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Abstract: Climate change will increase simultaneous crop failures or too abundant harvests, creating
global synchronized yield change (SYC), and may decrease stability in the portfolio of food supply
sources in agricultural trade. This study evaluated the influence of SYC on the global agricultural
market and trade liberalization. The analysis employed a global computable general equilibrium
model combined with crop models of four major grains (i.e., rice, wheat, maize, and soybeans), based
on predictions of five global climate models. Simulation results show that (1) the SYC structure
was statistically robust among countries and four crops, and will be enhanced by climate change,
(2) such synchronicity increased the agricultural price volatility and lowered social welfare levels
more than expected in the random disturbance (non-SYC) case, and (3) trade liberalization benefited
both food-importing and exporting regions, but such effects were degraded by SYC. These outcomes
were due to synchronicity in crop-yield change and its ranges enhanced by future climate change.
Thus, SYC is a cause of systemic risk to food security and must be considered in designing agricultural
trade policies and insurance systems.

Keywords: agricultural trade liberalization; computable general equilibrium (CGE) model; crop
model; food security; simultaneous crop failure; social welfare

1. Introduction

Agricultural production is highly influenced by climate conditions [1]; therefore, climate change
may add volatility to agricultural production due to crop failures [2,3] or too abundant harvests [4].
Simultaneous crop failures and abundant harvests would enhance synchronized yield change (SYC)
for major grains and increase global imbalances in food supply and demand, resulting in extremely
volatile agricultural prices [5]. The Intergovernmental Panel on Climate Change (IPCC) suggested that
global agricultural prices could increase up to 29% from current levels by 2050, due to the synergy
of a decline in agricultural production under future climate change and an increase in the world
population [6]. Agricultural price surges should be a risk to food security in the global economy. Thus,
clarifying the influence of such risk is an important academic and agricultural policy issue.

Wright [7] analyzed the causes of past spikes in agricultural commodity prices and showed
that speculation and rising oil prices were not reasons behind price spikes. The actual explanation
was the imbalance in supply and demand, in addition to changes in the grain stock level of global
markets. Meanwhile, Headey and Fan [8] stated that the rise in agricultural prices in 2007 was strongly
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influenced by factors other than the supply–demand balance in the food market, and that the impact of
supply shocks caused by climate change was relatively small. However, they could not ignore climate
shocks as a causative factor. Based on these previous findings, it is useful to apply analytical methods
that consider supply and demand in the food market in any analysis of agricultural price volatility.

The computable general equilibrium (CGE) model is a powerful analytical tool for analyzing the
supply–demand equilibrium and equilibrium prices simultaneously. Many previous studies in the field
of agricultural and environmental economics have applied CGE models to assess agricultural trade
policy [9], earthquake disasters [10,11], climate change [4,12–15], and environmental policy [16–19].
Notably, in the field of environmental evaluation, some previous studies employed a method that
combined global climate model (GCM), crop model, and CGE model to evaluate climate impacts on
economies [12,15,19]. However, there seem to be a few quantitative studies that applied CGE model to
analyze the systemic risks in global food markets under future climate change.

Nevertheless, Tanaka and Hosoe [20] and Hosoe [21] used a global CGE model to examine
the impact of productivity shocks and the effects of trade liberalization on global food markets by
performing a Monte Carlo simulation analysis. Their results showed that food-importing countries
further increased imports after trade liberalization, but the decline in agricultural prices raised the
social welfare level and eliminated negative influences of domestic production decline. Therefore,
these studies concluded that trade liberalization could decrease domestic agricultural price volatility
despite overseas productivity changes and would not reduce the food security level of importing
countries such as Japan.

The conclusions of the research by Tanaka and Hosoe [20] and Hosoe [21] are consistent with
portfolio theory in that overall fluctuation can be reduced by diversifying the combination of products
from different areas with different price fluctuation patterns, regardless of import and domestic
production. However, these studies have not analyzed the impact of correlated shocks among major
grains or with other countries. Theoretically, shocks correlated across traded products increase fragility
in the market and can be a “systemic risk” [22]. In other words, risk hedging to mitigate future price
fluctuations can be accomplished by combining stocks whose prices fluctuate independently. However,
the combined stock price may drastically fall if there is a correlation in the price fluctuations. Systemic
risk originates in tightly coupled systems and is characterized by interlocking effects, tipping points
and nonlinear developments [23]. If climate change enhances a correlation among crops or among
producing countries, agricultural trade liberalization may not be useful as a mechanism to hedge risk
under climate change.

This study analyzes whether future climate change increases systemic risk via SYC. When and if
such systemic risk exists, this study attempts to evaluate quantitively the influence of SYC (a source of
systemic risk) on the global food market with consideration of trade liberalization. The methodological
features of this study are as follows. First, we integrate the CGE model and two crop models to treat
prediction results of five GCMs for a more general prediction-based assessment. Second, economic
impacts of climate shocks generated by these models are compared to the results from the stochastic
simulation method to quantify the difference between SYC and non-SYC situations. Policies for
addressing systemic risks may include the allocation of production sources, insurance systems to
mitigate crop failures, and government involvement to improve forecast accuracy.

The remainder of this paper is organized as follows. Section 2 explains the methods used in this
analysis, including the crop model and the CGE model. Section 3 demonstrates the chronological
robustness of the SYC structure in the global production systems of four major grains and detects
the impacts of systemic risk on food markets caused by SYC, considering future climate change and
agricultural trade liberalization. Based on these results, Section 4 notes some policy implications.
Finally, Section 5 summarizes the results of the analysis and presents the conclusions.
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2. Materials and Methods

The analysis measures the degree of SYC among countries and among crops under future climate
change using the predictive results of the crop model, and it verifies the chronological robustness of
SYC. Subsequently, fluctuations in agricultural prices are calculated by inputting the results of the
crop model into a global CGE model. These economic results are then compared with a no-correlation
case, in which SYC among countries and crops does not exist, by applying a Monte Carlo simulation
analysis according to Hosoe [21]. Figure 1 shows these analytical procedures.
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Figure 1. Analytical framework. T1 period is 1961–2014, and T2 and T3 periods are, respectively,
2015–2050 and 2051–2100. FAO statistics refer to the crop-yield statistics of the Food and Agriculture
Organization (FAO). GCM is global climate model, and CGE model is computable general equilibrium
model. EV means equivalent variation.

