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Abstract: Battery Electric Vehicles (BEVs) play an important role in the needed transition away from
fossil fuels and Internal Combustion Engine Vehicles (ICEVs). Although transport planning models
and routing problem solutions exist for BEVs, the assumption that BEV drivers search for the shortest
path while constraining energy consumption does not have any empirical basis. This study presents
a study of actual route choice behavior of drivers from 107 Danish households participating in a
large-scale experiment with BEVs and at the same time driving their ICEVs. GPS traces from 8968
BEV and 6678 ICEV routes were map matched to a detailed road network to construct observed
routes, and a route choice model was specified and estimated to capture behavioral differences related
to the vehicle type. The results reveal that drivers had a higher sensitivity to travel time and trip
length when driving BEVs, and to route directness after receiving the BEV, regardless of vehicle type.
The results suggest the need to revise the assumptions of transport planning models and routing
problems for BEVs in order not to fail to predict what drivers will do by ignoring differences and
similarities related to vehicle type.

Keywords: Battery Electric Vehicles; Internal Combustion Engine Vehicles; route choice behavior;
driver preferences; discrete choice models; driving behavior; utility maximization; direct routes

1. Introduction

The growing need to reduce emissions from the transport sector and the dependence on fossil
fuels is driving the significant efforts of governments to incentivize the market diffusion of Battery
Electric Vehicles (BEVs). BEVs use chemical energy stored in rechargeable battery packs for propulsion,
while Internal Combustion Engine Vehicles (ICEVs) transform the energy from the combustion of fuel
(e.g., petrol, diesel) to propel their engine. The type of energy is different, as the one from the battery
packs is cleaner than the one from the fuel combustion, and the storage of energy is different, as the
capacity and the recharging times of the BEV battery packs are worse than the capacity and refueling
times of the ICEV fuel tanks. In a nutshell, BEVs are more sustainable, but ICEVs are far more practical.

Recently, governments have promoted BEVs by designing investment programs, legislation
pieces and taxation policies [1–8], while manufacturers have innovated battery technology to improve
performance and also reduce the range anxiety that relates to the poor adoption of BEVs [9–13].
The design of programs and policies alongside the innovation in battery technology are expected to jolt
the system and stimulate a future rapid BEV growth, as reflected in demand assessments predicting
reasonable market shares by 2020 [1,14,15] and conspicuous market shares by 2030–2050 [14,16–18].
However, the market penetration of BEVs has been lethargic because of high costs [9,19–21], significant
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limits in driving range [22,23], anxiety and uncertainty related to the driving range [10,24–26],
notable deficiencies in public charging infrastructure [27–30], and specific battery issues such as limited
charge cycle and questionable stability [31–34].

A higher market share of BEVs would change the landscape of transport networks towards a
more sustainable future, but market share predictions have been generally incorrect. The market share
predictions require an understanding of the actual behavior of travelers, which has been understudied
in the literature, and, in particular, transport planning models and routing problem solutions would
greatly benefit from modeling the actual on-road behavior of BEV drivers to improve the realism of the
predictions. While studies exist on travel mode choices towards sustainable solutions (for a review,
see [35]) and the electric vehicle routing problem (for a review, see [36,37]), their assumptions about
the actual behavior of BEV drivers are not founded on empirical evidence. As there is no study about
the actual behavior of BEV drivers, its underlying factors, and possible differences with respect to the
route choice behavior of ICEV drivers, this study addresses this gap by proposing a route choice model
(see Supplementary Materials) that captures the preferences of drivers who had the opportunity of
driving both ICEVs and BEVs within a large-scale revealed preferences (RP) experiment. Specifically,
this study provides empirical evidence that would be instrumental to improve the realism of transport
planning models and routing problem solutions, and hence the predictions of BEV market shares.

The remainder of this paper is structured as follows. Section 2 illustrates the existing knowledge
on transport planning models and routing problem solutions from the perspective of the hypotheses
on route choice behavior of BEV drivers. Section 3 presents the materials, with details about data
collection and processing, as well as methods, with insight into choice set generation and route choice
model estimation. Section 4 describes the characteristics of the sample of routes and the estimates of the
joint model of ICEV and BEV route choices. Section 5 provides a discussion of the results vis-à-vis the
hypotheses from the literature, and Section 6 presents the conclusions and further research directions.

2. Literature Review

The review of related work focuses on transport planning models, and specifically traffic
assignment models producing traffic predictions that affect the BEV market share predictions,
and electric vehicle routing problems with an emphasis on the hypotheses about the route choice
behavior of BEV drivers. With the purpose of keeping the focus on the need for empirical evidence
about the on-road behavior of BEV drivers, as well as maintaining this manuscript to a reasonable
length, the review does not focus on planning models and routing problems not concerning BEVs.

The literature on the electric vehicle routing problem focused initially on energy consumption
and hypothesized that BEV drivers’ route choice behavior consisted of the search for the most energy
efficient path both without [38–40] and with the option of recharging batteries in battery swap
stations [41–44]. A traffic assignment model then quantified the relations between travel patterns and
energy consumption rates, while assuming that BEV drivers would exhibit the same route choice
behavior of ICEV drivers [45].

Then, the literature on traffic assignment models and routing problems for BEVs concentrated on
constrained path-based assignment and hypothesized that the route choice behavior of BEV drivers
consisted of the search for paths within a certain distance threshold from the shortest one. A multi-class
traffic assignment model considered BEVs as a vehicle class alongside ICEVs and imposed constraints
to paths in the form of a distance limitation to the BEVs’ equilibrium routes [46]. An extension to
the model included choices of destination and parking, but the path-constrained assignment model
remained unaltered [47]. Another extension to the model assumed different cost functions for BEVs and
ICEVs in that the former included the recharging time alongside the travel time that was minimized
for both classes [48]. Recent models considered stochasticity in trip chains and hence path choices as a
function of heterogeneous range anxiety among travelers [49,50].

