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Abstract: Energy conservation, cost, and emission reduction are the research topics of most concern today.
The aim of this paper is to reduce the cost and carbon emissions and improve the sustainable development
of sheep transportation. Under the typical case of the “farmers–middlemen–slaughterhouses” (FMS)
supply model, this paper comprehensively analyzed the factors, sources, and types of cost and carbon
emissions in the process of sheep transportation, and a quantitative evaluation model was established.
The genetic algorithm (GA) was proposed to search for the optimal path of sheep transportation,
and then the model solving algorithm was designed based on the basic GA. The results of path
optimization indicated that the optimal solution can be obtained effectively when the range of basic
parameters of GA was set reasonably. The optimal solution is the optimal path and the shortest
distance under the supply mode of FMS, and the route distance of the optimal path is 245.6 km less
than that of random path. From the cost distribution, the fuel power cost of the vehicle, labor cost
in transportation, and consumables cost account for a large proportion, while the operation and
management cost of the vehicle and depreciation cost of the tires account for a small proportion.
The total cost of the optimal path is 26.5% lower than that of the random path, and the total carbon
emissions are 36.3% lower than that of random path. Path optimization can thus significantly reduce
the cost of different types and significantly reduce the proportion of vehicle fuel power cost and
consumables cost, but the degree of cost reduction of different types is different. The result of the
optimal path is the key to be explored in this study, and it can be used as the best reference for
sheep transportation. The quantitative evaluation model established in this paper can systematically
measure the cost and carbon emissions generated in the sheep transportation, which can provide
theoretical support for practical application.

Keywords: sheep transportation; cost; carbon emission; path optimization; quantitative evaluation

1. Introduction

1.1. Background

In China, the livestock industry has contributed a lot to the economic development. According to
the latest statistics, the amount of sheep both in stock and slaughter have reached more than 300 million
in China. Sheep transportation, as an important link to ensure the sustainable development of the sheep
industry, is often limited by the relatively widespread distribution of small-scale farming methods
in China. After on-the-spot investigations in many provinces and municipalities, it was found that
the “farmers–middlemen–slaughterhouses” (FMS) supply mode widely exists in various regions of
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China. Under this supply mode, farmers are usually scattered in rural areas in large numbers, but the
scale of farming is not large; slaughterhouses are generally concentrated and appear in small numbers.
The middlemen are generally local businessmen engaged in sheep farming or trafficking. They provide
lambs to farmers, purchase transportation trucks, and are responsible for the unified recovery of adult
fattening sheep. Due to the lack of unified and standardized management, the transportation cost is
high and energy consumption is large. Fossil fuel consumption is also the most important cause of
carbon emissions. Therefore, it is necessary to further strengthen the research on the evaluation and
optimization methods of sheep transportation.

Through the analysis of the existing relevant literature, it is known that cost reduction, energy
conservation, and environmental protection are currently the most valuable research topics [1–3].
However, from different subjects, the research focus will be different. For instance, related companies
may consider more to improve efficiency. From the perspective of social sustainable development,
more attention should be given to energy conservation and environmental pollution reduction. For the
different supply conditions of different industries, the following research has been described in
detail: construction, renovation and demolition (CRD) industry [3], mining industry [4,5], train
dispatching [6], cold chain logistics [7], biomass raw material supply [8], and urban transportation [9].
The transportation environment and conditions of each industry are different, and each industry has
its own characteristics. For instance, cold chain logistics has very strict requirements on transportation
time [7]. The purpose is to prevent the deterioration of fresh commodities, while biomass raw material
supply will pay more attention to the transportation distance [8], and the location of supply points
is often specially planned. Similarly, the transportation of farm commodity animals has its own
unique characteristics.

Different from general cargo transportation, the transportation of farm animals usually has the
characteristics of difficulty in control and uncertainty, including animal health and animal welfare [10–12].
This requires special care during transportation such as pharmacological adjustment and reducing
the weight loss of living body, so there will be corresponding additional costs. It is also found in
the literature that, for the dynamic transportation environment of multi-cycle, multi-product, and
multi-supplier, the solution of transportation optimization is usually conducted from the perspective of
cost, carbon emissions, and mode conversion, and the optimization model is established by intelligent
algorithms, dynamic planning methods, and an analytic hierarchy process to solve the sustainable
transportation problem [4,13,14]. In order to reduce supply cost and energy consumption in an
all-round way, the key factors such as the choice of transportation path, transportation distance,
transportation time, vehicle characteristics and commodity characteristics will be considered [2,4,15].
Although the transportation of farm commodity animals has its own characteristics, it still conforms
to the regularity of general cargo transportation, and the research methods can be used for reference.
However, the previous literature rarely involves the research on the sustainability of farm animal
transportation, so it needs to be further explored in this field.

1.2. Literature Review

1.2.1. The Application of Path Optimization

Path optimization has always been one of the most basic problems in network optimization because
the research has a wide range of potential applications and great economic value. It involves vehicle
routing problems (VRP) [16–18], location problems (LP) [19,20], and traveling salesman problems
(TSP) [21,22]. These kinds of path optimization problems have their own application scenarios, but
sometimes they will be comprehensively considered for decision-making.

In the CRD industry, the supply of raw materials and the recovery of waste materials are very
significant [3]. Since it usually involves a large amount of energy consumption and cost expenditure,
the application of logistics network optimization design is conducive to improving the expected profit
and reducing the loss. In the mining industry, since countries pay more attention to the protection
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of the ecological environment [23] and have formulated laws and regulations to restrict the damage
to the environment, it is more urgent to improve the sustainability of transportation. For instance,
in the mining stage, Yardimci and Karpuz [5] proposed an optimal transportation path solution
method that considers motion constraints under certain conditions of the transportation path, such as
minimum turning radius and maximum slope. In the transportation stage, Gupta et al. [4] proposed
the use of analytic hierarchy process and data envelopment analysis to establish a transportation
optimization model. In terms of train scheduling problem, train scheduling is a key part of daily
railway operation. How to generate a high-quality train scheduling adjustment scheme based on
ensuring safety is an important guarantee for providing high-quality transport services [6]. In the cold
chain logistics industry, since the goods transported by its logistics are mostly agricultural products,
aquatic products, and pharmaceuticals, it is necessary to maintain a low temperature environment
during transportation [24]. This requires that the vehicle-mounted refrigeration equipment needs to be
in a long-term operating state. If the transportation time is not properly controlled, it will not only
affect the quality of the goods, but also increase energy consumption and cost. In biomass power
generation industry, the key problem is how to determine the best location of power plants and raw
material collection stations [25,26]. Most of the areas rich in biomass resources are agricultural areas,
and raw materials are easily accessible near farms, but they still need to be collected and transported in
a unified way to reduce expenditure. In addition, agricultural areas are usually far away from cities,
which will also increase investment in transmission lines and their supporting facilities. Li et al. [8]
proposed a two-stage path optimization model considering carbon emission levels and offloading to
determine the optimal location and size of biomass collection stations, and designed a hybrid GA to
solve the problem, which verifies the reliability of the model. In terms of urban transportation, despite
having a large bus network, subway network and many taxis, traffic congestion is still common in
the core areas of the city. Solving or alleviating traffic congestion as much as possible is one of the
important issues for the transportation department and related transportation enterprises [9].