2.1. Crop Model and Data

The possibility of simultaneous crop failure has already been verified by previous studies using
historical data [3], as well as future prediction data [2]. This study instead examines the chronological
robustness of correlation coefficients on annual yield change, including small fluctuations in addition
to crop failure and too abundant harvests.

Crop-yield data of four crops—rice, wheat, maize, and soybeans—were prepared over three
periods: T1 (1961–2014), T2 (2015–2050), and T3 (2051–2100). T1 corresponds to the period covered by
the crop-yield statistics of the Food and Agriculture Organization (FAO); FAO data were detrended
to remove technological progress (Appendix A). T2 and T3 are yield periods under future climate
change; yield data for these periods were produced by crop models of four major crops. The crop
models employed in this study are PRYSBI2 [24] and pDSSAT [25,26]. The PRYSBI2 is a hybrid type of
process-based and the empirical model, consisting of biological equations with observed parameters
from field experiments, as well as uncertain parameters estimated using the Markov chain Monte
Carlo method with statistical yield data. Meanwhile, pDSSAT is a pure process-based model that
replicates crop growth stages based on biological functions. These process-based models can estimate
yields by considering the changes in daily climate conditions predicted by GCMs. Both models were
employed in the Agricultural Model Intercomparison and Improvement Project (AgMIP), and the
yield data of these crop models were estimated according to the AgMIP common protocol [25]. Müller
et al. [27] showed that the reproducibility of PRYSBI2 was 0.260 n.s., 0.303 n.s., 0.527 **, and 0.279 n.s
for maize, wheat, rice, and soybean, respectively, whereas that of pDSSAT was 0.888 ***, 0.652 ***, 0.215
n.s., and 0.496 ** (in the same order). Here, ***, **, and n.s. indicate significant at p < 0.001, significant
at p < 0.05, and not significant at p < 0.1. These numbers were calculated from time series of crop-yield
estimations and FAO’s statistical data in the global scale after detrending. Some crops had insignificant
correlations due to small sample size, but generally temperature and precipitation can only explain
approximately 30% of year-to-year variations in the average global yields of measured crops [1], which
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corresponds to a correlation coefficient of 0.55. Considering this value, the reproducibility of the two
crop models meets the level available for analysis.

In the estimation, daily climate conditions and CO2 fertilizer effects were considered according
to the representative carbon pathway (RCP) scenario, RCP8.5, that corresponds to the highest CO2

concentration among scenarios mentioned in the IPCC report. Although there are many objections
in the field of crop science regarding the magnitude of the effects of CO2 fertilizer [28], such effects
can ease the future degradation risk of crop yield and avoid overestimating risk; therefore, this study
considered the effects of CO2 fertilizer. The technology level was fixed at its 2000 level, which was
before the start year of the simulation, to eliminate the effects of afterward technological progress,
such as breed improvement. Influences of flood damage caused by heavy precipitation were ignored,
although the effects of drought were considered through changes in soil moisture caused by rainfall.

Daily climatic conditions forecasted by the five GCMs (i.e., HadGEM2-ES, IPSL-5 CM5A-LR,
MIROC-ESM-CHEM, GFDL-ESM2M, and NorESM1-M) were entered into the two crop models for the
annual crop-yield forecast of each country from 2007 to 2099. Five GCMs’ data on the RCP 8.5 scenario
were obtained from the Coupled Model Intercomparison Project 5 (CMIP5) [29], and these were bias
corrected according to Hempel et al. [30].

The analysis, then, calculated the correlation coefficients of yields in T1, T2, and T3 periods. As it
was useless to compare the climate data of each GCM in a specific year, the correlation coefficient
was calculated from the sample corresponding to each crop model and each GCM (2 crop models × 5
GCMs), consisting of year periods in T1, T2, and T3. Therefore, the sample size was the total number of
2 models × 5 models × period, excluding the year when the crop models’ estimation was not successful.

Thereafter, we selected statistically significant combinations of regions and/or crops for which
the correlation coefficients of annual yields are significant in each period and investigated whether
these combinations in one period can continue to the next period. The number of combinations, which
retain significance in correlation coefficients between two periods, was thought to show the degree of
SYC robustness.

The analyzed area is a total of 38 countries and/or regions, including 29 countries that are major
producers and importers of the four target grains and 9 regions that are integrated based on geographical
proximity (Table 1). These integrations are due to a limitation in the ability of CGE model explained
later. For simplicity, each country and/or region is simply referred to as a “region” hereinafter.

Table 1. Aggregated regions for analysis.

No. Identifier Country or Region No. Identifier Country or Region

1 AUS Australia 20 URY Uruguay
2 CHN China 21 XSM Rest of South America
3 JPN Japan 22 XCA Rest of Central America
4 KOR Korea Republic of 23 FRA France
5 IDN Indonesia 24 DEU Germany
6 PHL Philippines 25 GBR United Kingdom
7 THA Thailand 26 XEF Rest of Western Europe
8 VNM Vietnam 27 ROU Romania
9 BGD Bangladesh 28 RUS Russian Federation

10 IND India 29 UKR Ukraine
11 PAK Pakistan 30 XER Rest of Europe
12 XAS Rest of ASIA 31 IRN Islamic Republic of Iran
13 CAN Canada 32 TUR Turkey
14 USA United States of America 33 XWS Rest of Middle East
15 MEX Mexico 34 EGY Egypt
16 ARG Argentina 35 XAC South Central Africa
17 BOL Bolivia 36 XEC Rest of Eastern Africa
18 BRA Brazil 37 ZAF South Africa
19 PRY Paraguay 38 XTW Rest of the World
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2.2. CGE Model for Estimation of Agricultural Price Volatility

Annual agricultural price is estimated by a static global CGE model [31] based on the Global
Trade Analysis Project (GTAP) 9 database [32], considering the supply–demand balance in the global
crop trade markets. The detailed structure of the model is explained by Lanz and Rutherford [31];
hence, this study notes only the following points as the model’s primary features.

