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Abstract: Urban wasteland is of special interest to city planners. However, to integrate such areas
into city space management with consideration of nature conservation aspects, a sound assessment
of their ecological potential is necessary. The aim of this paper was to analyze whether carabid
beetle assemblages of the wastelands are affected by soil parameters, particularly trace element
contamination. Therefore, we studied the carabid fauna in relation to selected soil parameters on
56 ampling plots situated in 24 wastelands located in the city of Warsaw (Poland). The results
have confirmed our assumptions that the number of species, as well as the number of individual
carabid beetles, are negatively affected by an increasing amount of pollutants in the soil. Particularly,
the trace elements Pb, Cu, and Cd showed a significantly negative impact. The results are of
value when it comes to the use of urban wastelands in the context of sustainable city development.
Future use of urban wastelands will be faced with trade-offs between the use for public interests
(e.g., housing space) and ecological interests. Phytoremediation and entomoremediation may be
included in decontamination measures. The results of studies, such as the one conducted by us, may
help to select the respective wastelands for certain purposes.

Keywords: Carabidae; species richness; abundance; soil parameters; urban wasteland;
sustainable development; Poland

1. Introduction

Cities are subjected to permanent economic, social, and political changes, which influence
the transformation of spatial urban structures [1]. With a rapid increase in urban population,
environmental, social, and economic challenges are growing as well. Currently, cities are being
redesigned to become more sustainable [2]. However, sustainable management of urban space is a
complex task that requires a many-sided approach. Researchers [3] have emphasized that there is a
need for a framework for creating new policies and encouraging more strategically organized efforts in
sustainable environmental planning.
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A major dilemma regarding big cities is that, on the one hand, their population density is very
high and inhabitants demand space for many different purposes, such as new housing areas, space for
recreation, or economic purposes but, on the other hand, vacant natural areas are scarce [4]. Therefore,
urban wasteland (abandoned and unmaintained areas in a city [5]) is of special interest for city
planners [1,5]. The significance of urban wasteland, including urban post-industrial areas, for nature
conservation, has been discussed for decades [6–8]. One of the concepts in line with this objective is to
use them as wilderness areas, characterized by a high level of self-regulation in ecosystem processes [9].

However, to integrate urban wastelands into city space management with consideration of nature
conservation aspects, a sound assessment of their ecological potential is necessary. A key factor of
such areas is their soil properties, which are often modified in cities, and are of very high importance
for numerous plants and animals. The soil of urban areas is physically, chemically, and biologically
altered, has a reduced share of organic matter and nutrients, a high content of alien materials,
and compaction resulting in structural degradation [10]. The majority of carabid beetles (Carabidae)
species show epigeic activity [11]. Carabid beetles are known to be sensitive to human-altered abiotic
conditions [12,13] and can be easily and cost-effectively sampled [14], which makes them suitable
indicators for soil contamination [12,15]. Several studies have been carried out dealing with the
response of these beetles to soil contamination. Elevated levels of different pollutants such as Zn, Cu,
and Ni resulted, for example, in decreased species richness and biomass [16,17], as well as reduced
larval survival [18]. Exposure to elevated Cu levels during the larval stage altered locomotory behavior
in Poecilus cupreus [19]. Agrochemical treatment of sites may contribute to increased amounts of trace
elements in the soil, which are accumulated by individual carabid species [20]. All these studies have
indicated that carabid beetles are suitable indicators regarding soil contamination.

Warsaw is the biggest city in Poland. It suffers from a rapid increase in population and strong
urbanization pressure [5]. In 2020, Warsaw had a population density of approximately 3372 residents
per square kilometer [21]. In the frame of an interdisciplinary research project dealing with urban
wasteland in the city of Warsaw, soil parameters and carabid beetles were studied. The aim of this paper
was to analyze whether carabid beetle assemblages of the wastelands are affected by soil parameters,
particularly, by trace element contamination. Our hypothesis was that both the number of species,
as well as the number of individual carabid beetles, are negatively affected by an increasing amount
of pollutants in the soil. The results are to be discussed in the context of nature conservation as an
element of sustainable city development.

