spectrum of the BR2C2-f1 fragment.

Wavenumber (cm ⁻¹)		Vibrational mode
Theoretical	Observed (BR2B2-f ₁ and BR2C2-f ₁)	
2925, 2850	2926, 2853	v_{as} and v_s of CH_2
1720	1718-1712	vs C=O
1250	1248-1244	v _s C(=O)-O
1175	1173 (weak)	1,4-disubstituted ring C-C stretching
1120	1118 (shoulder)	v _s C-O, trans-conformer
1020	1018-1019	1,4-disubstituted ring C-C stretching
870	872	ring C-C stretching
730	722-727	$\delta_{\text{out-of-plane}}$ of ring C-H and ester C=O

Table SI3. Characteristic IR absorptions of polyethylene terephthalate (compare with figure SI3 and SI4)

Figure SI5. ATR spectrum of the BR1C3-f₂ fragment.

Table SI4. Characteristic IR a	bsorptions of	polystyrene	(compare with	figure SI5)
--------------------------------	---------------	-------------	---------------	-------------

Wavenumber (cm ⁻¹)		Vibrational mode
Theoretical	Observed (BR1C3-f ₂)	
3024	3027	v _s aromatic CH
2847	2852	v _s CH
1601, 1492	1602, 1494	v _s aromatic ring
1451	1453	$\delta_s CH_2$
1027	1029	δ_s aromatic CH
694	698	δ_s aromatic CH out of plane

Figure SI6. **a)** Optical microscopy image showing the spots of the surface of fragment BR1C3-f₄ analysed by micro-ATR; **b)** micro-ATR FTIR of spot 5-1 (isolated black fiber); **c)** micro-ATR FTIR of spot 5-2 (white fibers).

The spectra reported in **Figure SI6** indicate that the aggregate of microfibers is based on PET (spectrum SI6-c) the most common synthetic polyester textile fiber (as reported in **Table SI3**.) and on a minor amount of acrylic fibers (spectrum SI6-b), as shown by the nitrile peak at 2242.9 cm⁻¹ typical of acrylonitrile copolymers.

S2. ATR analysis of natural and plastic fragments isolated in the passing fraction (size < 2 mm)

In **Figure SI7(b)** the peaks at 1411, 843, and 711 cm⁻¹ can be assigned to calcium carbonate. In addition, the absorption bands at 3289 cm⁻¹ (O-H and/or N-H stretching modes), 1656 and 1536 cm⁻¹ (Amide-I N-C=O stretching and Amide-II N-H deformation) are attributable to proteins, such as conchiolin in natural sea shell. Thus, the spectrum may be assigned to sea shell.

(b) Figure SI7. Biogenic fragment from BR1C3: a) optical microscopy image; b) micro-ATR FTIR.

S3-Spectroscopic analysis of dichloromethane-extractable fractions

Figure SI8. FT-IR spectra of BR1A1 (green line), BR1B1 (red line) and BR1C1 (black line) extracts in CH₂Cl₂.

Figure SI9. FT-IR spectra of BR1A2 (red line), BR1B2 (black line) and BR1C2 (green line) extracts in dichloromethane.

Figure SI10. FT-IR spectra of BR1A3 (red line) and BR1B3 (blue line) and BR1C3 (green line) extracts in dichloromethane.

Figure SI11. FT-IR spectrum of the BR2B3 sample extracted in in dichloromethane

Figure SI12. ¹H-NMR spectrum of the BR1B1 sample extracted in dichloromethane.

Figure SI13. ¹H-NMR spectrum of the BR1C3 sample extracted in dichloromethane.

Figure SI14. ¹³C-NMR spectrum of the BR1B3 sample extracted in dichloromethane.

Figure SI15. ¹³C-NMR spectrum of the BR2B3 sample extracted in dichloromethane.

S4. Analysis of DCM extracts by Size Exclusion Chromatography (SEC)

Figure SI16. SEC profiles as recorded by (a) Refractive index and (b) UV (λ =260 nm) detectors from DCM extracts of BR1A1 sample.

Figure SI17 shows the linear interpolation of the experimental data obtained by injecting three replicates of containing 0.5-4.5 mg / ml of PS dissolved in chloroform; the injection volume in the column is 50 μ L.

Figure SI17. Calibration line recorded with UV detector (260 nm) for SEC analysis.

Equation line:

A = 2.17E + 6 * C + 6033.36

r²=0.99998

Figure SI18. SEC profiles as recorded by (a) Refractive index, and (b) UV (λ =260 nm) detectors from DCM extracts of BR2A2 sample.

Figure SI19. UV 260 nm (red line) and UV 340 nm (black line) SEC profiles of DCM extracts from: a) BR1A1; b) BR1B3; c) BR2A3; d) BR2C2.

S5. Calibration for HPLC analysis

Figure SI20 shows the linear interpolation of the experimental data obtained by injecting three replicates of containing 1.25, 2.5, 5 and 9 mg/L of dissolved TPA in NaOH solution submitted to the sample pre-treatment procedure; the injection volume in the column is 50 μ L.

Figure SI20. Experimental calibration line for HPLC quantitative analysis of TPA

Equation line:

A = 2.21E + 8 * C - 21633.7 r²=0.9998 LOD: 136 µg/kg LOQ:453 µg/kg

LOD and LOQ have been calculated as following:

$$LOD = \left(\frac{\sigma_{solA}}{m_{line}} * 3\right) * 10^{6} \qquad LOQ = \left(\frac{\sigma_{solA}}{m_{line}} * 10\right) * 10^{6}$$

where " σ_{sol} A" is the standard deviation relevant to the absorbance recorded from multiple injections of the most diluted solutions (1.25 mg/L) of the calibration curve and "m line" is the slope of the calibration curves; 0.05 % probability level for false positive decisions was considered.