First, production is formulated by a nested constant-elasticity-of-substitution (CES) function.
Value added is produced by four input factors (i.e., labor, capital, farmland, and natural resources), and
total gross production is calculated by combining value added with intermediate inputs, comprised
of import and domestic goods. Domestic production and export are further divided from total
gross production based on the constant-elasticity-of-transformation (CET) function. Imports are
inserted into the production process by a CES-type function based on Armington’s assumption [33].
Second, consumption is formulated by a linear expenditure system (LES)-type function that treats
basic consumption and variable consumption separately. Variable consumption is determined by
considering the substitutability of each consumption good that is produced from domestically produced
and imported goods according to Armington’s assumption. Similarly, investment and government
consumption are defined by a Leontief-type function that combines consumption goods comprised of
domestic and imported goods. Third, production tax, production factors tax, intermediate input tax,
consumption tax, public sector purchase tax, investment tax, export subsidy, and import tariff are all
considered to cover the tax systems of each country in the world.

Original GTAP industrial sectors are combined into 12 sectors (Table 2), and countries in the world
are merged into 38 regions (Table 1). The parameters of each function are calibrated by the data of
2011 in the GTAP 9 database. The substitution elasticities for production, consumption, government
consumption, and trade are also derived from the GTAP 9 database, as well as the Frisch parameter
in consumption.

Table 2. Aggregated industrial sectors for simulation analysis.

No Identifier Industrial Sectors No Identifier Industrial Sectors

1 PDR Paddy rice 7 MIN Forestry, fishery, and mining
2 WHT Wheat 8 VOL Vegetable oils and fats
3 GRO Other cereal grains (including maize) 9 PCR Processed rice
4 OCR Other crops 10 OFD Other food products
5 OSD Oil seeds (including soybeans) 11 MAN Manufacturing

6 OAP Animal products and
other agriculture 12 SEV Service

2.3. Simulation Method

The global CGE model is exogenously subjected to disturbances caused by the yield changes of
four crops. We assume that these disturbances affect the production of each crop through effective
farmland productivity (EFP) in the CES-type cost function (Appendix B). The disturbances here are
seemingly time-series data corresponding to the yearly data produced randomly or predicted by crop
models based on GCMs’ prediction. However, the shock of the disturbances is assumed to converge
in 1 year; therefore, the simulation performs repeatedly static analyses according to the number of
disturbance data. The simulation cases considered are as follows.

Case 1 (Random and regionally independent disturbances, non-SYC): The yield changes create
random and regionally independent disturbances in EFP, and the current trade structure is maintained
(no change in import tariffs and export subsidies). One thousand random shocks are generated based
on a lognormal distribution as an assumption. The standard deviation given at the time of random
number generation is set to the standard deviation of the estimated yield by the crop models for the
period 2007–2014 to match the initial disturbance range with other cases. This case is an estimate
during the T2 and T3 periods without SYC and is used as reference for the subsequent Cases 2–6.
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Case 2 (SYC during T2): This case considers the SYC of the four crops that would be expected
during the T2 period under climate change. Crop yields with SYC are then assumed to change EFP
as follows:

EFPi,r,t =
(
YEi,r,t/YEi,r

)
, (1)

where, i, r, and t represent the four crop categories, countries, and year, respectively. Further, YE is the
yield estimated by the crop model, YE is an average of YE during the years 2007–2014 and is used as
the referenced level in the simulation. As there are 36-year estimations by 2 crop models with 5 GCMs,
the total number of iterations is 353 (=36 years × 2 crop models × 5 GCMs’ inputs −7 as unobservable
data) in the simulation. Furthermore, the current trade structure is maintained.

Case 3 (SYC during T3): Yield data estimated by crop models are during T3, and all other settings
are the same as in Case 2. The total number of iterations is 467 (49 years × 2 crop models × 5 GCMs’
inputs −23 as unobservable data).

Cases 4, 5, and 6 (Agricultural trade liberalization cases): These cases correspond to agricultural
trade liberalization in Cases 1, 2, and 3, respectively. All regions’ import tariffs and export subsidies for
agriculture and food sectors (PDR, WHT, GRO, OCR, OSD, OAP, OFE, VOL, and PCR) are set to 0.
Other settings are the same as in Cases 1, 2, and 3, respectively.

Table 3 summarizes the setting conditions for each described simulation case. From the difference
between any two cases in this table, the effects of SYC or trade liberalization can be calculated when
another condition is set equal. For example, the difference between Case 3 and Case 1 shows the effect
of strong SYC when trade liberalization is not considered; meanwhile, the difference between Case 6
and Case 3 shows the effect of trade liberalization with strong SYC. Hereinafter, the notation “Cases
X1/X2” implies the ratio of Case X1 against Case X2, whereas the notation “Cases X1 − X2” indicates
difference between Cases X1 and X2.

Table 3. Summary of simulation conditions.