Recently, the literature on traffic assignment models and routing problems for BEVs focused on
recharging and hypothesized that the route choice behavior of BEV drivers consisted of the search



Sustainability 2020, 12, 1149 3 of 18

for the path combining the shortest distance and the shortest recharging time. Initially, charging was
considered available only at the origin or the destination of the trips in a network equilibrium model
where flows were affected by the electric-charging price [51]. An extension to the model limited the
recharging at the destination [28], in line with the optimal deployment of public charging stations,
assuming that drivers would jointly select the route and destination on the basis of the charging prices
at the destination [52]. Recharging capabilities were also considered in a network equilibrium model
of BEVs where the set of usable paths was defined according to the energy consumption, but the
cost function included only the travel time [53]. Risk attitudes towards range were included in a
model based on the shortest path problem with non-additive cost, although without considering
charging behavior during travel [54]. A node for the recharging requirement was also considered in
a traffic assignment model of BEVs where the cost function included the energy consumption [55].
Additionally, a user equilibrium model where drivers could swap batteries at predetermined stations
was formulated [56]. Lately, an optimization model was presented where drivers minimized travel
time and charging costs to decide their route plan to charging stations [57].

All these models hypothesized that BEV drivers select the shortest path on the basis of a cost
function that is usually a combination of travel time and, possibly, recharging time. Realistically, this
hypothesis is rather restrictive when considering that it is not based on any empirical observation of
the route choice behavior of BEV drivers. Accordingly, this study investigates revealed preferences
of route choices when driving a BEV and compares them to the choices when driving an ICEV in
order to provide the realism that is missing in all of these models because of simplistic assumptions
that have no empirical foundation. It should be noted that an observational study of route choices
between a highway and an arterial route exists and the effect of transient behavior on BEV energy
consumption was captured [58]. However, the limitations of this study are quite substantial: (i) the
observational study focused on only 39 trips with the purpose of feeding a simulation of 2000 trips
for an hour; (ii) there were only two possible routes, one on a highway and another on an arterial
road; (iii) the simulation relied on assumptions about route choice behavior and the study did not
attempt to explain the behavior itself. It should also be noted that a behavioral model of route choices
for BEV drivers actually exists and concludes that energy consumption, information about charging
stations, vehicle attributes and range anxiety affect the route choices [59]. Although insightful, the
limitations of this behavioral model are quite conspicuous: (i) the choices were elicited via a stated
preferences (SP) experiment where the survey participants could only consider the factors that were
a priori hypothesized to be relevant to their choices; (ii) the survey participants were unrealistically
assumed to have complete information about available routes, their travel times, their battery level
at the beginning of the imaginary trip, and the location of the charging stations; (iii) the survey
participants were unrealistically assumed to experience range anxiety when they did not even drive
during the experiment; (iv) most importantly, the survey participants were ICEV drivers in real life
without any experience of driving BEVs.

This study overcomes the limitations in existing studies by proposing an RP study of route choice
behavior from a large-scale BEV demonstration project that was conducted in Denmark. Detailed GPS
traces were collected for each trip done by the participants while driving both BEVs and ICEVs and were
matched to weather information. Then, map matching to the digitalized Danish road network allowed
us to calculate the level-of-service variables for the trips while also adding the weather data and the
household characteristics of the participants. Alternatives were then generated by a doubly stochastic
generation algorithm. Subsequently, route choice models were specified and estimated jointly to
capture the differences in the route choice behavior while driving BEVs and ICEVs, including possible
differences in preferences while driving ICEVs before and during the BEV experiment. The large
amount of data collected in the experiment and the state-of-the-art choice models estimated in this
study provide the missing empirical evidence about route choice behavior of BEV drivers that might
confirm or reject the aforementioned hypotheses in the existing literature.
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3. Materials and Methods

This study focused on the actual behavior of BEV drivers and hence the methodology consisted
of (i) data collection, (ii) data processing, (iii) route choice set generation and (iv) route choice model
estimation. It should be noted that (i) the data collection of thousands of routes is a major novelty in the
literature focusing on BEV users’ behavior, (ii) route choice analysis required the map matching of GPS
traces and (iii) route choice behavior was estimated in a typical two-stage process (for a review, see [60]).
Details about each step of the methodology for this study are presented in the following subsections.

3.1. Data Collection

The data were collected from December 2011 to February 2014 within a large demonstration project
focusing on several aspects of BEV user behavior. The recruitment for the experiment was voluntary
by applying online and submitting household sociodemographic information. Initial screening for
being part of this study focusing on route choice behavior was that the household (i) owned at least
one ICEV prior to the study and (ii) had a dedicated parking space available for the home charger
installation. Final selection for being part of the study involved a random draw from the households
fulfilling the criteria while covering a broad representation of the Danish population (for more details,
please refer to [61,62]).

According to the study design, a BEV was provided to each household over a three-month
period, and then the vehicle was assigned to a different household. Given the availability of 198 BEVs,
data from 1578 households were collected with the aim of covering heterogeneity in the socioeconomic
characteristics of the households, the seasons of their driving and the weather conditions.

Each participating household received either a Peugeot iOn, a Citroën C-Zero or a Mitsubishi
ImiEV, which are very similar small-size BEVs with room for 4 to 5 passengers and limited luggage
space. The standard driving range of the three vehicles is 150 km, but analysis of the data revealed
that only 7% of the vehicles could have covered the declared range based on the actual energy
consumption [61]. A home charger was installed for each household and access to public charging
infrastructure (including 3.7 kW AC and 50 kW DC chargers) was available in most of the country.
It should be noted that the households did not pay for the BEV or the home charger, but they paid for
the home charging consumption of electricity during the experiment. Moreover, the households were
encouraged to use the BEV as their primary vehicle during the three months of availability for two
reasons: (i) to increase the amount of information from driving the BEVs; (ii) to limit the variability in
the data for the same household from multiple drivers participating in the experiment.

As every household owned an ICEV prior to the study, the trips with that vehicle were recorded
with a GPS device for one month before and one month after the household received the BEV in order
to obtain a baseline behavior. A GPS device was also mounted on the BEVs so that data included all the
trips of the households with both types of vehicle over the duration of the experiment. Given budget
restrictions, however, only 107 households from 13 different Danish municipalities had their ICEV
trips recorded with a GPS device. As this study aimed at understanding the actual behavior of BEV
drivers while comparing it with the behavior of the same drivers at the wheel of their ICEV, these 107
households comprised the sample considered in this study.