2. Materials and Methods

2.1. Study Areas and Sampling Plots

In order to elaborate data on carabid beetles and soil parameters, 24 wastelands (Figure 1) were
included in the presented study. At each site, based on vegetation characteristics, characteristic
vegetation units were identified, and selected soil parameters were elaborated, in each of which
independent sampling plots for the collection of carabid beetles were established. Based on the
obtained results, sampling plots were assigned to the respective vegetation units and soil parameters.
As a result, 56 sampling plots were chosen for the analyses (Table 1).

With respect to carabid beetles, it is generally observed that young stages of succession exhibit
a high number of species and individuals, compared with advanced stages of succession [22–24].
In order to be able to exclude a bias concerning this matter, each sampling plot was assigned to either a
young or advanced stage of succession (Table 1).
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Table 1. Phytosociological characterization and the stage of succession of the sampling plots, as well as numbers of collected carabid beetle species and individuals
(100 trap-days). The first number of the sampling plots denotes the area (numbers of the areas, as in Figure 1), the second number is the respective sampling plot in
the area.

Sampling Plot Phytosociological Units Stage of Succession Species Individuals

1-1 Regenerative woodland (Populus × canescens association) Advanced 1 0.39
1-2 Grassland (Calamagrostietum epigeji Juraszek 1928) Early 10 8.98
1-3 Grassland (Festuca rubra, association on a slope) Advanced 7 10.16
1-4 Rushes (Phragmition Koch 1926) Early 3 2.22
1-5 Regenerative woodland (Quercus rubra, Tilia cordata association) Advanced 6 3.91
2-1 Regenerative woodland (Quercus robur, Betula pendula association) Advanced 11 50.78
2-2 Regenerative woodland (Betula pendula, Populus tremula association) Advanced 7 7.81
2-3 Bushes (Solidago gigantea association) Early 23 66.80
3-1 Grassland (Lolio-Cynosuretum R.Tx. 1937) Early 5 8.62
3-2 Grassland (Dactylis glomerata association) Early 10 53.73
3-3 Bushes (Prunus cerasifera association) Early 14 12.31
4-1 Eegenerative woodland (Salix caprea, Betula pendula association) Advanced 7 6.30
4-2 Regenerative woodland (Acer platanoides, Acer negundo association) Early 7 5.51
4-3 Herbs (Artemisietea Lohm., Prsg et R. Tx. in R. Tx. 1950) Early 12 46.85
5-1 Regenerative woodland (Acer negundo association) Early 7 10.23
5-2 Bushes (Solidago gigantea association) Early 11 28.41
6-1 Tree coverage of Prunus cerasifera, Acer pseudoplatanus Advanced 8 17.29
6-2 Grassland (Arrhenatherion elatioris (Br.-Bl. 1925) Koch 1926) Early 13 30.45
6-3 Grassland (Lolio-Polygonetum Br-Bl. 1930 em. Lohm. 1975) Early 19 153.38
7-1 Grassland (Lolio-Cynosuretum R.Tx. 1937) Early 10 124.81
7-2 Regenerative woodland (Acer negundo association) Advanced 12 16.41
8-1 Regenerative woodland (Acer negundo association) Advanced 11 14.02
8-2 Herbs (Artemisietea Lohm., Prsg et R. Tx. in R. Tx. 1950) Early 8 12.88
9-1 Regenerative woodlands (Tilia cordata, Acer platanoides association) Advanced 6 6.53
9-2 EGrassland (Lolio-Cynosuretum R.Tx. 1937) Early 14 71.90

10-1 Regenerative woodland (Populus × canescens association) Early 13 78.41
10-2 Grassland (Lolio-Cynosuretum R.Tx. 1937) Early 10 35.35
10-3 Grassland (Calamagrostietum epigeji Juraszek 1928) Early 11 38.38
11-1 Bushes (Prunus cerasifera association) Early 6 3.70
11-2 Bushes (Corylus avellana association) Early 7 7.41
12-1 Bushes (Solidago gigantea association) Early 9 19.70
12-2 Regenerative woodland (Acer negundo association) Advanced 10 9.09
12-3 Regenerative woodland (Populus tremula, Acer negundo association) Advanced 5 6.82
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Table 1. Cont.