Simulation Conditions Case 1 Case 2 Case 3 Case 4 Case 5 Case 6

Synchronized yield change None Weak Strong None Weak Strong
Trade liberalization None None None Adopted Adopted Adopted

3. Results

3.1. Robustness of the SYC Structure

Table 4 presents the frequency of the correlation coefficients between regions by magnitudes and
periods, calculated using available data from regions on annual crop-yields. The percentage values are
the ratios of regions’ number classified according to the magnitude of the correlation coefficient against
the total combination number, nt. Similarly, the values presented in Table 5 are calculated based on
correlation coefficients between crops.

As shown in Table 4, correlation coefficients were statistically significant in many combinations of
regions, showing a high occurrence possibility of similar climatic conditions between two regions, i.e.,
SYC among regions was recognized. Correlation coefficients between crops (Table 5) also show the
existence of SYC between crops. Furthermore, there were more combinations of regions or crops with
a positive correlation than a negative correlation. This happened due to the following two influences.
First, when climate change progressed worldwide, yields in each region simultaneously decreased or
increased, creating the chronological similar trend of yield change in each region where the same crop
was planted. Second, in addition to an increase in fluctuation of climate conditions in many regions
estimated by GCMs, crop-yield changes became more sensitive to changes in climate conditions. When
climatic conditions were close to the biological threshold level, even a small change in temperature
caused growth disorders and increased yield variability. Such tendency led to simultaneous crop
failures in many regions. Hence, the degree of SYC was increased with the progress of global warming.
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Table 4. Frequency in magnitude of correlation coefficient (r) between regions by crops and period.

Crops Periods n/nt r < −0.4 −0.4 < r < −r_NZ −r_NZ < r < r_NZ r_NZ < r < 0.4 0.4 < r

Rice T1 35/595 16.6% 4.0% 54.5% 4.5% 20.3%
T2 35/595 0.3% 5.2% 40.0% 21.5% 32.9%
T3 35/595 11.3% 7.7% 13.3% 23.2% 44.5%

Wheat T1 35/595 4.9% 1.7% 82.8% 4.2% 6.4%
T2 35/595 4.9% 19.2% 35.6% 30.3% 10.1%
T3 35/595 15.3% 9.4% 11.3% 15.6% 48.4%

Maize T1 37/666 9.5% 3.5% 55.1% 3.3% 28.7%
T2 36/630 0.0% 6.7% 59.7% 30.3% 3.3%
T3 36/630 0.2% 4.6% 9.0% 30.0% 56.2%

Soybeans T1 34/561 4.5% 2.1% 86.1% 2.5% 4.8%
T2 36/630 0.0% 7.3% 31.4% 34.8% 26.5%
T3 36/630 6.5% 7.8% 16.0% 24.6% 45.1%

Note: The percentage value is a ratio between the number of correlation coefficients falling within the range and the
total number of calculations. Further, n is the total number of regions where data were obtained, nt is total number
of combinations that are calculated by n · (n− 1)/2, and r_NZ shows the magnitude of correlation coefficients that
are significantly different from 0 as compared to the t-statistic value at a 1% significance level. The sample size
for calculation in each period is T1: 54 (1961–2014), T2: 356 = 36 (2015–2050) × 5 (GCMs) × 2 (crop models) −4
(unobserved data), and T3: 468 = 49 (2051–2099) × 5 (GCMs) × 2 (crop models) −22 (unobserved data).

Table 5. Frequency in magnitude of correlation coefficient (r) between crops by period.

Periods n/nt −0.4 <r < −r_NZ −r_NZ < r < r_NZ r_NZ < r < 0.4 0.4 < r

T1 4/6 0.0% 50.0% 50.0% 0.0%
T2 4/6 0.0% 0.0% 83.3% 16.7%
T3 4/6 33.3% 0.0% 50.0% 16.7%

Note: n is the total number of crops, and the sample size for the calculation in each period is T1: 972 = 54 (years in
1961–2014) × 18 (regions), T2: 9720 = 36 (years in 2015–2050) × 5 (GCMs) × 2 (crop models) × 27 (regions), T3: 12,000
= 50 (years in 2051–2100) × 5 (GCMs) × 2 (crop models) × 24 (regions). Other notations are the same as in Table 4.

The stability of the crop yield’s correlation structure was verified by selecting the statistically
significant correlation coefficients from each period. We counted combination numbers where the
correlation coefficients between T1 and T2 or between T2 and T3 were statistically nonzero at the 1%
probability level (“rr_NZ”) and positive (“rr_+”) in both periods. Then, we calculated the ratio of these
combination numbers against the total number of combinations (nt). Among these, combinations with
higher correlation coefficients in the later period than in the earlier period (“rr_1”) indicate that SYC
globally became stronger.

Table 6 summarizes the robustness of the correlation coefficients among regions between T1 and T2
and between T2 and T3. In both T1–T2 and T2–T3, the ratios of “rr_NZ” were obvious, and specifically,
the ratios of T2–T3 in analyzing the four crops cross sectionally were 37.5–60.7%. The ratios of “rr_+”
in T2–T3 were higher than in T1–T2 for all crops, showing that synchronicity in yield change became
stronger over time. Actually, T1 was based on observed crop yield and included short time disturbances
that could not be eliminated by detrending, such as rising oil prices [34] and effects of conflicts [7].
Therefore, the correlation in T1 was weaker than in T2 or T3 in which yield changes were influenced
only by climate conditions. In T2–T3, rice and soybean had a higher percentage of combinations in
“rr_+,” as well as percentages of “rr_1” than for the other two crops.

Tigchelaar and Battisti [2] found that the likelihood of simultaneous crop failure in maize
production increased chronologically due to future climate change. Their findings are consistent with
our analysis, though only about maize, as shown by the high correlation coefficients in Table 4 and the
chronological change (ratios of rr_1) in Table 6.