3.2. Data Processing

The GPS traces were matched to the NAVTEQ street network that consists of 636,243 links covering
the entire country and belonging to all road classes from large highways to minor local roads. The high
level of detail of the NAVTEQ network was necessary to allow for the possibility that BEV users might
use smaller roads with lower speeds in order to save energy.

A filtering process was applied after the map matching according to the following criteria:
(i) observations with a length inferior to 1 km were removed because of the likely problem of finding
alternative routes in the choice set generation process; (ii) observations where over 20% of the route was
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filled via shortest path searches covering gaps in the traces were removed because of the uncertainty
about the actual behavior of the driver. After map matching and filtering, the dataset consisted of
11,928 BEV and 8679 ICEV observed routes from 107 households. It should be noted that the routes
with the ICEV were observed in the month before and after the BEV was received, while the routes
with the BEV were observed for the entire three-month period of the trial.

For each observed route, data from the local weather stations provided information about the
weather at the time and day of departure including precipitation, wind, temperature and visibility.
Figures 1 and 2 illustrate the spatial distribution of the observed routes to show that they cover a large
part of the network over the 13 municipalities that are distributed across the whole country. Figure 1
shows the distribution over Denmark, where intuitively the most populated eastern island also had
most of the observations, while Figure 2 zooms in on the Copenhagen Region.
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3.3. Choice Set Generation

Route choice behavior was modeled with a state-of-the-art two-stage approach consisting of
choice set generation to create routes that are alternative to the observed one, and then route choice
model specification and estimation (for details, see [60,63]).

The first stage consisted of a doubly stochastic generation process [63,64] that generated a choice
set consisting of a maximum of 100 unique alternatives for each observed route. The selection of this
generation process was motivated by the ability of the generation function to account for distance and
free-flow travel time while the double stochasticity captured errors in the perception of costs by the
drivers as well as heterogeneity in the sensitivity to costs across the drivers. The specification of the
distributions of the error term and the parameters of distance and free flow travel time were adopted
from the calibrated Danish National Transport Model.

Following the generation of the alternatives, a filtering process was applied according to the
following criteria: (i) observations were removed if they contained only the chosen route and no
alternative route; (ii) observations were removed if they did not include any route that was overlapping
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at least 80% with the observed one. After choice set generation and filtering, the dataset consisted
of 8968 BEV and 6678 ICEV observed routes from 107 households. Prior to the specification and
estimation of the route choice model, the following level-of-service attributes were calculated for each
alternative route within the choice set of each observation: (i) travel time, (ii) trip length, (iii) number of
left turns, and (iv) number of right turns. Moreover, the attributes of the households and the trips were
also associated with each route for the purpose of evaluating interaction effects with the level-of-service
attributes of the routes.

3.4. Route Choice Model

The second stage consisted of the specification and estimation of mixed path size correction logit
(MPSCL) models for capturing the route choice behavioral preferences of drivers [63,65]. Three models
were specified for the three different periods where the drivers used different vehicles: (i) a model for
the ICEV1 period where they were driving ICEVs prior to the experiment; (ii) a model for the BEV
period where they were testing the BEVs in the experiment; (iii) a model for the ICEV2 period where
they were driving their ICEVs after receiving (and having available) the BEV.

For each period T (where T is equal to either ICEV1, BEV or ICEV2), each household k (where
k = 1, . . . , K and K is the number of households) was observed in route choice situations n (where

n = 1, . . . , Nk
T and Nk

T is the number of observations for household k in period T). The three models
were specified with linear-in-parameter systematic utility functions (Vknj

ICEV1, Vknj
BEV, and Vknj

ICEV2,
respectively) for each route j in the choice set generated for observation n of household k in period T:

Vknj
ICEV1 = βx

ICEV1 xknj
ICEV1 + βxs

ICEV1 xsknj
ICEV1 + βxz

ICEV1 xzknj
ICEV1 + βpsc

ICEV1 pscknj
ICEV1, (1)

Vknj
BEV = βx

BEV xknj
BEV + βxs

BEV xsknj
BEV + βxz

BEV xzknj
BEV + βpsc

BEV pscknj
BEV, (2)

Vknj
ICEV2 = βx

ICEV2 xknj
ICEV2 + βxs

ICEV2 xsknj
ICEV2 + βxz

ICEV2 xzknj
ICEV2 + βpsc

ICEV2 pscknj
ICEV2, (3)

where xknj
T are the vectors of the attributes of route j of observation n for household k in period T, xsknj

T

are the vectors of the interaction effects between the route attributes and the elements of the vector sk
of socioeconomic characteristics of household k, xzknj

T is the vector of interaction effects between the
route attributes and the elements of the vector zkn

T of environmental and vehicle related characteristics
of observation n for household k in period T (e.g., weather, level of battery charge at time of departure),
pscknj

T are the path size correction factors capturing the similarity between alternative routes j within
the choice set generated for observation n of household k in period T, βpsc

T are the related parameters
to be estimated, and βx

T, βxs
T and βxz

T are the vectors of the parameters to be estimated.
As the motivation of this study is the understanding of possible differences in the route choice

behavior while driving ICEVs and BEVs, the focus was on the differences between the parameter
estimates of the three models. However, estimating the three route choice models separately and
comparing their parameter estimates would have been incorrect, since the estimates of generic
parameters βx

T for variable x (either a route attribute or an interaction effect) and period T are actually
the product µx

Tβx
T, where the scale parameters µx

T of each of the three models would be normalized
to one because they are neither identifiable within a particular data source relative to period T,
nor separable from the generic utility parameters βx

T [66]. Accordingly, the three route choice models
were estimated jointly and the scale parameters of the three models were then considered in the
estimation to capture the actual differences between them and consequently evaluate the differences
between the parameter estimates [67,68].