Sampling Plot Phytosociological Units Stage of Succession Species Individuals

13-1 Regenerative woodlands (Populus nigra-P. × canescens association) Advanced 10 12.88
13-2 Bushes (Cornus sanguinea association) Early 10 6.44
14-1 Regenerative woodland (Quercus rubra, Acer platanoides association) Advanced 10 9.84
14-2 Regenerative woodland (Betula pendula, Agrostis capillaris association) Advanced 6 14.57
15-1 Regenerative woodland (Acer negundo association) Early 3 1.10
16-1 Regenerative woodland (Populus × canescens association) Early 0 0.00
16-2 Regenerative woodland (Acer negundo association) Early 0 0.00
17-1 Regenerative woodland (Robinia pseudoacacia association) Advanced 20 42.16
17-2 Grassland (Lolio-Cynosuretum R.Tx. 1937) Early 12 14.18
17-3 Regenerative woodland (Tilia cordata association) Advanced 14 10.07
17-4 Regenerative woodland (Tilia cordata association) Advanced 21 41.79
17-5 Woodland (Populus × canescens association) Advanced 21 63.06
18-1 Woodland (Acer negundo association) Early 19 20.08
19-1 Regenerative woodlands (Salicetum albo-fragilis R.Tx. 1955) Advanced 35 187.50
20-1 Regenerative woodlands (Salicetum albo-fragilis R.Tx. 1955) Early 18 44.92
21-1 Regenerative woodlands (Salicetum albo-fragilis R.Tx. 1955) Early 21 53.91
21-2 Woodland (Populetum albae Br.-Bl. 1931) Early 14 48.05
22-1 Regenerative woodlands (Salicetum albo-fragilis R.Tx. 1955) Advanced 17 23.48
22-2 Woodland (Populetum albae Br.-Bl. 1931) Advanced 10 9.09
23-1 Grassland (Lolio-Cynosuretum R.Tx. 1937) Early 6 19.07
23-2 Woodland (Populus × canescens association) Advanced 8 5.56
24-1 Regenerative woodland (Quercus robur, Tilia cordata association) Advanced 13 35.98
24-2 Regenerative woodland (Acer platanoides, Robinia pseudoacacia association) Advanced 10 11.36
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2.2. Field and Laboratory Methods

Carabid beetles were collected using pitfall traps [25]. At each sampling plot, two traps were
installed with a maximum distance of 3 m from each other. The traps were glass jars topped with
a funnel (upper diameter of about 10 cm), set flush with the soil surface. A roof was suspended a
few centimeters above the funnel and ethylene glycol was used as a killing agent and preservative.
The traps were placed at least 15 m from the edge of the plots. However, this was not possible in
every case, due to the shape of some plots (1-2, 1-3, 1-4, 2-3, 3-3, 4-1, 9-1, 12-1, 12-2, 13-2, 15-1, 17-5).
Carabids were sampled from mid-May to late September in 2018. The traps were controlled for proper
performance during some field visits, and exchanged in July.

Determination and nomenclature of the individuals collected were carried out in accordance
with the literature [26]. All individuals were identified to the species level by the first author.
Voucher specimens of each species were deposited in a collection of the first author at the Warsaw
University of Life Sciences—SGGW. We characterized the species with respect to the functional traits,
habitat preference, trophic specialization, and breeding type, based on the literature [11,26–31].

Soil samples were picked with the use of an Egner stick, up to a depth of 20 cm. The soil was
sampled in triplicates at each wasteland (1–24), with an area of 5000–10,000 m2. A single replicate
was a pooled sample of 20–25 individual ones. To exclude any variation in the physical and chemical
properties of the soil, the averages obtained for the whole area represented all plots within the given
area. The soil samples for pH, electrical conductivity (EC), soil water content (SOC), and organic
matter (Org) were collected in mid-June (Term I), July/August (Term II), and mid-September (Term III),
while the determination of trace element concentrations occurred once in mid-September.

