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Abstract: Green supply chain management (GSCM) has emerged as an important issue to lessen the
impact of supply chain activities on the natural environment, as well as reduce waste and achieve
sustainable growth of a company. To understand the effectiveness of GSCM, performance measurement
of GSCM is a must. Monitoring and predicting green supply chain performance can result in improved
decision-making capability for managers and decision-makers to achieve sustainable competitive
advantage. This paper identifies and analyzes various green supply chain performance measures
and indicators. A probabilistic model is proposed based on a Bayesian belief network (BBN) for
predicting green supply chain performance. Eleven green supply chain performance indicators
and two green supply chain performance measures are identified through an extensive literature
review. Using a real-world case study of a manufacturing industry, the methodology of this model is
illustrated. Sensitivity analysis is also performed to examine the relative sensitivity of green supply
chain performance to each of the performance indicators. The outcome of this research is expected to
help managers and practitioners of GSCM improve their decision-making capability, which ultimately
results in improved overall organizational performance.

Keywords: green supply chain; performance measurement; Bayesian belief network; sustainability

1. Introduction

Recently, supply chain performance prediction has received increased attention from academics
and practitioners [1]. To predict the supply chain performance, the development of supply chain
performance metrics is crucial. Developing a performance measurement system to empower the
coordination mechanism for mutual decision-making has become a vital issue in supply chain
management [2]. This mutual decision-making process can be used to combine the goals of independent
participants and integrate their individual activities so as to optimize the performance of the whole
supply chain [3]. Hoole [4] discussed that the performance measurement of a supply chain enables a
company to employ more mature supply chain practices and, consequently, enables them to reduce
cost faster than their less mature competitors. More accurately, there can be a variation of 5% to 6% of
annual revenue in supply chain costs among competitor companies of the same industry. Therefore, it is
important for a company to develop a performance measurement model to improve its operation [5,6].

Companies are presently trying to include environmental performance in the evaluation of the
overall supply chain performance because of increased competitive, regulatory, and community
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pressures [3]. Companies need to minimize the environmental impact of their goods and services
and, thus, they have to formulate as well as implement strategies. Consequently, it helps companies
to compensate competitive, community and regulatory pressures and also helps them to achieve
environmental sustainability [7–9]. The basic principles upon which a company’s business is based
can be reviewed and readjusted so that the company can project a green image. In addition,
Bhattacharya et al. [10] discussed that it is important for a company to address environmental issues
to develop a unique competitive advantage for increasing the value of its core business programs.
In 1994, the Confederation of British Industries observed various elements that build a competitive
advantage through environmental performance: market expectations, risk management, regulatory
compliance and business efficiency are some of these elements [11–13]. To handle all these elements
properly, researchers and practitioners use green supply chain management (GSCM) as an effective
tool [14,15]. Thus, GSCM enables a company not only to increase its ecological efficiency but also to
increase profit and market share. It also results in sustainable growth [7].

Green supply chain performance prediction is receiving more and more attention because of the
recent progress in the area of GSCM. Though several metrics have been suggested for supply chain
performance measurement [16–19], these metrics do not include all aspects of the green supply chain.
So, more comprehensive environmental performance metrics need to be introduced. This study aims
to identify these performance indicators and use them to predict green supply chain performance in
different scenarios.

There are significant works completed on traditional supply chain performance measurement but
very few of them focused on the environmental performance of the supply chain. Gunasekaran et al. [20]
described various supply chain performance metrics. Though they did not include environmental
performance metrics, they emphasized a more comprehensive study of these general measures.
In addition, works completed on environmental performance measurement mostly considered
qualitative performance measures and indicators. Hervani et al. [21] considered ISO14031 to develop
the basic principle for green supply chain performance measurement, but no definite quantitative
model was suggested in their study. So, all of the existing literature lacks developing and implementing
probabilistic and quantitative techniques to predict green supply chain performance. Therefore, the
research questions this study aims to answer are:

(a) What are the performance metrics of a green supply chain?
(b) How do the performance metrics affect the supply chain performance?
(c) Which metrics have the most impact on GSCM performance?
(d) How can a manager achieve a specified level of GSCM performance?