1.2.2. The Solutions of Costs and Energy Consumption Reduction

Previous studies have found that transportation cost or carbon emission reduction issues were
mainly focused on path optimization, decision optimization, etc. A logistics network optimization
decision-making model based on low-carbon economy perspective is typically constructed, and a variety
of solutions are designed [1–3]. For instance, for effectively solving the stochastic optimization problem,
and considering the empirical distribution factors of uncertain parameters, Layeb et al. [27] proposed a
simulation-based optimization model. Aiming at the characteristics of synchronous transportation,
Resat and Turkay [15] proposed a mixed-factor programming problem in which cost, time and carbon
emissions were considered in the optimization of network structure. Furthermore, Lagoudis and
Shakri [28] analyzed the relevant literature of practice and methods, and interviewed with experts in the
industry, hoping to achieve better results through the combination of theory and practice. Considering
the sustainability parameters such as economy and environment, Gupta et al. [4] used “analytic
hierarchy process” to estimate the weight of different vehicles and used “data envelopment analysis”
to analyze the efficiency on different routes, aiming to solve the multi-objective decision-making
problem of sustainable transportation. For the dynamic transportation problem of multi-product and
multi-supplier [13,14], the solution of transportation optimization can be analyzed from the perspective
of cost, carbon emission and mode conversion [15], and the key factors such as the selection of
transportation path [2], total transportation distance, transportation time and vehicle characteristics [4]
can be considered. By studying genetic algorithm [5,6], ant colony algorithm [7,29], particle swarm
algorithm [30], and dynamic programming [18,31], transportation optimization problems can be
comprehensively analyzed and solved. However, each method has some limitations in its application
and needs to be improved on an original basis or construct a hybrid algorithm to solve them [8,30,32–34].
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1.2.3. Genetic Algorithm (GA) for Path Optimization

Genetic algorithm (GA) is a kind of randomized search heuristic algorithm which is based on the
evolution of the survival of the fittest in biology. It has been widely used in combination optimization,
production scheduling and machine learning, etc. [6,22,35]. Genetic algorithm can be used to solve
optimization problems in computational mathematics, usually through selection, crossover, and mutation
to achieve computer simulation. For an optimization problem, it is a process of evolution from a
certain number of candidate solutions to a better solution, but evolution starts from a completely
random population. In each generation, the fitness of the whole population will be evaluated. Based
on their fitness, a part of individuals will be randomly selected from the current population, and new
populations will be generated through selection, crossover, and mutation [36–40]. The main feature
of GA is to operate the object directly, adopt the probabilistic optimization method, automatically
obtain the optimized search space, adaptively adjust the search and evolution, without the limitation of
derivation and function continuity, with the inherent implicit parallelism and better overall optimization
ability [38]. Because the overall search strategy and optimization search method of GA do not depend
on gradient information knowledge, but only need to adjust the objective function and fitness function
of search direction, GA provides a general framework for solving complex system problems, which
has the advantages of good convergence, less calculation time and high robustness [38,40]. However,
it should be noted that the GA may converge to the local optimum when the fitness function is not
selected properly, but not the global optimum [40].

1.2.4. The Identification of Key Factors

In view of how to calculate the cost and carbon emission in the transportation process, the
relevant literatures showed that the asset investment [9,41], equipment depreciation [42–44], goods
loss [11,12], energy consumption [45], insurance [46], labor [47], and operation management [48] in
the logistics operation process should be considered. It should be emphasized that transportation
distance, transportation time, and loading capacity are the most critical factors affecting cost and
carbon emissions [8,49,50]. The factors that affect CO2 emissions are also discussed, such as emission
coefficient, fuel consumption, truck ownership, highway freight share, and industrialization level [51,52].
In addition, Sarkar et al. [53] proposed that the pure fixed assets usually account for a large part,
especially the costs related to vehicles, which need to allocate resources reasonably. However, the
fixed cost of vehicles is mainly related to maintenance, depreciation and insurance. The task of
decision-makers is how to arrange these operating vehicles to maximize transportation revenue [54].
Furthermore, fossil energy consumption is not only the main cost source, but also the most important
carbon emission source. The emission level of transport vehicles depends on fuel consumption, fuel
type and emission coefficient [55].

1.2.5. Research Gaps

Through the collation and analysis of relevant literature, the research on path optimization
methods, application of path optimization and solutions to reduce cost and energy consumption
has been rich. Scholars have proposed different research content and innovation points to serve the
sustainable development of society.

Although the previous literature has covered many research fields, it rarely involves the research
on the sustainability of farm animal transportation. Different from general cargo transportation, the
sheep transportation is usually difficult to control, with many uncertain factors, and animal health
and animal welfare must be guaranteed. This requires special care during the transportation process,
such as pharmacological adjustment and prevention of weight loss. In addition, the supply of sheep
will develop intensively in the future, but the supply mode of FMS currently widely exists in various
regions of China. This research not only provides decision-making basis for FMS supply mode but
also provides reference basis for other transportation fields.
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1.3. Research Objectives

This research aims to reduce the cost and carbon emission in the process of sheep transportation,
improve the operating profit and transportation efficiency, and gradually realize the sustainable
development of sheep industry. Considering the practical problems and actual needs, such as
transportation characteristics, animal health, and animal welfare, this research systematically analyzed
the characteristics of each link in the whole process of sheep transportation and proposes to use
GA to solve the problem of sheep transportation path optimization under the mode of FMS. Based
on the path optimization, the quantitative evaluation model for cost and carbon emission of sheep
transportation was established. According to the model, the typical case was selected for model
application analysis. Hence, the contribution of this research is to provide a theoretical basis for the
qualitative and quantitative evaluation of cost and carbon emission of sheep transportation.