Table 7 shows the robustness of the correlation coefficients among crops in the same way as
Table 6. Here, rr_NZ and rr_+ were higher in T2–T3 than in T1–T2, showing a similarity with the
inter-regional tendency. From the results on inter-regional and intercrop correlations, our analysis
demonstrates that the yields of four crops in each region of the world tend to fluctuate in the same
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direction. In other words, the SYC structure is robust not only in the past period but also in the future
under climate change.

Table 6. Degree of corresponding regions with positive correlations between two periods.

Crops Periods nt rr_NZ rr_+ rr_1

Rice
T1→T2 595 30.9% 16.8% 5.9%
T2→T3 595 55.8% 50.1% 41.5%

Wheat
T1→T2 595 12.6% 6.2% 2.5%
T2→T3 595 60.7% 38.3% 37.3%

Maize
T1→T2 630 14.6% 10.3% 0.8%
T2→T3 630 37.5% 33.5% 32.9%

Soybeans T1→T2 561 6.4% 3.4% 1.6%
T2→T3 630 50.0% 46.5% 42.7%

Note: “nt” is the total number of combinations, and “rr_NZ,” “rr_+,” and “rr_1” show which correlation coefficients
are statistically nonzero in both periods at the 1% probability level, which are positive in both periods, and which
are bigger in latter periods than in former periods, respectively.

Table 7. Degree of corresponding crops with positive correlations between two periods.

Periods nt rr_NZ rr_+ rr_1

T1→T2 6 50.0% 50.0% 50.0%
T2→T3 6 100% 66.7% 33.3%

Note: The total number of combinations, nt, was 6 (=3 × 4/2). Other notations are the same as in Table 6.

3.2. Initial Shocks in EFP Given to the CGE Model

Figure 2 shows the average and the standard deviation of EFP. FAO_T1 is the detrended FAO’s
yield data, and Cases 1 and 4 are the random disturbance cases without SYC (non-SYC). Cases 2 and 5
and Cases 3 and 6 are SYC cases for the T2 and T3 periods, respectively. In the simulation, the same
EFP was set for the case numbers connected by commas (i.e., Cases 1 and 4, Cases 2 and 5, and Cases
3 and 6). Results from the entire world average and only five major regions (i.e., the United States,
China, Brazil, Japan, and France) are presented in Figure 2 due to space reasons. These regions were
major producers and major importers in the world for four crops targeted in this study.

The EFP values of all 38 regions and those estimated by each crop model (PRYSBI2 and pDSSAT)
are shown in the Supplementary Materials (Figures S1–S8). By comparing the results of two crop
models, although the ranges of EFP by PRYSBI2 were bigger than those by pDSSAT, similar tendencies
of EFP change were found in two models on the four crops. Therefore, we used the average value,
standard deviation, calculated by averaging the two models’ estimations, and maximum or minimum
values, which were the maximum or minimum values of each model’s estimations as the variable of
interest. When calculating these indices, we were, of course, careful not to mix data from different crop
models, as well as different GCMs, and to treat data from each model separately.

In this figure, FAO_T1 and Cases 1 and 4 marked almost the same level in average EFP, although
these two cases were not reproductions of T1 represented by FAO’s actual data. The coincidence
in average values between Cases 1 and 4 and FAO_T1 indicates that these cases did not deviate
significantly from the past actual situations and were reasonable predicted values. The standard
deviations in the two cases were different in some regions, but on a world average, the ratio of
the standard deviations between each case and FAO_T1 was within the range of 0.6–1.6. In the
simulation, the non-SYC disturbances were generated based on the values of the crop model from 2007
to 2014, not based on FAO’s actual data, and consequently, differences from FAO_T1 did not affect the
subsequent simulation results.

By comparing the non-SYC case of Cases 1 and 4 with the SYC case of Cases 2 and 5 and Cases
3 and 6, the average EFP of rice (PDR) and soybean (OSD) were higher in the SYC case, but that of



Sustainability 2020, 12, 10680 9 of 17

wheat (WHT) and maize (GRO) were lower than in the non-SYC case. In particular, these tendencies
were remarkable in Cases 3 and 6 due to the differences in the reflection characteristics of each crop to
climatic conditions.

The fluctuation range shown by the standard deviation of EFP became larger in the SYC cases,
and especially, Cases 3 and 6 marked the widest fluctuation range. As the average world temperature
continues to rise toward the T3 period, which corresponds to Cases 3 and 6, the above tendency implies
that future climate change will widen the fluctuation range of crop yield. Among crops, the fluctuation
range of OSD was the largest, while that of GRO was small compared to other crops, due to the
differences in climatic characteristics of each crop.
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Figure 2. Average and standard deviation of effective farmland productivity (EFP) by crops. “FAO_T1”
refers to detrended actual yield of the Food and Agriculture Organization (FAO) statistics during the
T1 period. Cases 1 and 4 correspond to random disturbances (non-SYC); Cases 2 and 5 and Cases 3
and 6 correspond to synchronized yield change (SYC) produced by the crop models. The values of the
whole world (WLD) are the entire world average of each region’s values, and values of “4 Crops” are
the average of four crops’ EFPs. The standard deviation of the France’s rice (PDR) is by far the largest,
and the value is shown between parentheses above the bar graph.

3.3. Influence of SYC on Agricultural Price

Figure 3 compares the (a) average level, (b) standard deviation, and (c) highest level of estimated
agricultural price (P_Agr) for Cases 1, 2, and 3. In this figure, according to the settings of CGE model,
the price is represented by an index with 2011 as 1.0.

By comparing the non-SYC case (Case 1) with the SYC cases in T2 period (Case 2) and the T3
period (Case 3) in Figure 3, the average, standard deviation, and highest price levels show the similar
tendency. Cases 1 and 2 remained at almost the same level, but Case 3 significantly became highest.
In other words, if future global warming progresses within 2 ◦C as in the T2 period, price and its
fluctuation will moderately increase. However, when the average temperature reaches to the high level
of 4 ◦C or higher in the T3 period, the price will rise sharply, and the instability of price fluctuation will
significantly increase.