This study attempts to answer the above research questions by identifying the GSCM performance
measures by reviewing the existing literature and taking expert opinion, developing a quantitative
and probabilistic model using a Bayesian belief network (BBN). The effectiveness of the model is
demonstrated using a real-world case study, as well as performing sensitivity and diagnostic analyses
to determine the impact of various metrics on overall performance. The BBN-based green supply
chain performance prediction model can consider the cause–effect relationships between different
performance indicators and provide informed decisions effectively in cases of incomplete, imprecise
and ambiguous information. The proposed BBN model is flexible enough to perform both diagnostic
analysis or bottom-up inference, and predictive analysis or top-down inference.

The rest of the paper is organized as follows. Section 2 presents a review of the existing
literature on traditional supply chain management performance measurement and GSCM performance
measurement. Section 3 gives a brief overview of BBN. Section 4 presents the proposed research
framework. Section 5 includes a BBN-based performance prediction model. Data collection and
analysis, results, discussion of the findings and sensitivity analysis are also included in this section.
Finally, Section 6 includes conclusions, managerial implications and recommendations.
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2. Literature Review

In this section, a brief overview of GSCM and review of the related literature is provided. The
literature review is divided into two parts. In the first section, the traditional supply chain performance
measurement is discussed. In the second section, literature focusing on GSCM is discussed.

2.1. Green Supply Chain Management (GSCM)

GSCM is defined by incorporating the environmental aspect into the supply chain management
that considers the effect and association of supply chain management to the surrounding
environment [14,19,22,23]. The traditional supply chain focuses on the economic aspect of the
supply chain, ignoring the environmental impact of the activities, whereas the green supply chain
focuses on and tries to minimize the adverse impact of the supply chain activities on the environment.
A green supply chain, however, must not just be environment friendly, it also must be economically
viable [14]. According to Wilkreson [24], GSCM is not a cost center. Instead, it is an important
business driver.

The rising scarcity of raw materials, environmental pollution and ever-increasing world population
have placed utmost importance on GSCM [14,25]. It encompasses two major areas, green design
and green operations [25]. Mishra et al. [19] expanded the repertoire of GSCM by adding green
distribution and marketing to the definition. Green design is the incorporation of the environmental
effect of a product throughout its life cycle in the design and development process [26]. Several tools
exist that can help designers understand the impact of their product. Life-cycle assessment, design
for environment principles and product stewardship are some of the tools [27]. Green operations
include green manufacturing or remanufacturing, reverse logistics and waste management [28–30].
Reverse logistics is a crucial part of GSCM. Reverse logistics is a method of increasing environmental
performance of a company by using the concept of the 3Re’s (recycle, reuse and reduce the use of
material) [10,19,29]. Swami and Shah [31] included the coordination of functional areas to share the
responsibility for environmental performance as an important element of GSCM.

2.2. Traditional Supply Chain Management Performance Measurement

Though much work on performance measurement and management of internal organizational
activities has been done, only a handful have focused on supply chain performance measurement [18].
Multiple echelon inventory-based supply chain models have generally considered various performance
measures like cost, quality, delivery time, inventory levels, and environmental costs [32,33].

Comprehensive supply chain performance measurement has been the focus of some of the existing
literature. Supplier performance evaluation and study of appropriate performance measures have
received special attention from some researchers [34,35]. Most of these studies have focused on
measuring supplier performance, and also focused on their roles in the supply chain. Beamon [36]
observed the impact of the various elements on supply chain performance and recognized the inherent
association between these elements and supply chain performance. Inventory system stock-out
risk, the probability distribution of demand and transportation time are some of the major elements
identified by the authors.