The estimation of the joint models followed the same process proposed for modelling jointly stated
and revealed preferences data in the context of Logit [67–70] and Mixed Logit models [71–73]. For the
three periods, the random utility functions Uknj

ICEV1, Uknj
BEV, and Uknj

ICEV2 were then written as:

Uknj
ICEV1 = µICEV1 Vknj

ICEV1 + εknj
ICEV1, (4)
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Uknj
BEV = µBEV Vknj

BEV + εknj
BEV, (5)

Uknj
ICEV2 = µICEV2 Vknj

ICEV2 + εknj
ICEV2, (6)

where the error terms εknj
ICEV1, εknj

BEV and εknj
ICEV2 were assumed to be identically and independently

Gumbel distributed, and their variances represent the different levels of random noise in the data
that are captured by their respective scale parameters µICEV1, µBEV and µICEV2. Note that in this
joint model, all the estimated parameters were scaled by the unknown scale parameter µBEV that was
not identifiable and was then normalized to one. Note also that some of the parameters might be
specified as generic across periods if, once the scale ratio was estimated, they were statistically similar.

The path size correction pscknj
T captured the similarity across alternative routes within choice set

Ckn
T for observation n of household k in period T, and was defined as [65]:

pscknj
T = −Σa∈Γknj

T ((La/Lknj
T) lnΣj∈Cknj

T (δaj)) (7)

where Lknj
T is the length of route j generated for observation n of household k in period T, La is the

length of link a, Γknj
T is the set of links belonging to route j, and δaj captures the link–path relation, as it

is equal to 1 if link a belongs to route j and 0 otherwise.
In this study, some elements of the vectors βx

T, βxs
T and βxz

T of the parameters to be estimated
were randomly distributed with probability density function f (β|θ)dβ in order to account for preference
heterogeneity. The probability Pknj

T for observation n of household k in period T to have chosen route i
does not have a closed-form and requires integration over the distribution of the random parameters
within the deterministic utilities Vknj

T for each period:

Pknj
T =

∫
(exp (µT Vkni

T)/(Σj∈Cknj
T exp (µT Vknj

T))f (β|θ)dβ, (8)

Consequently, the maximization of the log-likelihood function LL required simulation for the
estimation of the parameters:

SLL = ΣT Σk Σn Σi∈Cknj
T {dkni

T ln {1/R Σr (exp (µT Vkni,r
T)/(Σj∈Cknj

T exp (µT Vknj,r
T)]} (9)

where SLL is the simulated log-likelihood, dkni
T is an indicator that is equal to 1 if route i was the

observed route for observation n of household k in period T (and 0 otherwise), and r is one of R draws
from the densities of the random parameters that were considered in the simulation. It should be noted
that the choices were assumed to be correlated across household, namely the parameters were restricted
to not vary across different observations of the same household. The simulated log-likelihood function
was coded in Python Biogeme [74] and the simulation generated random draws via the Modified Latin
Hypercube Sampling Method [75].

4. Results

4.1. Generated Choice Sets

The choice set generation procedure and subsequent filtering resulted in a total of 6678 observed
routes in the ICEV periods and 8968 observed routes in the BEV period. Figure 3 illustrates the
cumulative distribution of observations at various thresholds for the minimum overlap with the
observed route (for a definition of overlap, see [60]). It can be seen that the doubly stochastic choice
set generation reproduced over 75% of the observed routes for both datasets with an 80% overlap
threshold. Moreover, the procedure replicated link by link about 50% of the observed routes after the
filtering, an impressive feature considering the level of detail of the network. These results indicate
that the choice set generation method was successful in reproducing the observed routes within the
generated choice sets.
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Figure 3. Coverage of observed routes.

The distribution of the choice set size for the filtered observations is shown in Figure 4. The number
of unique routes covers the whole range, from 2 to 100, and in general large choice sets were generated.
A visual inspection for a large number of observations suggested that the large number of alternatives
is not due to the generation of implausible routes, but rather to the very disaggregate network
structure. In addition to the generation of the observed route and some relevant considerably different
alternatives, the disaggregate network structure implies the generation of several alternatives that are
small deviations to the observed route.
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Table 1 lists the characteristics of the observed routes as well as the generated alternatives.
When looking at the observed routes, clearly the BEV trips were shorter in distance and time when
compared to the ICEV trips. Moreover, as soon as the BEV became available to the household,
fewer trips were done with the ICEV, but they were longer than the previous ones. This suggests that
households would drive the ICEV for longer trips to avoid possible limitations because of the BEV
driving range. This also indicates that, although the households were encouraged to use the BEV as
their primary vehicle, they maintained the use of the ICEV for a large portion of their trips.
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Table 1. Sample description.

Observed Alternatives

Variable Description Variable Mean Std Dev Mean Std Dev

ICEV1 (4175 obs)

Travel time (min) time 14.73 16.07 19.89 20.23
Length (km) length 15.26 21.82 19.66 24.52

Number of left turns leftturns 3.43 2.99 8.35 6.33
Number of right turns rightturns 4.80 3.90 9.94 7.31

Household lives in an urban area hhurban 0.10 0.29
Household head’s income is above

750.000DKK highinc 0.25 0.44

Household head is male hhmale 0.53 0.50
Precipitation at day of departure is

above 9 mm avgrain 0.14 0.34

Observed trip departs during
morning peak mornpeak 0.13 0.34

Sunshine at day of departure is
above 36 min avgsun 0.25 0.44

BEV (8968 obs)

Travel time (min) time 9.58 7.73 12.65 8.85
Length (km) length 11.32 10.63 14.58 11.92

Number of left turns leftturns 3.43 2.95 7.67 4.95
Number of right turns rightturns 4.81 3.86 9.21 5.77

Battery state-of-charge at tripstart
(%) bat_start 75.02 20.00

Household lives in an urban area hhurban 0.11 0.31
Household head’s income is above

750.000DKK highinc 0.26 0.44

Household head is male hhmale 0.56 0.50
Precipitation at day of departure is

above 9 mm avgrain 0.11 0.31

Observed trip departs during
morning peak mornpeak 0.09 0.29

Sunshine at day of departure is
above 36 min avgsun 0.22 0.41

ICEV2 (2503 obs)

Travel time (min) time 18.27 19.09 24.30 23.25
Length (km) length 20.03 27.13 25.23 29.74

Number of left turns leftturns 3.76 3.34 9.07 7.22
Number of right turns rightturns 5.08 4.19 10.71 8.24

Household lives in an urban area hhurban 0.06 0.24
Household head’s income is above

750.000DKK highinc 0.37 0.48

Household head is male hhmale 0.55 0.50
Precipitation at day of departure is

above 9 mm avgrain 0.14 0.35

Observed trip departs during
morning peak mornpeak 0.14 0.34

Sunshine at day of departure is
above 36 min avgsun 0.21 0.41

Table 1 shows that there are differences between the observed and generated routes in terms of
average travel time, number of turns and trip length. It appears that the chosen routes are shorter
and more direct than the generated alternatives, and while that might be expected for the trips in the
BEV period, as the literature hypothesizes a more direct travel as a result of range anxiety and energy
saving, it is interesting that it applies also to the trips in both ICEV periods. Interestingly, the trips in
the BEV period are shorter than ICEV trips in terms of time and distance, but more comparable to
ICEV ones in terms of number of turns and hence directness.