2. Materials and Methods

2.1. Overall Description

2.1.1. Problem Description

The research indicates that the transportation mode of FMS is basically the same as that of
“Traveling Salesman Problem” (TSP), and the method of solving “TSP” is proposed to search for
the optimal path. That is, if the middleman wants to reach “n” locations, he must choose the path
he wants to take. Once the path is determined, he can only go through each location once, and
finally he must return to the original departure location [21,22]. Figure 1 shows examples of different
transportation paths under the sheep supply model of FMS. The goal of the path selection is to minimize
the transportation distance. The key factors affecting cost and carbon emission are transportation
distance, transportation time, and transportation capacity. Hypothesis: (1) Vehicle parameters are fixed
values, which mainly focus on transportation distance and capacity. Transportation distance is closely
related to the choice of transportation route, and the carrying capacity affects transportation cost and
carbon emission between different supply points. (2) The location of supply points, the arrival time of
vehicles and the number of sheep are known. (3) Meet the transportation time and the transportation
distance in a positive correlation, regardless of the late penalty cost. (4) Acquire the sheep of each
supply point according to the established route and satisfy the condition that the “TSP” problem path
is closed loop.
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Figure 1. Examples of different transportation paths under the sheep supply model of FMS: (a) Path
one; (b) Path two; (c) Path three.

2.1.2. Conceptual Framework

The investigation found that the transportation process of sheep can be divided into five stages:
transportation preparation, loading, transportation, unloading, and temporary captivity. As shown in
Figure 2, the participants in the transportation preparation stage are the seller and the transporter, the
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loading stage is completed by the loader, the transporter and the management department are involved
in the transportation process, the unloading stage is completed by the unloader, and the temporary
captivity stage is managed by the purchaser. Costs or energy consumption factors include vehicle
preparation, tool preparation, quarantine, replenishment preparation, pharmaceutical preparation,
loading equipment, limb collision, loading density, loading speed, road condition, vehicle speed,
ventilation, transportation time, transportation distance, public management, unloading equipment,
limb collision, unloading speed, site, feeding and drinking, pharmacology, etc. The main types
of energy consumption are fuel consumption and energy consumption. The types of cost include
depreciation of fixed assets, power cost, labor cost, management cost, maintenance and insurance cost,
weight loss cost, and consumables cost.
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2.2. Cost Accounting Method

2.2.1. Depreciation Cost of the Vehicle

The depreciation of vehicles refers to the loss of their own value caused by the decrease of vehicle
conditions and the increase of operating costs during the use of vehicles [48,54]. Combined with the
comprehensive impact of China’s national conditions and the economic benefits of vehicle operation,
based on the straight-line depreciation method, the dynamic straight-line depreciation method is
proposed [25,56]. That is, during the service life, based on the depreciation method without considering
the value of time (linear depreciation method), a more practical depreciation method considering the
value of time (dynamic linear depreciation method) is proposed. Then, according to the workload, the
calculation method of vehicle depreciation cost of the current transportation is proposed:

CA0 =
1
2

[
CPA −

CSA

(1 + e)w

]
e(1 + e)w

(1 + e)w
− 1

(
m′

M
+

l′

L

)
, (1)
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where CA0 denotes the vehicle depreciation cost of the current transportation, CNY; CPA is the purchase
cost of the vehicle, CNY; CSA is the residual value of the vehicle, CNY; w is the service life of the vehicle,
years; e is the annual interest rate, %; M is the estimated annual total carrying weight, kg/year; L is the
estimated annual transportation distance, km/year; l′ is the current transportation distance, km; m′ is
the current transportation weight, kg.

2.2.2. Fuel Power Cost of the Vehicle

The mechanical equipment powered by internal combustion engine will produce energy
consumption due to fuel combustion in use. And the fuel consumption can be calculated according
to the basic parameters such as fuel consumption rate, vehicle speed and vehicle power. When the
vehicle is running in a certain state, the fuel consumption rate equation of the engine can be derived
according to the engine power corresponding to the vehicle speed and the fuel consumption of the
vehicle running in 100 km [26,57]:

gx =
vγQL

100N
, (2)

where gx denotes the fuel consumption rate, kg (kW h)−1; v is the speed of the vehicle, km/h; γ is the
fuel density, and the diesel density is generally 0.84 [57], kg L−1; QL represents the fuel consumption,
L/100 km; N is the running power of the engine, kW.

Then the fuel cost of the vehicle is

CF0 =
NeCUP(g1/v1 + g0/v0)

2γMe
, (3)

where CF0 denotes the fuel cost of the vehicle, CNY/(kg km); CUP is the fuel price, CNY/L; g1 is the full
load fuel consumption rate, kg (kW h)−1; g0 is the no-load fuel consumption rate, kg (kW h)−1; v1 is the
full load speed, km/h; v0 is the no-load speed, km/h; Ne is the rated power of the vehicle, kW; Me is the
rated load capacity of the vehicle, kg.

According to the workload, the following calculation method of fuel cost for the current
transportation is proposed:

CFU = mCF0

 n∑
i=1

n∑
j=1

si jqi j + sn1qn1

, (4)

where CFU denotes the fuel cost of current transportation, CNY; n is the number of sheep supply points;
si j is the route length from supply point i to supply point j, km; qi j is the number of deliveries from
supply point i to supply point j; m is the average weight of each sheep, kg.