A. Gunasekaran et al. [20] described various supply chain performance metrics. Using these
performance metrics, they also described sources. Though they did not include environmental
performance metrics, they emphasized a comprehensive study of these general measures. As existing
literature on traditional supply chain measurement fails to include environmental performance, several
researchers have tried to incorporate environmental performance in their different studies. These
studies will be reviewed in the next section.
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2.3. GSCM Performance Measurement

The perception of ecological sustainability has been considered as a basis for studying management
practices by several researchers [37–39]. They have acknowledged its applicability in both operational
and strategic contexts. Greening of supply chains within various contexts has been studied and
these contexts include product design [26], process design [25], manufacturing practices [40–42],
purchasing [43,44], and a comprehensive combination of these factors [25,45].

Several researchers [10,25,46,47] emphasized that GSCM has emerged as an approach to build a
competitive advantage and to fulfill the environmental requirements that are set by various regulatory
bodies. Ahi and Searcy [48] proposed various metrics to measure environmental performance.
Reducing the negative environmental impact (different types of pollution) and reducing the waste of
resources (energy, materials, goods) were considered as overall objectives of a green supply chain by
Hervani et al. [21]. The authors also noted that this reduction process should start from the extraction
of raw material and should continue up to the consumption and shipment of products. Green supplier
selection has attracted quite a bit of attention from researchers [49–51]. Several metrics for assessing
supplier performance were identified by Kuo, Wang, and Tien [52]. These metrics include “green
competencies”, “current environment efficiency”, “supplier’s green image” and “net life-cycle cost”.
Actually, this supplier performance assessment procedure is a part of the green purchasing process.
Yazdani, Chatterjee, Zavadskas, and Zolfani [53] used a Quality Function Development (QFD)-based
multi-criteria decision-making approach for green supplier selection. Tang, Wei, and Gao [54] used the
Muirhead Mean operator and dual Muirhead Mean (DMM) operator to process the interval-valued
Pythagorean fuzzy numbers (IVPFNs), which they then used to solve a supplier selection problem.
Jenssen and de Boer [55] incorporated life-cycle assessment in the green supplier selection problem.
Xu, Shi, Cui, and Quan [56] used interval 2-tuple linguistic hybrid aggregation operators to select
green suppliers.

Researchers have introduced tools such as the analytical hierarchy process (AHP), activity-based
costing and design for environmental analysis; life-cycle analysis and balanced scorecard for Green
Supply Chain Performance Measurement. Although a few tools can be directly implemented for
evaluating the performance, the remaining others need to be modified. For example, a management
tool known as ecological supply chain analysis (ECOSCAN) was developed by Faruk et al. [45] to
observe the effect of environmental management across the supply chain. The life cycle analysis model
is the basis of the ECOSCAN tool, which emphasizes the connection between life-cycle analysis and
GSCM methods.

Handfield, Walton, Sroufe, and Melnyk [57] combined AHP with an extensive information system.
This information system enables environmentally conscious purchasing. Pineda-Henson, Culaba,
and Mendoza [58] used AHP to analyze the impact of environment by following the life-cycle assessment
approach, which mainly considers the manufacturing operations. Handfield et al. considered only
green purchasing and Pineda-Henson et al. considered a particular case study of pulp and paper
manufacturing; however, none of them considered the overall green supply chain performance.

By reviewing the existing literature, eleven corresponding green supply chain performance
indicators were identified. These eleven indicators were then classified into a hierarchy model which
was inspired by the works of Maleki and Machado [33]. The indicators were first clustered into small
groups, e.g., indicators related to water and energy consumption were put into the group ‘consumption’.
These groups were then classified into performance measures. Two performance measures were
considered: business wastage, and emission and consumption. Business wastage, in the context of this
paper, is defined as waste materials produced as a result of various business processes. On the other
hand, emissions and consumption includes all those indicators related to various solid, liquid emission
and different resource consumptions. It is to be noted that two indicators, i.e., ‘Output amount of
hazardous and toxic material’ and ‘Percentage of energy obtained from renewable sources’ were not
clustered into any group as there no performance indicators similar to them. These performance
measures and indicators were used for developing a BBN model. Using these performance measures
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and indicators, the green supply chain performance in different scenarios can be predicted. These
performance measures and indicators are presented in Table 1 along with corresponding references
and notations that will be used throughout the paper.