Comparing the differences in these indices, the standard deviation and the highest price in Figure 3
marked large difference between cases than the average price. For example, in the United States,
the average price in Case 3 was 1.17 times higher than that in Case 1, while its standard deviation was
10 times larger, and its highest price was 2.5 times higher than in Case 1. The average price is related to
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the average yield, while the standard deviation and highest price are related to the fluctuation range of
the yield. Therefore, it can be said that the factors that result in price instability are the expansion of
the fluctuation range of yields and the synchronicity of fluctuations under global warming, not the
level of average crop yields.

Sustainability 2020, 12, x FOR PEER REVIEW 10 of 18 

States, the average price in Case 3 was 1.17 times higher than that in Case 1, while its standard 
deviation was 10 times larger, and its highest price was 2.5 times higher than in Case 1. The average 
price is related to the average yield, while the standard deviation and highest price are related to the 
fluctuation range of the yield. Therefore, it can be said that the factors that result in price instability 
are the expansion of the fluctuation range of yields and the synchronicity of fluctuations under global 
warming, not the level of average crop yields. 

 
Figure 3. Influence of SYC on the price of agriculture products (P_agr). “WLD” shows the world 
weighted average of the domestic agricultural price by the production value of each country. Similar 
comparison by all regions and two crop models is shown in the Supplementary Materials (Figures S9 
and S10). 

3.4. Effects of Agricultural Trade Liberalization on Agricultural Price Volatility 

Figure 4 shows the changes in agricultural price (P_agr) in major countries before and after trade 
liberalization. To illustrate the net impact of trade liberalization, this figure focused on the ratios of 
two cases, such as Cases 4 and 1 (Cases 4/1), Cases 5 and 2 (Cases 5/2), and Cases 6 and 3 (Cases 6/3). 
Cases 4/1, Cases 5/2, and Cases 6/3, respectively, show the net effect of trade liberalization under non-
SYC, weak SYC in T2 period, and strong SYC in T3 period. 

Although the values are only shown in the Supplementary Materials (Figure S11) due to space 
considerations, net exports (i.e., exports minus imports) of the agriculture and food products 
increased in most food-exporting regions and decreased in food-importing regions, and agricultural 
trade expanded after trade liberalization. Hence, an increase in imports caused a reduction in 
domestic production in most food-importing countries. 

Based on these results, the following can be observed in Figure 4. As shown by Cases 4/1 in the 
case of non-SYC, trade liberalization increased benefits of food-importing regions. For example, in 
Japan, as one major importers, agricultural price was decreased by 10% (1–0.90) after trade 
liberalization, and the range of price fluctuations was narrowed by 97% (1–0.03). As a decrease in 

0.85
0.90
0.95
1.00
1.05
1.10
1.15
1.20

WLD USA CHN BRA JPN FRA

(a) Average (2011=1.0)

0.0
0.1
0.1
0.2
0.2
0.3
0.3

WLD USA CHN BRA JPN FRA

(b) Standard deviation (STD) (2011=1.0)

0.0
0.5
1.0
1.5
2.0
2.5
3.0

WLD USA CHN BRA JPN FRA

(c) Highest price level (2007-14=1.0)"

Case 1 Case 2 Case 3

Figure 3. Influence of SYC on the price of agriculture products (P_agr). “WLD” shows the
world weighted average of the domestic agricultural price by the production value of each country.
Similar comparison by all regions and two crop models is shown in the Supplementary Materials
(Figures S9 and S10).

3.4. Effects of Agricultural Trade Liberalization on Agricultural Price Volatility

Figure 4 shows the changes in agricultural price (P_agr) in major countries before and after trade
liberalization. To illustrate the net impact of trade liberalization, this figure focused on the ratios of two
cases, such as Cases 4 and 1 (Cases 4/1), Cases 5 and 2 (Cases 5/2), and Cases 6 and 3 (Cases 6/3). Cases
4/1, Cases 5/2, and Cases 6/3, respectively, show the net effect of trade liberalization under non-SYC,
weak SYC in T2 period, and strong SYC in T3 period.

Although the values are only shown in the Supplementary Materials (Figure S11) due to space
considerations, net exports (i.e., exports minus imports) of the agriculture and food products increased
in most food-exporting regions and decreased in food-importing regions, and agricultural trade
expanded after trade liberalization. Hence, an increase in imports caused a reduction in domestic
production in most food-importing countries.

Based on these results, the following can be observed in Figure 4. As shown by Cases 4/1 in the case
of non-SYC, trade liberalization increased benefits of food-importing regions. For example, in Japan,
as one major importers, agricultural price was decreased by 10% (1–0.90) after trade liberalization,
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and the range of price fluctuations was narrowed by 97% (1–0.03). As a decrease in standard deviation
indicates stabilization of price volatility, the above influences are positive effects for Japan’s consumers.
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Figure 4. Net effects of trade liberalization in each situation (non-SYC, SYC in T2, and SYC in T3).
Cases X1/X2 means ratio of Case X1 against Case X2. Net effects of trade liberalization comparing by
regions and two crop models are shown in the Supplementary Materials (Figures S12 and S13).

Meanwhile, in food-exporting regions, such as the United States and Brazil, agricultural price
rose after trade liberalization, and the fluctuation range of the price increased. As the export volume
increased due to trade liberalization, these agricultural exporters were more affected by the high
price traded in importing countries. In China and the whole world (WLD), the prices of agricultural
products after trade liberalization were almost the same as those before liberalization, and the price
fluctuation range was slightly increased. This is because the effects of liberalization in export and
import regions were offset in WLD, and those of liberalization in export and import agricultural
products were offset in China that exports maize but imports wheat and soybean. In France, the average
price change was slight, similar to China, but the standard deviation decreased after liberalization.
Even in France, a similar offset between import and export products was present, but its degree was
different from China’s.