2.2.3. Depreciation Cost of the Tires

The depreciation cost of tires refers to the cost of outer tube, inner tube and cushion belt consumed
by vehicle. According to relevant research, the consumption cost of tires cannot be ignored [47].
Referring to the calculation method of depreciation cost of fixed assets [25,56], the calculation method
of tire depreciation cost of current transportation is proposed according to the workload:

CT0 =
k
2

[
CPT −

CST

(1 + e)u

]
e(1 + e)u

(1 + e)u
− 1

(
m′

M
+

l′

L

)
, (5)

where CT0 denotes the tire depreciation cost of the current transportation, CNY; CPT is the purchase
cost of tires, CNY; CST is the tire residual value, CNY; u is the service life of tires, year; k is the number
of vehicle tires.
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2.2.4. Maintenance and Insurance Cost of the Vehicle

Based on the analysis of relevant literature [25] and the conclusion of field investigation, the
calculation method of vehicle maintenance and insurance cost for the current transportation is put
forward according to the workload

CR0 =
(αRETAU + αIN)CPA

2

(
m′

M
+

l′

L

)
, (6)

where CR0 denotes the vehicle maintenance and insurance cost of the current transportation, CNY; CRE

and CIN are the annual maintenance cost and insurance cost of vehicle respectively, CNY/year; αRE

and αIN are annual maintenance cost coefficient and insurance cost coefficient of vehicle respectively;
TAU is the running time of vehicle, h/year.

2.2.5. Labor Cost in Transportation

Labor cost refers to the sum of direct and indirect labor costs incurred using labor force in the
activities of production, operation and provision of labor services within a certain period [47]. For the
labor cost of sheep transportation, only the direct labor cost incurred by the driver due to the use of
labor in the current transportation is concerned—that is, the driver’s salary in the current transportation.
According to the factors of labor cost in actual transportation, the calculation method of labor cost in
transportation is proposed:

C(T) =
{

ak0T0,
a[k0T0+k1(T−T0)],

0<T≤T0

T0≤T
, (7)

where C(T) denotes the driver’s salary for the current transportation, CNY; a is the number of drivers;
k0 and T0 are the basic wages (CNY/h) and working hours (h/day) of drivers respectively; k1 is overtime
pay after basic working hours (CNY/h); T is the actual working time. Among them, Tload is the loading
time; Tunload is the unloading time; Ttrans is the transportation time; Trest is the rest time.

T = Tload + Tunload + Ttrans + Trest. (8)

2.2.6. Operation and Management Cost of the Vehicle

Operation and management cost of the vehicle refers to the indirect operation cost related to vehicle
ownership, usually including transportation management fee, tax and road maintenance fee, etc. [48].
According to the workload, the calculation method of operation and management cost of the current
transportation is proposed:

CM0 =
1
2

(
m′

M
+

l′

L

)∑
Ca, (9)

where CM0 denotes the operation and management cost of the current transportation, CNY; Ca is the
different types of operation and management cost, CNY/year.

2.2.7. Labor Cost for Loading and Unloading

The survey found that the labor cost of loading and unloading is generally calculated according
to the actual workload.

Cper0 = 2QCper, (10)

where Cper0 denotes the loading or unloading costs, CNY; Q is the loading or unloading quantity; Cper

is the unit price of loading (unloading), CNY.
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2.2.8. Weight Loss Cost of Sheep

Due to long-term transportation, long distance, bumps in the road, etc., the sheep will have
different degrees of stress response and weight loss [58,59]. The following calculation method is
proposed according to the actual transportation process:

Closs = c̃mloss

 n∑
i=1

n∑
j=1

si jqi j + sn1qn1

/100, (11)

where Closs denotes the weight loss cost of the current transportation, CNY; mloss is the average weight
loss per 100 km after transportation, kg/100 km; c̃ is the expected price of sheep, CNY/kg.

2.2.9. Consumables Cost

According to field research and related research, feeding and pharmacological aids are sometimes
arranged during the transportation to reduce the stress response and weight loss of sheep [58,59], and
the following calculation method is proposed:

Ccons = c

 n∑
i=1

n∑
j=1

si jqi j + sn1qn1

/100, (12)

where Ccons is the total cost of consumables in the current transportation, including feed cost and
pharmacological cost, CNY.

2.3. Carbon Emission Accounting Method

The carbon emission evaluation method proposed in this paper only aims at the carbon dioxide
emission caused by the consumption of nonrenewable energy in the transportation process and takes
the carbon dioxide emission weight as the measurement standard. The tracking study found that the
energy consumption of vehicle fuel power is mainly involved in the transportation process of sheep,
so this part only considers the carbon emission of vehicle fuel. The “top-down” method is adopted to
calculate carbon dioxide emissions [60,61]:

Qc = mλcMF0

 n∑
i=1

n∑
j=1

si jqi j + sn1qn1

, (13)

where Qc is carbon dioxide emission, kg; c is the average cost of consumables per 100 km, CNY; λc is
the factor of carbon dioxide emission, and the carbon dioxide emission factor of diesel is generally
3.16 [62], kg CO2/kg.

2.4. Objective Functions Analysis

2.4.1. Decision Variables

xr
i j =

{1,Vehicle r drives from supply point i to supply point j in the transportation path;
0,Other cases. (14)

yr
i =

{1,The transportation task of supply point i is completed by vehicle r;
0,Other cases. (15)

or
i j =

{1,All supply points form a closed path, and the supply point i is before j;
0,Other cases. (16)
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2.4.2. Objective Functions

1O Objective Function of Cost:

minC =
n∑

i=1

n∑
j=1

m∑
r=1

(
CA0 + CR0 + CT0 + C(T) + CM0 + Cper0

)
yr

i o
r
i j

+mCF0

 n∑
i=1

n∑
j=1

m∑
r=1

si jqi jxr
i jo

r
i j + sn1qn1xr

n1or
n1

+
c̃mloss

 n∑
i=1

n∑
j=1

m∑
r=1

si jqi jxr
i jo

r
i j + sn1qn1xr

n1or
n1

/100

+c

 n∑
i=1

n∑
j=1

m∑
r=1

si jqi jxr
i jo

r
i j + sn1qn1xr

n1or
n1

/100

(17)

2O Objective Function of Carbon Emission:

minQc = mλcMF0

 n∑
i=1

n∑
j=1

m∑
r=1

si jqi jxr
i jy

r
i o

r
i j + sn1qn1xr

n1yr
nor

n1

 (18)

The following constraints are met:

n∑
i=1

n∑
j=1

si jyr
i ≤ l′, r = 1, 2, · · ·, m (19)

n∑
i=1

n∑
j=1

qi jyr
i ≤ m′, r = 1, 2, · · ·, m (20)

mqi jyr
i ≤Me, r = 1, 2, · · ·, m (21)