Table 1. Green supply chain performance measures and indicators.

Measures Groups Indicators Reference

Business Wastage related

Materials related.

Total flow quantity of
scrap. [59,60]

Percentage of materials
remanufactured. [21,61]

Percentage of materials
recycled/re-used. [15,62]

Output amount of
hazardous and toxic
material.

[32,63]

Waste related.
Amount of solid wastes. [46,64]

Amount of liquid wastes. [46,64]

Emissions and
consumption related

Emission.
Amount of greenhouse
gas emissions. [65]

Air emission quality. [66,67]

Consumption.
Amount of water
consumption. [68,69]

Amount of energy
consumption. [68,69]

Percentage of energy
obtained from renewable
source.

[70,71]

3. Bayesian Belief Network

As mentioned before, Bayesian Belief Network is the method of choice for predicting the
performance of green supply chain in this study. A Bayesian Belief Network, or Bayes net in short form,
is a probabilistic graphical model that presents knowledge about an uncertain domain. Bayes net is an
effective method to represent causality and conditional probabilities among various factors [72,73].
Moreover, this method is suitable when the factors are probabilistic in nature. According to several
authors, such as Langseth and Portinale; Mahadevan, Zhang, and Smith; Maleki and Machado [33,74,75],
BBN shows high performance in handling uncertainty. As the factors and the relationships among them
are represented using nodes and edges, any model represented using this method is easier to understand
for practitioners than any other techniques [72]. As the performance indicators used in this study are
probabilistic and the state of performance measures are conditionally dependent upon the states of
performance indicators, Bayesian Network has been chosen to predict environmental performance.

BBN consists of two parts B = (G, θ). The first part, “G”, is a directed acyclic graph (DAG) which
includes nodes and arcs. DAG presents the network visually where variables of the data set X1, . . . . . . ,
Xn represent nodes and arcs indicate dependencies among nodes [76]. The second part of BBN is the
conditional dependency distribution of θ where θxi |πxi = PB(xi|πxi) is the set of direct parent variables
of xi in G [77]. Using the joint probability distribution, the network B can be represented by:

PB(X1, . . . ., Xn) =
n∏

i=1

PB(Xi |πXi) =
n∏

i=1

Xi |πXi (1)
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In a BBN, random variables are represented by nodes, and probabilistic dependencies among
the corresponding random variables are represented by edges between the nodes. A BBN actually
is a probabilistic model that can compute the posterior probability distribution of any unobserved
stochastic variables, given the observation of complementary subset variables [78]. In a BBN,
“backward” probability propagation is also possible and it is helpful to find the most probable scenario
indicating the evidence set [79].

Inference in BBN is used to update the probability for a hypothesis as more evidence or information
becomes available. Figure 1 illustrates a simple Bayesian network where “A” and “B” are parent nodes,
“C” is a child node. There are two types of inference support: predictive and diagnostic support for
a node Xi. Predictive support for node Xi is a top-down approach that considers evidence nodes
connected to Xi through its parent nodes. On the other hand, diagnostic support for node Xi is a
bottom-up approach that considers evidence nodes connected to Xi through its child node [80].
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4. Framework Development

The aim of this research work is to find out the most significant quantitative green supply
chain performance measures and predict green supply chain performance in different scenarios.
Figure 2 illustrates the methodology of this research. The proposed research consists of five steps as
described below.
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Step 1: Identification of performance measures and their corresponding indicators

In the first step, an extensive list of green supply chain performance measures (GSC-PM) is generated
based on the factors that have a significant influence on green supply chain performance. The most
significant GSC-PM are identified through a literature review. For the literature review, papers
published from 1995 to present day were chosen for the review timeline. Literature about green supply
chain was searched for factors that the authors believe can significantly affect the environmental
performance of a company. Papers about green purchasing, green consumption, green marketing, green
manufacturing, green 3R (reduce, reuse, recycle) and supply chain performance measurement were
also studied for green performance indicators. A total of 11 performance indicators were identified,
which represent two major performance measures. These indicators and measures were identified by
reviewing the existing literature.