It should be noted that the socio-economic characteristics of the household as well as weather
variables are included. Precipitation above 9 mm refers to observations with precipitation above
average for the day of the trip, and sunshine above 36 min refers to the 25% of observations with mostly
sunshine during the day of the trip. Very limited differences were observed with respect to these
characteristics for the trips in the three periods. The socio-economic characteristics of the households
in the experiment were collected, and it should be noted that the differences in the values for the three
periods indicate only differences in the use of the technology (as based on number of trips and not
number of individuals), as previously analyzed in detail [62].
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4.2. Route Choice Model Estimates

The specification testing of the joint route choice models initially involved the estimation of a
base model with the two parameters for travel time and length distributed according to a lognormal
distribution, and the two parameters for left and right turns distributed according to a normal
distribution. We estimated technology-specific parameters for all attributes with the exception of travel
time, given the need for at least one parameter to be kept generic across the datasets of BEV and ICEV
routes. We also examined possible interactions for each of the four attributes with the household and
temporal characteristics of the trips and hence created technology specific parameters.

After considering the estimated parameters in the joint models that were significant at least at the
0.05 level, we tested for their differences across different groups of observations. We also estimated
each interaction effect separately to avoid multi-collinearity issues, and we retained the interaction
effects that were significant at the 0.05 level. Lastly, we retained in the model all the significant generic
and technology-specific parameters (it should be noted that the technology-specific parameters were
not different for the two ICEV periods). A total of 18 parameters were estimated in the final joint
mixed path-size correction logit models, with the following specification of the utility functions (scale
parameters for the ICEV1 and ICEV2 periods were also estimated with respect to the normalized scale
parameter for the BEV period):

Vknj
BEV =βt tknj

BEV + βl lknj
BEV + βtprec tprecknj

BEV + βlsun lsunknj
BEV +

βturncity turncityknj
BEV + βlturn

BEV lturnknj
BEV + βrturn

BEV rturnknj
BEV + βpsc pscknj

BEV,
(10)

Vknj
ICEV1 = βt tknj

ICEV + βl lknj
ICEV + βtprec tprecknj

ICEV + βlsun lsunknj
ICEV +

βturncity turncityknj
ICEV + βlturn

ICEV lturnknj
ICEV + βrturn

ICEV rturnknj
ICEV + βpsc pscknj

ICEV,
(11)

Vknj
ICEV2 = βt tknj

ICEV + βl lknj
ICEV + βtprec tprecknj

ICEV + βlsun lsunknj
ICEV +

βturncity turncityknj
ICEV + βlturn

ICEV lturnknj
ICEV + βrturn

ICEV rturnknj
ICEV + βpsc pscknj

ICEV,
(12)

where, for each technology T, tknj
T is the travel time, lknj

T is the trip length, lturnknj
T is the number of left

turns, and rturnknj
T is the number of right turns. Also, tprecknj

T is the interaction term between travel
time and precipitation, lsunknj

T is the interaction term between trip length and sunshine, and turncityknj
T

is the interaction term between turns and city location. Lastly, pscknj
T is the path correction factor for

each alternative route in the choice set. The related parameters are either generic or specific according
to the specification testing, and it should be noted that βt and βl are lognormally distributed, while
βlturn

BEV, βrturn
BEV, βlturn

ICEV and βrturn
ICEV are normally distributed.

Table 2 presents the estimates of the best model specification. The comparison between parameter
estimates requires us to consider the differences between the scale parameters, which were statistically
equal when comparing the ones for the BEV and the ICEV1 periods, and statistically different when
likening the ones for the BEV and ICEV2 periods. These estimates show that the BEV and ICEV1
datasets contain the same amount of noise, while the ICEV2 dataset contains a higher amount of
noise since the variance of the error term is higher than that of the other two datasets. Moreover,
these estimates enable us to compare the ratios between the µT βx

T products for the different periods,
keeping in mind that having the same generic parameters while also having different scale parameters
implies a difference in the preferences of drivers.

When looking at the four main attributes, the parameter estimates show that drivers do indeed
minimize travel time, trip length, number of left turns and number of right turns. Heterogeneity was
found to be significant for all four attributes, which implies that drivers have different perceptions
when it comes to travel time and travel distance.
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Table 2. Estimates for the joint route choice models.

Generic ICEV BEV

Estimate t-Test Estimate t-Test Estimate t-Test

Travel time (mean, min) −2.130 −6.34
Travel time (st. dev., min) 1.890 8.74

Trip length (mean, log(km)) −10.800 −16.79
Trip length (st. dev., log(km)) 8.060 11.90

Travel time × precipitation 0.151 3.39
Trip length × sunshine 0.106 2.42

Left turns (mean, number) −0.694 −9.58 −0.545 −24.42
Left turns (st. dev., number) 0.280 −7.71 0.281 12.13
Right turns (mean, number) −0.434 −8.56 −0.278 −15.99

Right turns (st. dev., number) 0.234 6.93 0.163 10.91
Turns × city −0.070 −2.27

Path size correction 1.020 12.89
Scale parameter µICEV1 0.958 0.46 *
Scale parameter µICEV2 0.808 2.27 *

Scale parameter for BEV (µBEV) 1 -

Number of parameters 19
Number of observations 15,646

Log-likelihood at estimates −42,460

* with respect to 1.

Given the generic parameters for travel time and trip length, and factoring in the differences in the
scale parameters between the BEV and the ICEV2 datasets, two considerations apply to the sensitivities
to travel time and logarithm of trip length: (i) about the same sensitivities for the two attributes were
obtained when comparing the BEV trips with the ICEV trips prior to receiving the BEV; (ii) about 20%
lower sensitivity was estimated for ICEV after the BEV came available in the household.