Soil samples were stored in a refrigerator prior to analysis for up to 24 h. A quantitative analysis
of the content of selected trace elements (TE) (Cu, Zn, Pb, Cd, Cr, Ni) in the soil was carried out
at the end of September 2018. The soil samples were mineralized in a mixture of concentrated
HNO3 and HClO4, and then the TE were analyzed by atomic absorption spectrometry (AAS) (Perkin
Elmer AAnalyst 800). The analyses were performed in the accredited laboratory of the National
Chemical-Agricultural Station in Warsaw, in accordance with the station’s research procedure 27
(6th edition, dated 14 February 2011). The analysis of soil pH and electrical conductivity (EC, mS·cm−1)
was carried out as follows: soil samples were treated with distilled water in a 1:2 ratio and then
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analyzed with the use of a pH Meter/Conductometer (inoLab, Conbest). In order to analyze organic
matter (% of dry matter), the soil samples were heated in a preheated muffle furnace (P330, Nabertherm)
for 5 h at 450 ◦C, and the organic matter content was calculated as a difference between the initial and
final sample weight. The soil water content (SWC) (% w/w) was determined by the gravimetric method.
The soil samples were dried in a convection oven at 105 ◦C, and water content was calculated as the
ratio of water weight to the weight of air-dried soil.

The maximum permissible levels of trace elements in light soils (mg·dm−3) were taken from the
Polish national regulation, the Decree of the Minister of Environment of 1 September 2016 [32].

2.3. Statistical Methods

For each sampling plot, the data of the two traps and the sampling periods were pooled and the
total number of species was calculated. Since the collecting period differed between the sampling plots
by some days, the number of individuals was adjusted to 100 trapping days per one trap (100 trap-days)
for each sampling plot.

In the first step, the data were bias tested regarding the species numbers and numbers of
individuals due to stages of succession. In order to do so, the species numbers and numbers of
individuals (100 trap-days) were compared between the young stages of succession and the advanced
ones. As normal distribution was rejected by Kolmogorov–Smirnov tests, we used a Mann–Whitney U
test with IBM SPSS Statistics, version 25.

Canoco for Windows 4.56 [33,34] was used to carry out nonparametric multivariate regression
analyses on species numbers and numbers of individuals, using the following soil parameters selected
as independent variables: trace elements (TE mg·kg−1 dry matter: Pb, Cd, Ni, Cr, Cu, Zn), soil pH
(pH I—Term I, pH II—Term II, pH III—Term III), electrical conductivity (EC I—Term I, EC II—Term II,
EC III—Term III), organic matter (Org I—Term I, Org II—Term II, Org III—Term III), and soil water
content (SWC I—Term I, SWC II—Term II, SWC III—Term III). The significance of the individual
variables was tested using Monte Carlo permutation tests (unrestricted, 1999 permutations), first,
for each variable separately in order to study the variance explained by each variable separately, and then
using an automatic forward selection of variables (reduced model) in order to study additionally
explained variance after already adding variables to the ordination model [34,35].

Canoco for Windows 4.56 was also used to conduct a constraint ordination analysis in
order to determine the major pattern in variation in relationship with the environmental factors.
Detrended Canonical Correspondence Analysis (DCCA) was first used to select the appropriate
statistical model based on the longest gradient [35] and then Canonical Correspondence Analysis
(CCA) was carried out. Dominance values (percentage share of the respective species in a sample) for
the carabid species at the different sites were used. The analyses were performed using inter-sample
distance scaling, Hill’s scaling, and unweighted data for each of the species. Since dominance values
were used, the data were not transformed.

3. Results

From the 56 sampling plots altogether, 3994 individual carabid beetles belonging to 76 species
were collected (Table S1). Both numbers of species and numbers of individuals varied strongly among
the sampling plots (Table 1). The highest number of both species and individuals was collected in
a plot with regenerative woodlands of Salicetum albo-fragilis with an advanced stage of succession
(Sampling Plot 19-1). In contrast, no beetles were collected in a plot with regenerative woodland
with Populus × canescens association and a regenerative woodland with Acer negundo association,
both located in the same study area (Sampling Plots 16-1 and 16-2).