Step 2: Collection of data about performance indicators

In this step, data about performance indicators were collected. These data were used for calculating the
prior probability of each performance indicator in the BBN model and for learning in the BBN model.

Step 3: Introducing dependency and independency among performance measures and their indicators
in the BBN model

In this step, dependency and independency among performance measures and their indicators are
introduced. They determine the mutual influence between performance measures and their indicators.

Step 4: Using a learning algorithm to draw an inference from data sets

In this step, a learning algorithm is used to draw an inference from data which are collected during
step 3. The inference is used to update the probability for a hypothesis (here, the hypothesis is whether
the performance indicator will be in a satisfactory state or in an unsatisfactory state) as more evidence
or information becomes available.

Step 5: Monitoring performance measures and predicting green supply chain performance by applying
evidence to specific nodes in the BBN model

In this step, performance measures are monitored and green supply chain performance is predicted
by applying evidence to specific nodes which represent performance indicators in the BBN model.
Evidence will be different for different scenarios and, as a result, green supply chain performance will
be different for different scenarios. The methodology of this research is illustrated in Figure 2.

5. BBN-Based Performance Prediction Model

5.1. Identification of Performance Measures and Their Corresponding Indicators

Using a thorough literature review, eleven performance indicators have been identified which
will be used to build the model.

5.2. Data Collection

The developed methodology has been applied to a real-world case study and used to predict the
green supply chain performance of this case company. Necessary data about performance indicators
have been collected from this company. These data and information will help to determine the prior
probability of the performance indicators being in the satisfactory state, and also the prior probability
of performance indicators being in the unsatisfactory state. The data of “Amount of Solid Wastes”
performance indicator are highlighted in Table 2 as an example.
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Table 2. Data about ‘Amount of Solid Wastes’ performance indicator.

Time Period (Month) Amount of Solid Wastes (Kg)

1st 64,100

Recommended
Level ≤ 68,000 kg

2nd 60,000

3rd 65,700

4th 62,000

5th 59,800

6th 63,500

7th 71,000

8th 60,500

9th 73,000

10th 70,500

11th 69,000

12th 72,000

13th 68,500

14th 66,000

15th 61,000

16th 66,700

17th 69,700

18th 63,300

19th 67,600

20th 64,500

Using a histogram, collected data about performance indicators and their corresponding
recommended levels are presented in Figure 3.
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According to Table 2, the company has met the recommended level 13 out of 20 times. For this,
the probability that performance indicator “Amount of Solid Wastes” will be in the Satisfactory state =

((13/20) × 100) % = 65% and Unsatisfactory state = ((7/20) × 100) % = 35%. Similarly, prior probabilities
for other performance indicators have been calculated and are listed in Table 3.
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Table 3. Prior probabilities for green supply chain performance indicators.

Performance Indicators
State Probability (%)

Satisfactory (S) Unsatisfactory (U)

1. Total flow quantity of scrap. 60 40

2. Percentage of materials recycled/re-used. 35 65

3. Percentage of materials remanufactured. 40 60

4. Output amount of hazardous and toxic material. 60 40

5. Amount of solid wastes. 65 35

6. Amount of liquid wastes. 55 45

7. Amount of water consumption. 50 50

8. Amount of greenhouse gas emissions. 60 40

9. Air emission quality. 90 10

10. Amount of energy consumption. 35 65

11. Percentage of energy obtained from renewable sources. 10 90

5.3. BBN Model Development

The BBN model was developed using commercially available software Netica [81] and prior
probabilities of performance indicators listed in Table 3 are presented in Figure 4. To learn the
conditional probabilities in the network, Netica has counting algorithms, expectation-maximization
(EM) and gradient descent [79]. As there are no hidden variables or incomplete data, Netica used
counting algorithms for the model development.
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From Figure 4, it can be found that there is a 52.4% probability that performance measure “Business
Wastage” will be in a satisfactory state and 53.6% probability that performance measure “Emissions”
will be in a satisfactory state and, finally, there is a 57.6% probability that Environmental Performance
or Green Supply Chain Performance will be in a satisfactory state. These results are based on current
prior probabilities of performance indicators which were collected from the data.