Given the technology-specific parameters for the right and left turns, and considering the
differences in the scale parameters, it looks like the sensitivity to turns is comparable between the BEV
and the ICEV2 datasets, while it is about 25% higher for the ICEV1 dataset where the scale parameter
does not compensate for the parameter difference. Basically, it appears that, on average, more direct
routes (less turns) are searched for when driving the ICEV prior to the experiment, and then more
direct routes are taken not only when testing the BEV, but also when using the ICEV at the same time.
In other words, a change in preference towards less direct routes appears related to the BEV availability,
but then the change seems linked also to the ICEV trips.

Interaction terms reveal that the sensitivity to travel time is reduced in the case of rainy weather
and the sensitivity to trip length is lessened in the case of sunshine. Also, turns are penalized more
in the city, possibly because route directness is more important in urban areas where there might
be congestion. It should be noted that, because of the differences in the scale parameters, a higher
variation is observed for these interaction terms when driving a BEV, as again there is about a 20%
higher sensitivity to the combination of attributes. Overall, the findings reveal the existence of some
behavioral differences when driving a BEV or an ICEV, but also some similarities, in that drivers
seem to appreciate directness more just because of the BEV availability, regardless of the vehicle they
are driving.

5. Discussion

The observation of the route choices suggested that the first difference emerged when the BEV
became available, namely households appeared to choose BEVs for shorter trips and ICEVs for longer
ones. When considering that most electric vehicle routing problems were solved under the assumption
that BEV drivers minimize energy consumption [38–40,42–44], and that transport planning models
followed similar assumptions [52–56], this is not a trivial finding, since it suggests that it is more a
matter of vehicle choice rather than route cost minimization according to a cost function that depends
on the vehicle type.



Sustainability 2020, 12, 1149 13 of 18

Model parameter estimates suggested that differences exist in the behavior on the road while
driving the BEVs or the ICEVs. As expected, the minimization of travel time, trip length and number
of turns is the behavior of choice, but empirical evidence shows that the relation with trip length
is not linear in the attribute and captures the fact that the sensitivity to the driven distance varies
between shorter and longer trips. Non-linearity with trip length has not been hypothesized in the
existing transport planning models and routing problems. Also, heterogeneity exists for all attributes,
a hypothesis that confirms differences in the perceptions of travel time and length, but this is rarely
accounted for in traffic assignment models focusing on different degrees of range anxiety [49,50].

Parameter estimates show that differences emerged when comparing BEV and ICEV driving.
This empirical finding is not in line with the assumption that the route choice behavior is similar for
BEVs and ICEVs [45], but confirms the hypothesis that BEV drivers might look for shorter and faster
routes that potentially might be associated with the perception of lower energy consumption [17,52].
Clearly, only a very low number of studies appear in line with the empirical evidence from our study.
Interestingly, the sensitivity to travel time and trip length emerged as higher for BEV driving when
compared to ICEV driving, but only after the BEV was received. Conversely, the choice of more direct
routes emerged as being lower for BEV driving with respect to ICEV driving prior to the experiment,
and this behavior was actually independent of the type of vehicle, as comparable parameters were
obtained for the ICEV driving while the experiment was running. This finding is also interesting as it
suggests that the driving behavior did not change for the BEV with respect to the ICEV, but after using
the BEV—for example, drivers changed their perception of turns when driving both types of vehicle,
suggesting that existing models should not differentiate by vehicle technology, but by time when a
new one is available at the household level.

Parameter estimates suggest also that weather and urban environment mitigated or exacerbated
some of the sensitivity to time and distance, an aspect that is often neglected in traffic assignment
models. An interesting aspect that emerged was that weather affects the sensitivity to travel time and
trip length. Specifically, precipitation over the average relates to a lower sensitivity to travel time
while sunshine over the average relates to a lower sensitivity to trip length. It was expected from the
literature that BEVs are sensitivity to temperature [61,76], but that did not emerge as significant in
terms of route choice preferences.

The empirical results suggest that considering constraints on the available paths [46–48] and
accounting for heterogeneity [43,44] are definitely hypotheses in line with the findings of this study,
although unfortunately only a handful of studies appear to have formulated hypotheses in line with
the empirical evidence from this study, and generally they seem to have formulated single hypotheses
without covering all the different aspects that this study has uncovered.

6. Conclusions

On the basis of a substantial dataset and state-of-the-art methodology, this study presented a
route choice study that elicited differences in the preference structures of drivers when driving BEVs
rather than ICEVS. As the first large-scale RP study looking at actual route choices of BEV drivers,
this study modelled the selection of thousands of routes after map matching them to a high-resolution
network and generating plausible routes with advanced choice set generation techniques.

Arguably, a limitation of this study is that BEV technology has improved in recent years and
mid-size models introduced in 2019 have a nominal range of 3/400 km on a full charge of battery.
A longer range than the models in this study might imply that drivers do not adapt their route choice
preferences when compared to driving their ICEVs to the same extent found in this study. However,
the presented results are relevant for several reasons: (i) the high battery costs make companies launch
models with smaller driving ranges (e.g., the newest Honda e has a nominal range of 220km [77]) as
the models with larger driving range are only accessible to higher income households; (ii) the nominal
driving range is still measured in laboratory conditions that make the actual driving range usually
significantly lower [61]; (iii) even the higher end of driving ranges is still far from current ICEV driving
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ranges, and a recent analysis of Chinese customers revealed that the preferred driving ranges for BEVs
and Plug-in Hybrid Vehicles (PHEVs) are around 50 km [78].

Accordingly, the major contribution of this study is the unique possibility to understand the
difference in preferences when driving BEVs and ICEVs with a large-scale revealed preferences (RP)
experiment. Clearly, the assumption of shortest path selection on the basis of a cost function that
combines travel time and possibly recharging time is not appropriate when looking at the findings of
this study, suggesting how the sensitivity to distance and time is heterogeneous and varies with the
distance travelled as well as the directness of the route. Accordingly, future research should, on the
one hand, look for more empirical evidence for constructing more realistic cost functions, and on the
other hand embed these cost functions within traffic assignment models that would be far more correct
in predicting route choice behavior of BEV as well as ICEV drivers.