T =
n∑

i=1

n∑
j=1

si jxr
i j/v +

n∑
i=1

(Tload + Tunload + Trest)yr
i

r = 1, 2, · · ·, m
(22)

n∑
i=0

m∑
r=1

xr
i j = 1, j , 0 (23)

n∑
j=0

m∑
r=1

xr
i j = 1, i , 0 (24)

m∑
r=1

yr
i = 1, i = 1, 2, · · ·, n (25)

n∑
i=1

xr
i jo

r
i j = yr

i , j = 1, 2, · · ·, n, r = 1, 2, · · ·, m (26)

n∑
j=1

xr
i jo

r
i j = yr

i , i = 1, 2, · · ·, n, r = 1, 2, · · ·, m (27)

n∑
i=1

n∑
j=1

or
i jy

r
i ∈ {0, 1}, r = 1, 2, · · ·, m (28)

xr
i j, yr

i , or
i j ∈ {0, 1}, i, j = 1, 2, · · ·, n,

r = 1, 2, · · ·, m
(29)
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where Formulas (17) and (18) represent the objective function of cost and carbon emission respectively;
Formula (19) represents that the transportation distance of vehicle r from supply point i to supply point
j is less than or equal to the total transportation distance l′ of the current transportation; Formula (20)
represents that the transportation weight of vehicle r from supply point i to supply point j is less than
or equal to the total mass m′ of the current transportation. Formula (21) presents that the transportation
weight does not exceed the rated weight of the vehicle r; Formula (22) represents the constraint on
the transportation time, that is, the total work time is equal to the sum of the loading/unloading time,
the transportation time, and the rest time. Formulas (23)–(25) indicates that the transportation tasks
of each supply point are not separable and are transported by one vehicle. Formulas (26) and (27)
represent the mutual constraint relationship between decision variables. Formula (28) indicates that
the transportation path of the vehicle r is a closed loop constraint condition; Formula (29) indicates
that the value of decision variable is 0 or 1.

2.5. Solution Algorithm of the Model

Step (a) Binary coding method is used to determine the chromosome length according to the number
of supply points “n,” arrange the individuals according to the order of reaching the supply
point, and generate the initial population. Set the operation parameters [38,40] of GA: the
population size is generally taken as 20~100, the termination evolution algebra is generally
taken as 100~500, the crossover probability is generally taken as 0.4~0.99, and the mutation
probability is generally taken as 0.0001~0.1.

Step (b) The fitness function of TSP problem is expressed by the reciprocal of the total distance of
transportation route as follows:

Fit
(
si j

)
= B/

 n∑
i=1

n∑
j=1

si j + sn1

. (30)

The distance si j from supply point i to supply point j is calculated according to the
geographical coordinates of supply point, and the non-negative constant B is set to prevent
the fitness function from tending to 0 due to the excessive total distance of the path.

Step (c) The fitness values are calibrated by formulas as follows [38]:

f ′ = ( f +
∣∣∣ fmin

∣∣∣)/( fmax + fmin + δ), (31)

where f ′ denotes the calibrated fitness value; f denotes the original fitness value; fmax

denotes the upper bound of fitness function value; fmin denotes the lower bound of fitness
function value; δ denotes a positive real number in open interval (0,1). The calibrated fitness
value can be enlarged or reduced according to the range of population change to prevent
the supernormal individuals from dominating the group or the algorithm from swinging
near the optimal solution.

Step (d) The individual fitness value is calculated and sorted according to the size. Before the
selection operation of GA, compare the individuals in the population one by one. If two
individuals have similar genes (0 or 1) in similar positions, the number of the same genes is
defined as similarity R. Define the average fitness value as T, take the average fitness value
as the threshold value, and select the individuals whose fitness value is greater than the
average fitness value to judge the similarity. When the similarity R > L′ (L′ is the individual
coding length), the two individuals are considered to have similarity [38].

Step (e) Judge the degree of similarity of individuals in the population, the individuals with the
highest fitness value are used as evolutionary templates to filter out similar individuals.

Step (f) Repeat step (e). After each generation of the GA, select individuals with high fitness values
as templates, and select individuals with different patterns to form new groups.
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Step (g) Determine whether the group size is reached. If yes, proceed to the next genetic operation
such as crossover, mutation, etc.; otherwise repeat step (f). If the population size is not
enough, the filtered individuals will make up for the missing population in the order of
fitness value.

Step (h) Judge whether the end requirement is satisfied, that is, whether the running algebra reaches
the end evolutionary algebra. If not, go back to step (d). If yes, the distance si j from supply
point i to supply point j and the total distance l′ of the transportation path are decoded
and output.

Step (i) With si j and l′ as intermediate variables, calculate the total target cost minC and various
types of costs CA0, CFU, CR0, CT0, C(T), CM0, Cper0, Closs and Ccons. Then calculate carbon
emissions minQc.

3. Results

3.1. Typical Case Analysis

According to “China Agricultural Statistics,” Liaoning Province has abundant resources of sheep
and many farmers. However, most of the farmers are scattered in rural areas, and the scale of breeding
is small. The average breeding scale of family farmers is less than 100. The suppliers involved in the
supply chain generally have farmers, middlemen and slaughtering enterprises. The middlemen are
generally local businessmen engaged in the sheep trading industry. They are involved in the supply of
sheep and are responsible for liaising with farmers and slaughter enterprises. However, due to the lack
of unified standard management, it shows the characteristics of high transportation cost and large
energy consumption.

In this paper, 20 townships (towns) in Chaoyang City, Liaoning Province were selected as sheep
supply points. ArcGIS10.2 was used to draw the geographical distribution map of 20 townships
(towns) in Chaoyang City according to the scale of 1:1,000,000, the statistical results are shown in
Table 1, and the mapping results are shown in Figure 3.

Table 1. Geographical coordinates of 20 townships in Chaoyang City.