5.4. Model Validation

Both qualitative (extreme-condition test and scenario analysis) and quantitative (sensitivity
analysis) validation approaches were performed for validation of the proposed model [82].
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5.4.1. Extreme-Condition Test

To validate the model, two extreme conditions are considered in this paper. In extreme case 1, all the
performance indicators are in a satisfactory condition. In extreme case 2, all the performance indicators
are in an unsatisfactory condition. The results for extreme cases 1 and 2 are shown in Figures 5 and 6,
respectively. From Figure 5, it can be found that, when all the performance indexes have a 100 percent
probability of being satisfactory, the environmental performance has a 92.8 percent probability of being
in a satisfactory condition. Similarly, according to Figure 6, when all the performance indicators have a
100 percent probability of being in an unsatisfactory condition, the environmental performance has
only 4.15 percent probability of being in a satisfactory condition. So, the extreme-condition tests show
that the proposed environmental performance model works according to expected model behavior.
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5.4.2. Scenario Analysis

In this analysis, different hypothetical scenarios are considered except the two extreme
cases. Due to space limitations, only two performance factors, namely, Scrap_Flow_quantity and
Hazardous_Toxic_Material have been considered here. Eight different scenarios are considered where
the probability of a satisfactory state of these two performance factors is varied from 90 percent to
10 percent in increments of 10 percent. The results of the analysis are shown in Figure 7 and summarized
in Table 4.
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Table 4. Scenario analysis results of the proposed BBN-based model.

Nodes Sates
Conditional Probabilities of Different Scenarios

Sc-1 Sc-2 Sc-3 Sc-4 Sc-5 Sc-6 Sc-7 Sc-8

Scrap_Flow_quantity Satisfactory 90 80 70 50 40 30 20 10

Unsatisfactory 10 20 30 50 60 70 80 90

Hazardous_Toxic_Material
Satisfactory 90 80 70 50 40 30 20 10

Unsatisfactory 10 20 30 50 60 70 80 90

Materials Related
Satisfactory 59.8 55.4 50.9 41.9 37.4 32.9 28.5 24

Unsatisfactory 40.2 44.6 49.1 58.1 62.6 67.1 71.5 76

Business Wastage Related Satisfactory 74.4 68.2 62 49.6 43.5 37.3 31.1 25

Unsatisfactory 25.6 31.8 38 50.4 56.5 62.7 68.9 75

Environmental Performance Satisfactory 61.3 57.6 54 46.6 43 39.3 35.7 32

Unsatisfactory 38.7 42.4 46 53.4 57 60.7 64.3 68

In scenario 1, where Scrap_Flow_quantity and Hazardous_Toxic_Material are at 90 percent,
Environmental Performance is at 61.3 percent. In scenario 2, where the probability of satisfactory
states of performance indicators decreases to 80 percent, the nvironmental performance decreases
to 57.6 percent. Scenario 3 depicts 70 percent satisfactory probability of performance indicators
where Environmental Performance decreases to 54 percent. Similarly, from scenarios 4–8, where the
probability of a satisfactory state of Scrap_Flow_quantity and Hazardous_Toxic_Material decreases,
the probability of Environmental Performance being in a satisfactory state also decreases. In scenario 8,
where the performance indicators are at 10 percent of the probability of being in a satisfactory state,
the Environmental Performance has only a 32 percent probability of being in a satisfactory state. Thus,
the scenarios show the expected model behavior.