Moreover, future traffic assignment models could consider a few adjustments: (i) an equilibrium
solution could be found where vehicle classes should be flexible and the allocation of travelers to
each class should depend on endogenously defined thresholds for travel time and distance; (ii) an
equilibrium solution could be found where the choice sets would be equilibrated and the traffic
assignment model would be consistent with the route choice behavior and include thresholds on travel
costs (see [79,80]; (iii) the utility function for BEVs and ICEVs should take into account, at the very least,
the different sensitivity to travel time, distance and route directness, which was instead considered
equal in previous models; (iv) the classes of drivers should relate to the household owning a BEV
rather than the individual driving either a BEV or an ICEV.

Supplementary Materials: The following are available online at http://www.mdpi.com/2071-1050/12/3/1149/s1,
The route choice dataset for model estimation that was used in this study is attached.

Author Contributions: Conceptualization, A.F.J., T.K.R. and C.G.P.; methodology, A.F.J., T.K.R. and C.G.P.; data
curation, A.F.J. and T.K.R.; writing—Original draft preparation, C.G.P.; writing—Review and editing, A.F.J., T.K.R.;
supervision, C.G.P.; project administration, A.F.J. and T.K.R.; funding acquisition, A.F.J. and T.K.R. All authors
have read and agreed to the published version of the manuscript.

Funding: This research was funded by the European Commission, grant “Green Emotion” and the Danish Council
for Independent Research, grant “Using big data sources for the consistent estimation of next-generation route
choice models”.

Acknowledgments: We are grateful to four anonymous reviewers for the substantial contribution to improving
the original version of this manuscript.

Conflicts of Interest: The authors declare no conflict of interest. Also, the funders had no role in the design of the
study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to
publish the results.

References

1. Brady, J.; O’Mahony, M. Travel to work in Dublin: The potential impacts of electric vehicles on climate
change and urban air quality. Transp. Res. Part D Transp. Environ. 2011, 16, 188–193. [CrossRef]

2. Bakker, S.; Trip, J.J. Policy options to support the adoption of electric vehicles in the urban environment.
Transp. Res. Part D Transp. Environ. 2013, 25, 18–23. [CrossRef]

3. Zhang, X.; Xie, J.; Rao, R.; Liang, Y. Policy incentives for the adoption of electric vehicles across countries.
Sustainability 2014, 6, 8056–8078. [CrossRef]

4. Bjerkan, K.Y.; Nørbech, T.E.; Nordtømme, M.E. Incentives for promoting battery electric vehicle (BEV)
adoption in Norway. Transp. Res. Part D Transp. Environ. 2016, 43, 169–180. [CrossRef]

5. Cansino, J.M.; Sánchez-Braza, A.; Sanz-Díaz, T. Policy instruments to promote electro-mobility in the EU28:
A comprehensive review. Sustainability 2018, 10, 2507. [CrossRef]

6. Lam, A.; Lee, S.; Mercure, J.F.; Cho, Y.; Lin, C.H.; Pollitt, H.; Chewpreecha, U.; Billington, S. Policies and
predictions for a low-carbon transition by 2050 in passenger vehicles in East Asia: Based on an analysis using
the E3ME-FTT Model. Sustainability 2018, 10, 1612. [CrossRef]

7. Kim, E.; Heo, E. Key drivers behind the adoption of electric vehicle in Korea: An analysis of the revealed
preferences. Sustainability 2019, 11, 6854. [CrossRef]

http://www.mdpi.com/2071-1050/12/3/1149/s1
http://dx.doi.org/10.1016/j.trd.2010.09.006
http://dx.doi.org/10.1016/j.trd.2013.07.005
http://dx.doi.org/10.3390/su6118056
http://dx.doi.org/10.1016/j.trd.2015.12.002
http://dx.doi.org/10.3390/su10072507
http://dx.doi.org/10.3390/su10051612
http://dx.doi.org/10.3390/su11236854


Sustainability 2020, 12, 1149 15 of 18

8. Li, W.; Long, R.; Chen, H.; Chen, F.; Zheng, X.; Yang, M. Effect of policy incentives on the uptake of electric
vehicles in China. Sustainability 2019, 11, 3323. [CrossRef]

9. Kihm, A.; Trommer, S. The new car market for electric vehicles and the potential for fuel substitution. Energy
Policy 2014, 73, 147–157. [CrossRef]

10. Franke, T.; Krems, J.F. Understanding charging behaviour of electric vehicle users. Transp. Res. Part F Traffic
Psychol. Behav. 2013, 21, 75–89. [CrossRef]

11. Rezvani, Z.; Jansson, J.; Bodin, J. Advances in consumer electric vehicle adoption research: A review and
research agenda. Transp. Res. Part D Transp. Environ. 2015, 34, 122–136. [CrossRef]

12. Fetene, G.M.; Kaplan, S.; Sebald, A.C.; Prato, C.G. Myopic loss aversion in the response of electric vehicle
owners to the scheduling and pricing of vehicle charging. Transp. Res. Part D Transp. Environ. 2017, 50,
345–356. [CrossRef]

13. Kim, S.; Lee, J.; Lee, C. Does driving range of electric vehicles influence electric vehicle adoption? Sustainability
2017, 9, 1783. [CrossRef]

14. Lebeau, K.; van Mierlo, J.; Lebeau, P.; Mairesse, O.; Macharis, C. The market potential for plug-in hybrid and
battery electric vehicles in Flanders: A choice-based conjoint analysis. Transp. Res. Part D Transp. Environ.
2012, 17, 592–597. [CrossRef]

15. Mendes Lopes, M.; Moura, F.; Martinez, L.M. Rule-based approach for determining the plausible universe of
electric vehicle buyers in the Lisbon Metropolitan Area. Transp. Res. Part A Policy Pract. 2014, 59, 22–36.
[CrossRef]

16. Mabit, S.L.; Fosgerau, M. Demand for alternative-fuel vehicles when registration taxes are high. Transp. Res.
Part D Transp. Environ. 2011, 16, 225–231. [CrossRef]