Serial Numbers Township/Town Name Longitude Latitude

1 Lianhe Township (A) 120.19◦ E 41.53◦ N
2 Beigoumenzi Township (B) 120.05◦ E 41.60◦ N
3 Nanshuangmiao Township (C) 120.41◦ E 41.41◦ N
4 Jianping Town (D) 119.71◦ E 41.90◦ N
5 Yangshan Town (E) 120.36◦ E 41.19◦ N
6 Shengli Township (F) 120.05◦ E 41.24◦ N
7 Shenjing Town (G) 119.69◦ E 41.55◦ N
8 Xiaotang Town (H) 119.59◦ E 41.63◦ N
9 Xinglongzhuang Township (I) 119.79◦ E 41.17◦ N

10 Shahai Town (J) 119.47◦ E 41.49◦ N
11 Baishan Township (K) 119.45◦ E 41.76◦ N
12 Xiwujiazi Township (L) 120.17◦ E 41.65◦ N
13 Yangjiaogou Township (M) 119.97◦ E 41.19◦ N
14 Shuiquan Township (N) 119.93◦ E 41.29◦ N
15 Zhongsanjia Town (O) 119.83◦ E 41.42◦ N
16 Qingfengshan Township (P) 119.59◦ E 41.50◦ N
17 Gongyingzi Town (Q) 119.85◦ E 41.36◦ N
18 Polochi Town (R) 119.97◦ E 41.40◦ N
19 Dongdadao Township (S) 120.05◦ E 41.44◦ N
20 Qingsongling Township (T) 119.89◦ E 41.78◦ N
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In order to quantitatively evaluate the cost and carbon emission of sheep transportation, it was
necessary to analyze the values of the parameters first and assumed that the transportation vehicle
will load 10 sheep on average at each supply point. As shown in Table 2, the basic parameter values
involved in typical case are given. The values of the basic parameters were derived from references and
field research and was not necessarily connected with the route of transportation. As shown in Table 3,
the specific parameters of the random path, the suboptimal path, and the optimal path are given.
The data was derived from field research and was related to the transportation path. Among them,
the random path represents the irregular transportation route; the suboptimal path represents the
transportation route close to the shortest total distance; the optimal path represents the transportation
route of the shortest total distance. According to the data in Tables 2 and 3, the specific values of cost
and carbon emission under the three transportation routes can be calculated.

3.2. Performance Analysis of Path Optimization

In Matlab2018b software, GA coding rules were used to realize computer simulation analysis.
For an optimization problem, the goal of computer simulation was to evolve a certain number of
candidate solutions to a better solution. Set the operation parameters of GA: the number of individuals
was 20, the population size was 30, the maximum genetic algebra was 10, 200 and 500, the crossover
probability is 0.8, and the mutation probability was 0.09.

The process and results of path simulated in MATLAB2018b software are shown in Figure 4.
Figure 4a,c,e shows the straight-line trajectories of the path simulation, and Figure 4b,d,f shows the search
process of the average value and the optimal value of distance. Figure 4a,b shows the results of the
GA simulation for 10 generations, which can be considered as a randomly generated path with a total
simulated distance of 584.2 km; Figure 4c,d show the results of the GA simulation for 200 generations,
but the optimal results are not achieved. It can be considered as a more optimized path, and the total
simulated distance is 429.7 km. Figure 4e,f shows the results of the GA simulation for 500 generations,
and the total simulated distance is 391.8 km.
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Table 2. Basic parameter values involved in typical case.

Parameters Values

Vehicle purchase cost/CNY 166,000
Vehicle residual value/CNY 8300 (5%)
Vehicle service life/year 10
Annual interest rate/% 1.75
Annual carrying capacity/kg 240,000
Annual transportation distance/km 20,000
Full load power (60 km h−1)/kW 70
No-load power (80 km h−1)/kW 65
Full load speed/(km h−1) 60
No-load speed/(km h−1) 80
Vehicle rated power/kW 118
Vehicle rated load mass/kg 7990
Full load of 100 km fuel consumption/L 40
No load of 100 km fuel consumption/L 26
Fuel price/(CNY L−1) 6.5
The cost of single tire/CNY 1600
Residual value of single tire/CNY 48 (3%)
Service life of tires/year 2
Number of tires 6
Vehicle maintenance cost factor/h−1 0.0002
Vehicle insurance cost factor/year−1 0.03
Vehicle annual running time/h 400

Note: The data in the table comes from the field survey.

Table 3. Specific parameters of different transportation paths.

Parameters Random Path Suboptimal Path Optimal Path

Total time/h 30.5 23.5 23
Loading time/h 1.5 1.5 1.5
Unloading time/h 1.5 1.5 1.5
Transportation time/h 25.0 18.5 18
Rest time/h 2.5 2 2
Current transportation distance/km 758.5 601.2 512.9
Current transportation mass/kg 8000 8000 8000
Carrying quantity 200 200 200
Loading (unloading) cost/CNY 1 1 1
Average weight loss per 100 km/kg 0.02 0.02 0.02
Live sheep price/(CNY kg−1) 20 20 20
Individual average mass/kg 40 40 40
Average consumption cost per 100 km/CNY 1 1 1
Basic wage/(CNY h−1) 20 20 20
Basic working time/ (h d−1) 8 8 8
Overtime wage/(CNY h−1) 30 30 30
Number of drivers 2 2 2

Note: The data in the table comes from the field survey.

In general, the maximum searching algebra of GA is 500 generations, and the optimal result after
500 generations will not be reduced in actual operation. Therefore, the results after 10 generations of
GA simulation can be defined as random path, the results after 200 generations of GA simulation can
be defined as suboptimal path, and the results after 500 generations of GA simulation can be defined
as optimal path.

Generally, the distance of the actual route is greater than the straight-line distance, because the
road is more tortuous due to the change of terrain or geographical environment. The simulated
distance and route distance of random path, suboptimal path and optimal path are shown in Figure 5.
The simulated distance represents the distance simulated by GA, and the route distance represents
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the actual distance between different supply points. The correlation coefficients between simulated
distance and route distance of the three paths (random path, suboptimal path and optimal path) are
0.8722, 0.9041, and 0.7750 respectively, which shows that the simulated distance and route distance are
highly correlated.

Sustainability 2020, 12, 835 15 of 23 

search process of the average value and the optimal value of distance. Figure 4a,b shows the results 
of the GA simulation for 10 generations, which can be considered as a randomly generated path with 
a total simulated distance of 584.2 km; Figure 4c,d show the results of the GA simulation for 200 
generations, but the optimal results are not achieved. It can be considered as a more optimized path, 
and the total simulated distance is 429.7 km. Figure 4e,f shows the results of the GA simulation for 
500 generations, and the total simulated distance is 391.8 km. 