All these eight scenarios represent the anticipated model behavior. In a similar way, the different
combinations of the performance indicators are considered to generate different scenarios and their
Environmental Performance probability distribution is tested to perform model validation.

5.4.3. Sensitivity Analysis

To identify the contribution of each individual input in the model output, a sensitivity analysis was
performed. This analysis provides information about how slight variations in input parameters like
water consumption and solid wastes can affect the model output, which in this case is Environmental
Performance. Because the input variables, in this case, are discretized continuous parent nodes, using a
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variance reduction method is recommended [82]. However, the results of an entropy reduction method
are also provided.

The variance reduction method calculates the variance reduction of the expected real value
of a query node E (e.g., Environmental_Performance) due to a finding in a varying variable node I
(e.g., Recycled/re-used, Remanufactured, Renewable_Source). The variance of the real value of E given
evidence I, V(e

∣∣∣i) is computed using the following equation [82,83]:

(e|i) =
∑

e
p(e|i) [Ye − E(e|i)]2, (2)

where e is the state of the query node E, i is the state of varying node I, p(e|i) is the conditional
probability of e given i, Ye is the numeric value corresponding to state e and E(e

∣∣∣i) is the expected
value of E after the new finding i for node I.

Entropy reduction calculates the expected reduction in mutual information of E from a finding for
variable I (Kabir et al., 2019). The formula is given below:

ER = H(E) −H(E|I) =
∑

e

∑
i

P(e, i)
log2[P(e, i)]

P(e)P(i)
, (3)

where H(E) and H(E|I) are the entropy before the new findings and after the new findings. The results
of the sensitivity analysis are provided in Figure 8.
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For query node Environmental_Performance, Hazardous_Toxic_Material has the highest contribution
(1.830% variance reduction and 5.354% entropy reduction, respectively) followed by Renewable_Source
(0.386% and 1.141%), Solid_Wastes (0.223% and 0.645%), Scrap_Flow_quantity (0.195% and 0.564%),
Remanufactured (0.133% and 0.385%), Liquid_Wastes (0.099% and 0.287%), Recycled/re-used (0.090% and
0.260%), Greenhouse Gas Emission (0.053% and 0.153%) have medium effects on Environmetal_Performance.
Energy_Consumption and Air_Emission, Water_Consumption have very low contributions. The variance
reduction and entropy reduction for both are below 0.05%. The total contribution of parent nodes in
variance reduction is 3.039% and for entropy reduction is 8.856%.

The result of sensitivity analysis allows the decision-maker to identify the input parameters
that affect the output most and prioritize them in the decision-making. In the case of Environmental
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Performance, the managers should first prioritize reducing toxic waste and focus on using renewable
sources to improve environmental performance.

5.5. Diagnostic Analysis

Marginal probabilities of root or parent nodes can be determined by performing a diagnostic
analysis [83]. The posterior probabilities conditioned to the aggregated risk can be identified using this
analysis. The posterior probabilities of the parent nodes conditioned to aggregated risk are shown
in Table 5. Table 5 shows the change in the probability of performance indicators in two extreme
cases of Environmental Performance. All the probabilities for a satisfactory state decrease when
Environmental Performance goes from a satisfactory state to an unsatisfactory state. On the other hand,
the probabilities of an unsatisfactory state go up. This is in line with the expected model behavior.

Table 5. Posterior probabilities of parent nodes conditioned to Environmental Performance.