17. Traut, E.J.; Cherng, T.W.C.; Hendrickson, C.; Michalek, J.J. US residential charging potential for electric
vehicles. Transp. Res. Part D Transp. Environ. 2013, 25, 139–145. [CrossRef]

18. Shim, D.; Kim, S.W.; Altmann, J.; Yoon, Y.T.; Kim, J.G. Key features of electric vehicle diffusion and its impact
on the Korean power market. Sustainability 2018, 10, 1941. [CrossRef]

19. Lipman, T.E.; Delucchi, M.A. A retail and lifecycle cost analysis of hybrid electric vehicles. Transp. Res. Part
D Transp. Environ. 2006, 11, 115–132. [CrossRef]

20. Wu, X.; Freese, D.; Cabrera, A.; Kitch, W.A. Electric vehicles’ energy consumption measurement and
estimation. Transp. Res. Part D Transp. Environ. 2015, 34, 52–67. [CrossRef]

21. Breetz, H.L.; Salon, D. Do electric vehicles need subsidies? Ownership costs for conventional, hybrid, and
electric vehicles in 14 US cities. Energy Policy 2018, 120, 238–249. [CrossRef]

22. Egbue, O.; Long, S. Barriers to widespread adoption of electric vehicles: An analysis of consumer attitudes
and perceptions. Energy Policy 2012, 48, 717–729. [CrossRef]

23. Peterson, S.B.; Michalek, J.J. Cost-effectiveness of plug-in hybrid electric vehicle battery capacity and charging
infrastructure investment for reducing US gasoline consumption. Energy Policy 2013, 52, 429–438. [CrossRef]

24. Franke, T.; Neumann, I.; Bühler, F.; Cocron, P.; Krems, J.F. Experiencing range in an electric vehicle:
Understanding psychological barriers. Appl. Psychol. 2012, 61, 368–391. [CrossRef]

25. Jensen, A.F.; Cherchi, E.; Mabit, S.L. On the stability of preferences and attitudes before and after experiencing
an electric vehicle. Transp. Res. Part D Transp. Environ. 2013, 25, 24–32. [CrossRef]

26. Noel, L.; de Rubens, G.Z.; Sovacool, B.K.; Kester, J. Fear and loathing of electric vehicles: The reactionary
rhetoric of range anxiety. Energy Res. Soc. Sci. 2019, 48, 96–107. [CrossRef]

27. Liu, J. Electric vehicle charging infrastructure assignment and power grid impacts assessment in Beijing.
Energy Policy 2012, 51, 544–557. [CrossRef]

28. Zhang, T.; Boyles, S.; Waller, S.T. Modeling combined travel choices of electric vehicle drivers with a
variational inequality network formulation. In Proceedings of the 92nd Annual Meeting of the Transportation
Research Board, Washington, DC, USA, 13–17 January 2013.

29. Yi, Z.; Bauer, P.H. Optimization models for placement of an energy-aware electric vehicle charging
infrastructure. Transp. Res. Part E Logist. Transp. Rev. 2016, 91, 227–244. [CrossRef]

30. Gnann, T.; Funke, S.; Jakobsson, N.; Plötz, P.; Sprei, F.; Bennehag, A. Fast charging infrastructure for electric
vehicles: Today’s situation and future needs. Transp. Res. Part D Transp. Environ. 2018, 62, 314–329.
[CrossRef]

31. Xing, Y.; Ma, E.W.; Tsui, K.L.; Pecht, M. Battery management systems in electric and hybrid vehicles. Energies
2011, 4, 1840–1857. [CrossRef]

http://dx.doi.org/10.3390/su11123323
http://dx.doi.org/10.1016/j.enpol.2014.05.021
http://dx.doi.org/10.1016/j.trf.2013.09.002
http://dx.doi.org/10.1016/j.trd.2014.10.010
http://dx.doi.org/10.1016/j.trd.2016.11.020
http://dx.doi.org/10.3390/su9101783
http://dx.doi.org/10.1016/j.trd.2012.07.004
http://dx.doi.org/10.1016/j.tra.2013.09.009
http://dx.doi.org/10.1016/j.trd.2010.11.001
http://dx.doi.org/10.1016/j.trd.2013.10.001
http://dx.doi.org/10.3390/su10061941
http://dx.doi.org/10.1016/j.trd.2005.10.002
http://dx.doi.org/10.1016/j.trd.2014.10.007
http://dx.doi.org/10.1016/j.enpol.2018.05.038
http://dx.doi.org/10.1016/j.enpol.2012.06.009
http://dx.doi.org/10.1016/j.enpol.2012.09.059
http://dx.doi.org/10.1111/j.1464-0597.2011.00474.x
http://dx.doi.org/10.1016/j.trd.2013.07.006
http://dx.doi.org/10.1016/j.erss.2018.10.001
http://dx.doi.org/10.1016/j.enpol.2012.08.074
http://dx.doi.org/10.1016/j.tre.2016.04.013
http://dx.doi.org/10.1016/j.trd.2018.03.004
http://dx.doi.org/10.3390/en4111840


Sustainability 2020, 12, 1149 16 of 18

32. Pollet, B.G.; Staffell, I.; Shang, J. Current status of hybrid, battery and fuel cell electric vehicles: From
electrochemistry to market prospects. Electrochem. Acta 2012, 84, 235–249. [CrossRef]

33. Sabri, M.F.M.; Danapalasingam, K.A.; Rahmat, M.F. A review on hybrid electric vehicles architecture and
energy management strategies. Renew. Sustain. Energy Rev. 2016, 53, 1433–1442. [CrossRef]

34. Lipu, M.H.; Hannan, M.A.; Hussain, A.; Hoque, M.M.; Ker, P.J.; Saad, M.H.M.; Ayob, A. A review of state of
health and remaining useful life estimation methods for lithium-ion battery in electric vehicles: Challenges
and recommendations. J. Clean. Prod. 2018, 205, 115–133. [CrossRef]

35. Wu, L.; Wang, W.; Jing, P.; Chen, Y.; Zhan, F.; Shi, Y.; Li, T. Travel mode choice and their impacts on
environment—a literature review based on bibliometric and content analysis, 2000–2018. J. Clean. Prod. 2019,
249, 119391. [CrossRef]
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