The comparison between Cases 4/1, 5/2, and 6/3 shows that the decrease degree in average price
in Japan became lower, indicating that the ratio of two cases changed from 0.9 (10% decrease) to 0.91 or
0.92 (8% decrease). The ratio of two cases in the standard deviation of price fluctuations also changed
from 0.03 to 0.06 or 0.38, and the decrease degree in the fluctuation range by trade liberalization became
lower in the SYC case than the non-SYC case. Note that a ratio close to 1 means that little change
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occurred in the fluctuation range of the latter case and a small ratio indicates that the fluctuation
range was more significantly narrowed in the latter case. Thus, the positive effect of Japan’s trade
liberalization in the SYC case became smaller than in the non-SYC case.

Furthermore, in terms of export regions, such as the United States and Brazil, the ratios of two
cases in average price and highest price were larger in the SYC case than those in the non-SYC case.
Specifically, in Brazil, the ratio even in the standard deviation also became larger in the SYC case
than in the non-SYC, showing an expansion in the annual fluctuation range. This means that the
negative effects of trade liberalization were exacerbated due to SYC. In the United States, however,
the annual fluctuation range decreased slightly by SYC, indicating a mitigation of the negative effect of
liberalization. Similarly, in WLD and China, the effects of liberalization shown by average price and
highest price were exacerbated, but the liberalization effects shown by the annual fluctuation range
were improved by SYC.

Overall, for domestic consumers, trade liberalization has a positive impact on food-importing
regions, making price levels lower and price fluctuation more stable. Conversely, for food-exporting
regions, trade liberalization causes a negative impact due to increasing domestic prices. Meanwhile,
SYC reduces the positive effects in importing regions and exacerbate the negative effects of rising
prices in exporting regions. Although liberalization affects oppositely in import and export regions,
SYC has a negative impact on the effects of liberalization in both import and export regions.

3.5. Influences of SYC on Social Welfare Levels

To show the macroeconomic influence of SYC, we examined social welfare level measured by
equivalent variation (EV), in accordance with Hosoe [21]. EV in each case is the change in the monetary
value of utility level from the starting year level, corresponding to the calibration year of 2011. As
the average of disturbances in Cases 1 and 4 was set to 1, which was the same as the calibration year,
the average EV for Cases 1 and 4 became approximately 0 and can be regarded as unchanged from
2011, although variations in EV do exist throughout the years.

Figure 5 shows the average, minimum, and standard deviation of EV. Since EVs in non-SYC of
Case 1 were almost 0 and show no change in the social welfare level from the present level, EVs of
Cases 3, 4, 5, and 6 were subtracted from or divided by the EV of Case 1 to measure the changes from
non-SYC without trade liberalization.

Case 3 minus 1 shows that social welfare levels declined in most countries due to SYC in T3 period.
In the worst case shown by Figure 4b, social welfare levels declined by US$62 billion in the United
States, US$37 billion in China, and more than US$160 billion in WLD. Conversely, Case 4 minus 1
shows that trade liberalization under non-SYC increased the social welfare level in many regions. In
particular, there were remarkable increases in Japan, where agricultural tariff rates were high, and in
the United States and Brazil, which export foods. In food-exporting countries, although domestic
agricultural price increased (Figure 3) and consumers’ surplus decreased, household income could
increase due to an expansion of export, and then, EV increased due to income effects.

Considering both climate change and trade liberalization (Case 5 or Case 6 minus Case 1),
the average EV increased in the United States, Brazil, and Japan, similar to the difference between
Cases 4 and 1. In WLD and food-importing regions such as Japan, agricultural price was decreased
by trade liberalization, and liberalization could overwhelm the negative effects of SYC under climate
change. However, these positive effects of trade liberalization were decreased by SYC in T3 by 12%
(US$16.5 billion/US$18.8 billion) in Japan. Furthermore, at minimum EV (Figure 5b), the EVs of the
United States, China, and WLD in Case 6 were worse than those in Case 1 (and also in the initial level
of the simulation) because of an increase in the fluctuation ranges of EV under SYC.

The EV’s standard deviation indicates that the variations in Cases 3 and 6 were much larger
than in Case 1, and those in Cases 4 and 5 were slightly larger than in Case 1. This implies that
both extreme climate change and trade liberalization widened the gap between a good and a bad
year of social welfare level in all regions. These results differ slightly from the results of previous
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study [21], which demonstrated a reduction in deviations in Japan’s social welfare level by trade
liberalization. Since trade liberalization for food-importing region could pool the risk origins of
crop-yield change occurring in different countries, the volatility of agricultural price was reduced by
agricultural trade liberalization, showing the same tendency as the previous study. However, such
effects were weakened in EV due to different trade liberalization schemes. Liberalization among all
regions was assumed in this study and marked weaker diversification effects of importing regions
than the unilateral liberalization scheme set in the previous study. This happens due to competition
with other regions for imports under fully liberalization scheme. Furthermore, such effects of trade
liberalization in the EV’s fluctuation range were reduced by the decrease in price effects caused by SYC
under climate change. Such influences have not been evaluated by previous studies.
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Figure 5. Changes in social welfare levels measured by equivalent variation (EV) due to SYC under
future climate change and trade liberalization. Similar comparison on EV by regions and two crop
models are shown in the Supplementary Materials (Figures S14 and S15).
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4. Discussion and Policy Implications

Our simulation results show that SYCs among regions and crops were significant and robust and
expanded the volatility of agricultural price and EV under future climate change. Hence, SYC becomes
a cause of systemic risk to the global economy. Considering this risk under climate change, several
policy implications can be noted.