 
(a) (b) 

 
(c) (d) 

  
(e) (f) 

Figure 4. Process and results of path simulation search: (a) simulation track of random path; (b) search 
process of random path distance; (c) simulation track of suboptimal path; (d) search process of 

Figure 4. Process and results of path simulation search: (a) simulation track of random path; (b) search
process of random path distance; (c) simulation track of suboptimal path; (d) search process of suboptimal
path distance; (e) simulation track of optimal path; (f) search process of optimal path distance.



Sustainability 2020, 12, 835 16 of 23

Sustainability 2020, 12, 835 16 of 23 

suboptimal path distance; (e) simulation track of optimal path; (f) search process of optimal path 
distance. 

In general, the maximum searching algebra of GA is 500 generations, and the optimal result after 
500 generations will not be reduced in actual operation. Therefore, the results after 10 generations of 
GA simulation can be defined as random path, the results after 200 generations of GA simulation can 
be defined as suboptimal path, and the results after 500 generations of GA simulation can be defined 
as optimal path. 

Generally, the distance of the actual route is greater than the straight-line distance, because the 
road is more tortuous due to the change of terrain or geographical environment. The simulated 
distance and route distance of random path, suboptimal path and optimal path are shown in Figure 
5. The simulated distance represents the distance simulated by GA, and the route distance represents 
the actual distance between different supply points. The correlation coefficients between simulated 
distance and route distance of the three paths (random path, suboptimal path and optimal path) are 
0.8722, 0.9041, and 0.7750 respectively, which shows that the simulated distance and route distance 
are highly correlated. 

 
(a) 

 
(b) 

Sustainability 2020, 12, 835 17 of 23 

 
(c) 

Figure 5. Simulation distance and route distance between supply points of different paths: (a) 
Simulated distance and route distance of random path; (b) Simulated distance and route distance of 
suboptimal path; (c) Simulated distance and route distance of optimal path. 

3.3. Performance Analysis of Cost and Emission Reduction 

As mentioned above, the actual route distance is greater than the simulated distance (straight-
line distance), so the calculation results of cost and carbon emission in this paper are based on the 
actual route distance, rather than the simulated distance. 

As shown in Figure 6, they are the specific values and cost percentages of each type of costs in 
random path, suboptimal path, and optimal path, respectively. The cost types in the figure include 
fuel power cost of the vehicle, labor cost in transportation, maintenance and insurance costs of the 
vehicle, depreciation cost of the vehicle, labor cost of loading and unloading, weight loss cost of 
sheep, operation and management cost of the vehicle, tire depreciation cost of the vehicle, and 
consumables cost. 

Comparing the cost percentages in Figure 6a–c, the cost distribution of different paths is 
basically the same. Among them, the vehicle fuel power cost of random path, suboptimal path and 
optimal path accounted for 27.1%, 23.2%, and 23.5%, respectively, and the consumables cost 
accounted for 14.6%, 12.5% and 12.6% respectively. In addition, the cost distribution of the optimal 
path is fuel power cost of the vehicle (23.5%), labor cost in transportation (15.3%), consumables cost 
(12.6%), maintenance and insurance cost of the vehicle (13.5%), depreciation cost of the vehicle 
(12.9%), labor cost for loading and unloading (10.0%), weight loss cost of sheep (5.1%), operation and 
management cost of the vehicle (3.7%), and depreciation cost of the tires (3.5%). 

Comparing the cost values in Figure 6a–c, the cost of each type of optimal path is the lowest, the 
cost of each type of suboptimal path is slightly higher than that of optimal path, and the cost of each 
type of random path is the highest. Among them, the vehicle fuel power cost of random path, 
suboptimal path and optimal path are 1477 CNY, 1029 CNY, and 941 CNY respectively, which is the 
largest reduction of cost, followed by labor cost and consumables cost in transportation. 

Figure 5. Simulation distance and route distance between supply points of different paths: (a) Simulated
distance and route distance of random path; (b) Simulated distance and route distance of suboptimal
path; (c) Simulated distance and route distance of optimal path.

3.3. Performance Analysis of Cost and Emission Reduction

As mentioned above, the actual route distance is greater than the simulated distance (straight-line
distance), so the calculation results of cost and carbon emission in this paper are based on the actual
route distance, rather than the simulated distance.

As shown in Figure 6, they are the specific values and cost percentages of each type of costs in
random path, suboptimal path, and optimal path, respectively. The cost types in the figure include fuel
power cost of the vehicle, labor cost in transportation, maintenance and insurance costs of the vehicle,



Sustainability 2020, 12, 835 17 of 23

depreciation cost of the vehicle, labor cost of loading and unloading, weight loss cost of sheep, operation
and management cost of the vehicle, tire depreciation cost of the vehicle, and consumables cost.Sustainability 2020, 12, 835 18 of 23 
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Figure 6. Costs and costs distribution of different paths: (a) Costs and its distribution of random
path; (b) Costs and its distribution of suboptimal path; (c) Costs and its distribution of optimal path.
Note: 1 Fuel power cost of the vehicle; 2 Labor cost in transportation; 3 Consumables cost; 4 Maintenance
and insurance cost of the vehicle; 5 Depreciation cost of the vehicle; 6 Labor cost for loading and
unloading; 7 Weight loss cost of sheep; 8 Operation and management cost of the vehicle; 9 Depreciation
cost of the tires.
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Comparing the cost percentages in Figure 6a–c, the cost distribution of different paths is basically
the same. Among them, the vehicle fuel power cost of random path, suboptimal path and optimal path
accounted for 27.1%, 23.2%, and 23.5%, respectively, and the consumables cost accounted for 14.6%,
12.5% and 12.6% respectively. In addition, the cost distribution of the optimal path is fuel power cost
of the vehicle (23.5%), labor cost in transportation (15.3%), consumables cost (12.6%), maintenance and
insurance cost of the vehicle (13.5%), depreciation cost of the vehicle (12.9%), labor cost for loading and
unloading (10.0%), weight loss cost of sheep (5.1%), operation and management cost of the vehicle
(3.7%), and depreciation cost of the tires (3.5%).

Comparing the cost values in Figure 6a–c, the cost of each type of optimal path is the lowest,
the cost of each type of suboptimal path is slightly higher than that of optimal path, and the cost of
each type of random path is the highest. Among them, the vehicle fuel power cost of random path,
suboptimal path and optimal path are 1477 CNY, 1029 CNY, and 941 CNY respectively, which is the
largest reduction of cost, followed by labor cost and consumables cost in transportation.