Parent Nodes Posterior Probabilities
of States

Environmental Performance

Satisfactory Unsatisfactory

1 1

Air Emission
Satisfactory 0.906 0.894

Unsatisfactory 0.094 0.106

Energy Consumption Satisfactory 0.361 0.339

Unsatisfactory 0.639 0.661

Greenhouse Gas Emi
Satisfactory 0.622 0.577

Unsatisfactory 0.378 0.423

Hazardous_Toxic_Material
Satisfactory 0.732 0.466

Unsatisfactory 0.268 0.534

Liquid_Wastes Satisfactory 0.581 0.518

Unsatisfactory 0.419 0.482

Recycled/re-used Satisfactory 0.378 0.321

Unsatisfactory 0.622 0.679

Remanufactured Satisfactory 0.436 0.364

Unsatisfactory 0.564 0.636

Renewable_Source
Satisfactory 0.137 0.062

Unsatisfactory 0.863 0.938

Scrap_Flow_Quantity Satisfactory 0.643 0.556

Unsatisfactory 0.357 0.444

Solid_Wastes
Satisfactory 0.695 0.605

Unsatisfactory 0.305 0.395

Water_Consumption Satisfactory 0.508 0.492

Unsatisfactory 0.492 0.508

6. Conclusions, Implications and Limitations to This Study

In this study, a BBN-based probabilistic model is proposed for predicting green supply chain
performance. Eleven green supply chain performance indicators and two green supply chain
performance measures were identified through a review of the existing literature, and then BBN was
used to develop the model that would predict the overall environmental performance. Inputting the
satisfactory/unsatisfactory states of the performance indicators in the model will provide the decision
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maker with the overall green supply chain environmental performance state. This will allow the
manager to see how the performance metrics can affect the overall green supply chain performance.
To validate the model, an extreme condition test was used. Furthermore, performing a sensitivity
analysis reveals the most important performance indicators and provides the decision makers with
a ranking of the indicators in the order of importance. For the case company in this study, output
amount of hazardous toxic material was found to be the most important indicator having the highest
variance reduction and entropy, followed by percentage of energy obtained from renewable sources.
Amount of solid wastes, total flow quantity of scraps, and percentage of materials remanufactured are
also some important indicators with relatively high sensitivity. On the other hand, amount of water
consumption, quality of air emission and amount of energy consumption were found to be the least
important indicators with low sensitivity. The manager of this company can give relatively less focus
to these factors without worsening the environmental performance too much. This model can also
help a manager to achieve a prespecified level of performance. The model allows a manager to input
the required level of environmental performance, and the model will determine at what level each
environmental indicator needs to be.

This study makes several theoretical contributions in the field of green supply chains. First, this
study identified the key performance indicators that affect the overall environmental performance
across the supply chain of an organization. Second, this study proposes a BBN-based framework for the
green or environmental performance prediction of a supply chain. The final contribution of this paper
is that it investigates how the individual key performance indicators affect the overall environmental
performance of a supply chain.

Using this model, managers and executives will be able to understand which performance
indicators most affect green supply chain performance of their company. They will also be able to
understand which performance indicators to focus on first, and where the resource should be allocated
first to achieve the optimum level of environmental performance. As managers usually have limited
resources at their disposal, prioritizing and optimizing resource allocation can greatly help in achieving
environmental objectives of a supply chain. Using the current performance level of each performance
indicator, they will be able to monitor current environmental performance, which will help them
to understand the company’s current relative position in the industry. Using diagnostic analysis,
managers can determine the target performance indicator levels required to achieve satisfactory
overall performance.

This study has some limitations. Due to limitations in collecting data, only one company’s data has
been used to test the model. Another limitation is that not all possible key environmental performance
indicators were added to the proposed BBN model. This model only considered two states, namely
satisfactory and unsatisfactory states for the BBN nodes.

There are several directions future researches on this topic can take. One direction can be adding
more performance indicators. A more comprehensive model validation test can be performed by
collecting data from multiple sources and performing multiple case studies. Another direction for
future research can be incorporating multiple states instead of just satisfactory and unsatisfactory states,
which can be an exciting direction for future research. IoT devices can be used to collect environmental
data in real time which can be used as the input for an online algorithm. This algorithm can update
the BBN model in real time for monitoring purposes. Other artificial intelligence-based tools such as
knowledge systems, fuzzy AHP, or Bayesian Regression Trees can be developed for predicting green
supply chain performance and the results can be compared.
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