When SYC becomes stronger due to future climate change, many countries will suffer from
fluctuations in agricultural prices. Even food-exporting countries such as the United States will suffer
from rising agricultural prices beyond the chronological trend and experience a decrease in the social
welfare level in the event of an extreme year. An increase in the US agricultural prices would be
led by an increase in agricultural exports, which are motivated by an increase in world agricultural
prices during simultaneous global crop failure under future climate change. Hence, increasing global
food stocks and developing high-temperature-tolerance varieties of food, noted in existing research,
are evidently important, but realistically uncertain to achieve. In addition to these efforts, to reduce
systemic risk, it is useful to secure a variety of agricultural production areas, both domestically and
internationally. Countries such as Japan, where the food self-sufficiency rate is low, could benefit by
maintaining a certain level of domestic food production capacity as well as keeping tight relations
with many food-exporting countries.

Trade liberalization, as economic theory suggests, will generate profits and mitigate the negative
effects of future climate change by increasing consumer surplus through agricultural price reductions
and by increasing the income of exporting countries through trade. However, as measured in this
study, the effects of trade liberalization could be reduced by SYC. Therefore, policy makers should
consider that effects of trade liberalization would be overestimated if SYC is ignored.

Another policy that deserves consideration is enhancing the insurance system to compensate for
global crop failures. When insurance plans are designed with consideration of systemic risk under
climate change, premiums rise and become new costs for the global economy. For the insurance sector,
a holistic framework to assess and mitigate systemic risk was proposed [35]. Similar considerations
are required for systemic risk from climate change in the global food market. If the insurance system
operates without considering systemic risk and its costs, the system itself is likely to fail when the risk
is realized. Thus, private firms and policymakers must understand the risk and accordingly prepare in
advance to manage synchronicity in the food system through a better understanding of SYC.

When policies consider systemic risk, the accuracy of climate, crop, and economic models that can
predict the degree of risk is key. From an academic viewpoint, by modeling local extreme meteorological
phenomena and local crop growth conditions, the causes of the SYC can be elucidated, which would
help measures to avoid systemic risk. Increasing the accuracy of these models requires enormous costs.
To improve the accuracy of crop models, e.g., we must develop crop-yield statistics with more detailed
and localized units than statistics at the national level. Such statistics and models can be classified as
the world’s public goods, improving the social welfare level throughout the world. Therefore, it is
important to promote research on model building in the field of crop yield and price prediction through
international cooperation.

5. Summary and Conclusions

This study quantified the influence of systemic risk caused by SYC in the global food market
under future climate change; it also evaluated the effects of trade liberalization when systemic risk
exists, using a CGE model based on harvest predictions from crop models and global climate models.
Simulation results demonstrate the following points.

First, the SYC structure was statistically robust among countries and four crops, and will be
enhanced by climate change. Such global SYC is probably created by two common influences in
regions that produce the same crop. The first is the rising or falling trend of crop yields due to the
increase in the global temperature and CO2 concentration, and the second is the widening of yield
fluctuations as climatic conditions approach biological thresholds.
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Second, where there was SYC under future climate change, agricultural price volatility increased
more than would be expected in the random disturbance (non-SYC) case. In the United States, e.g.,
the highest price and the fluctuation range of agricultural price would be, respectively, 2.5 times higher
and 10 times larger than in the non-SYC case. Hence, social welfare levels in most regions of the world
are reduced by SYC.

Third, trade liberalization benefited both food-importing and exporting regions, because
food-exporting regions increase domestic income due to an expansion of trade, whereas food-importing
regions increase consumers’ surplus due to a decrease in food price. However, such benefits of trade
liberalization were degraded by SYC, causing unstable price fluctuations. For example, Japan, as one
of the major importers, could decrease agricultural price by 10% after trade liberalization without
SYC. However, these effects of liberalization would decrease to 8% by SYC in 2050–2099. Therefore,
the effects of trade liberalization would be overestimated, if SYC is ignored.

These results demonstrate that SYC under climate change becomes a systemic risk for the global
economy. Typically, influences of SYC are too small to be recognized in the market, but when significant
change occurs, it leads to serious social welfare loss worldwide. Considering this risk, it is both prudent
and important to review adaptation measures for climate change based on the quantitative results
from economic and crop models as applied here.

There were limitations to this research. First, the GTAP data used were a 2011 version; an analysis
with new data would be useful. Second, the analysis did not consider changes in capital stock or labor
supply. When populations will increase in the future, the surge in agricultural prices should be further
exacerbated due to global crop failure. An analysis considering population changes and dynamic
analysis, where investment endogenously moves, would also be of interest. Finally, improving the
accuracy of economic and crop models is important in and for the academic field.
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Appendix A

To eliminate the influences of technological progress, such as fertilizer effects and new variety
creation, detrended yields (ỸAi,r,t) are calculated from the actual yield (YAi,r,t) by ỸAi,r,t = YAi,r,t/(ai,r +

bi,r · t), where i, r, and t represent the four crop categories, countries, and year, respectively. Here, “a”
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and “b” are the intercept and slope, respectively, estimated from the regression between actual crop
yields and the year trend, t.

Appendix B

EFP is assumed to change the farmland-input in the cost function related to the production
function. The unit cost for input factors derived from cost minimization behavior of producers in Lanz

and Rutherford [31] is modified as c f
j,r =

∑
f
θ f · (p

p f
f , j,r/γ f , j,r)

(1−σ)


1
(1−σ)

, where c f
j,r is the unit cost of

factor, f, in sector j and region r; the suffix f shows input factors, i.e., labor (lab), capital (cap), land (lnd),
and other resources (res); θ f is the cost share of each input factor calibrated from the base year data;

and σ represents the substitution elasticity between input factors. Here, pp f
f , j,r is the factor price with

taxes, and γ f , j,r is the input factor productivity in year t, as γ f , j,r =

{
1, f ∈ lab, cap, res

EFP( j, r, t), f ∈ lnd
.
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