Regarding the carbon emission analysis, since the case is mainly related to the fuel consumption
of the vehicle, the carbon dioxide emission of the fuel is the total carbon emission.

The total cost and total carbon emission of different transportation paths are shown in Figure 7,
the total cost of the optimal path is 3998 CNY, which is 432 CNY less than the suboptimal path (reduced
by 9.8%) and 1445 CNY less than the random path (reduced by 26.5%). The total carbon emission of
the optimal path is 384 kg, which is 36 kg less than the suboptimal path (reduced by 8.6%) and 219 kg
less than the random path (reduced by 36.3%).
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4. Discussion

Based on the supply mode of FMS, through the investigation of typical cases, this paper concluded
that the sheep transportation process can be divided into five stages, that is, transportation preparation
stage, loading stage, transportation stage, unloading stage and captive stage. This is in accordance
with the general steps of commodity transportation [25,47], but the difference is that living animals will
produce different degrees of stress response after the end of transportation, which was mentioned by
Schwartzkopf-Genswein et al. [11] and Miranda-de la Lama et al. [58] and generally need temporary
captivity for a period of time to restore to the normal state.

For the different requirements of different industries, for instance, cold chain logistics has very strict
requirements on transportation time [7]. The purpose is to prevent the deterioration of fresh commodities,
while biomass raw material supply pays more attention to the transportation distance [8,25,26], and the
location of supply points is often specially planned. Similarly, the transportation of farm commodity
animals has its unique characteristics. Different from general cargo transportation, the sheep transportation
usually has the characteristics of difficulty in control and uncertainty [63], and has to ensure animal health
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and animal welfare [10–12,58,59], this requires special care during transportation, such as pharmacological
adjustment and reducing the weight loss of living body [11,58,63] (as shown in Table 3). Although
the sheep transportation has its unique characteristics, it still conforms to the regularity of general
cargo transportation, which needs to consider the transportation time, transportation distance, carrying
capacity, fuel type, vehicle characteristics and the necessary insurance and maintenance of operating
vehicles [2,4,15,57] (as shown in Table 2).

The investigation shows that under the supply model of FMS, more attention is paid to whether
the transportation distance is the smallest and the requirements on the transportation time are not harsh.
Therefore, this supply model conforms to the general regularity of TSP. The specific requirement is that
the path selection goal is that the required path distance is the minimum value among all paths [21,22].
According to the literature analysis, intelligent algorithms [5–7,29,30] and dynamic programming
method [18,31] can be used to comprehensively analyze and solve TSP. However, each method has
certain limitations in application, so it is necessary to improve or construct a hybrid algorithm to solve
TSP [30,32–34]. This study designed a model solving method based on the standard genetic algorithm.
The solution algorithm was mainly improved in coding methods, fitness value calibration, adjustment
of evolution algebra, adjustment of cross probability and adjustment of mutation probability [35–40]
and is used to search for the optimal path of sheep transportation. As shown in Figure 4, the results of
path optimization illustrated that when the range of crossover probability and mutation probability
was set reasonably, and the maximum evolution algebra was set to 500 generations, the optimal solution
can be found effectively. The optimal solution represented the optimal path and the shortest distance
under the supply mode of FMS. The total distance of random path, suboptimal path and optimal path
decreased in turn, and the evolution time was short, which proved that GA can quickly evolve to get
better solution [35–40] (as shown in Figure 4). In addition, the distance of the actual route is greater
than the straight-line distance (as shown in Figure 5), as the road is more tortuous due to the change
of terrain or geographical environment. The correlation coefficients between simulated distance and
route distance of three paths (random path, suboptimal path and optimal path) were all greater than
0.77, which showed that simulated distance and route distance have a high correlation. Therefore, the
path optimization method proposed in this paper met the research reliability requirements.

Since the distance of actual route is usually greater than simulated distance (straight-line distance),
so the results of the cost and carbon emission for this study were based on the distance of actual route.
Comparing the cost percentages in Figure 6a–c, the cost distribution of different paths is basically the
same, that is, the fuel power cost of the vehicle accounts for the largest proportion, followed by the
labor cost in transportation, and the least is depreciation cost of the tires, which is basically consistent
with the research results in literature [47]. The consumables cost and the sheep weight loss cost of the
three paths account for about 20% of the total cost, indicating that a considerable part of the cost is
generated while ensuring the animal health and animal welfare. But this cost is necessary, as described
in literature [11] and literature [58], which guarantees both animal health and animal welfare, as well
as meat quality.

After path optimization, the order of consumables cost in the cost distribution is changed, and the
proportion of vehicle fuel power cost and consumables cost in the total cost is significantly reduced.
The cost of each type of optimal path is the lowest, the cost of each type of suboptimal path is slightly
higher than that of the optimal path, and the cost of each type of random path is the highest, among
which the fuel power cost of vehicle is the largest, followed by the cost of labor and consumables
in transportation. It showed that the cost of different types can be effectively reduced after path
optimization, but the degree of reduction was different. The optimal path is the key to be explored in
this study, and the results can be used as the best reference for the cost and carbon emission evaluation
of sheep transportation.
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5. Conclusions

From the perspective of cost and energy consumption reduction, through field investigation and
theoretical analysis, this research evaluated the sustainability of FMS sheep supply model, which exits
in various regions of China.

Under the typical case of the FMS supply model, this paper comprehensively analyzed the factors,
sources, and types of cost and carbon emission in the transportation process of sheep, and a quantitative
evaluation model was established. The GA was proposed to search for the optimal path of sheep
transportation, and then the model solving algorithm was designed based on the basic GA.

The quantitative evaluation model established in this paper can systematically measure the cost
and carbon emission generated in the process of sheep transportation, which can provide theoretical
support and calculation basis for practical application. Since the transportation path is the most critical
factor affecting the cost and carbon emission under the mode of FMS, this study chose to optimize the
transportation path, which basically met the preliminary exploration of quantitative evaluation of the
cost and carbon emission of sheep transportation.

In order to further strengthen the theoretical and practical exploration, we should combine the
characteristics of model construction, optimization methods and parameter selection to establish
evaluation methods under different transportation modes and finally achieve a more comprehensive
analysis and evaluation of the development sustainability of sheep transportation industry.
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