For both the numbers of species (Mann–Whitney U test, p = 0.735) and individuals per 100
trap-days (Mann–Whitney U test, p = 0.175) the Mann–Whitney U test did not reveal any significant
difference, hence, a bias of the data with respect to succession stage could be neglected.
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The pH of the soils ranged from 4.12 to 8.5, that is, slightly acidic to alkaline, while the salt
concentration ranged from 0.08 to 6.90 mS·cm−1 (Appendix A, Table A1). In most wastelands, the salt
concentration was relatively low and within the concentration range typical of urban soils in recreational
locations (parks, lawns). Within several locations, a high variability of this parameter was noted.
The highest electrical conductivity was recorded in the soils sampled from Plots 8-1 and 8-2.

The content of organic matter ranged between 0.44% and 19.61% dry matter. The lowest actual
soil moisture (% w/w) was noted in Study Area 13, whereas the highest one in Study Area 8.

The obtained results of trace element concentrations (Appendix A, Table A1) have confirmed that
the permissible limits of trace elements in the topsoil were exceeded in light soils of agricultural areas
by Pb, Cu, and Zn, only in some wastelands. Concentrations of Pb were above the limits in Study Areas
16 and 12, Cu in Study Areas 11 and 12, and Zn in Study Areas 9 and 15. Trace concentrations of Pb
were also found in Study Areas 1, 10, 19, and 22, while Cu was in Study Area 22. The least contaminated
area among the studied wastelands was Study Area 10, where the only recorded trace concentrations
were of Pb, Ni, and Cr. For the remaining three elements (Cd, Cu, Zn), the concentrations did not
exceed the limits even for protected areas.

When testing the impact of the soil parameters on the number of carabid species separately,
Pb and Cu had a significant impact. Using a forward selection of variables, significant results were
received for Pb, Cd, Org III, and Cr (Table 2). Regarding the impact of the parameters on the number
of collected individual carabid beetles, the variables separately tested revealed a significant impact of
Pb. Using a forward selection of variables, besides Pb, the variables Cd and EC II had an additional
significant impact (Table 3).

Table 2. Results of Monte Carlo permutation tests of the environmental variables (soil parameters)
impact on species numbers, tested separately and using an automatic forward selection of variables
(reduced model). Lambda-1—variance explained by the environmental variables separately;
Lambda-A—additional variance explained when included in the model using forward selection.

Variable
Tested Separately Forward Selection

Lambda-1 F p Lambda-A F p

Pb 0.18 11.868 0.0020 0.18 11.87 0.002

Cu 0.09 5.614 0.0195 0.01 1.69 0.197

SWC I 0.06 3.152 0.0715 0.01 1.73 0.190

pH III 0.04 1.993 0.1745 −0.00 0.05 0.814

Zn 0.04 1.960 0.1560 0.02 1.48 0.242

Org II 0.02 0.967 0.2875 0.04 3.06 0.082

pH I 0.02 0.919 0.3360 0.00 0.82 0.373

Cd 0.01 0.693 0.4100 0.10 7.04 0.011

EC I 0.01 0.519 0.4765 0.05 4.02 0.057

EC II 0.01 0.416 0.4960 0.02 1.26 0.254

Org III 0.01 0.296 0.5765 0.09 9.20 0.004

Cr 0.00 0.246 0.6175 0.05 4.28 0.038

SWC III 0.00 0.094 0.7500 0.01 0.80 0.366

Ni 0.00 0.069 0.7740 −0.00 0.05 0.826

SWC II 0.00 0.021 0.8855 0.01 0.77 0.401

pH II 0.00 0.015 0.9035 0.01 0.63 0.412

EC III 0.00 0.016 0.9035 0.01 0.76 0.373

Org I 0.00 0.014 0.9110 −0.00 0.00 0.945
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Table 3. Results of Monte Carlo permutation tests of the environmental variables (soil parameters)
impact on numbers of individuals (100 trap-days), tested separately and using an automatic forward
selection of variables (reduced model). Lambda-1—variance explained by the environmental
variables separately; Lambda-A—additional variance explained when included in the model using
forward selection.

Variable
Tested Separately Forward Selection

Lambda-1 F p Lambda-A F p

Pb 0.07 4.354 0.0445 0.07 4.35 0.045

Cu 0.06 3.423 0.0525 0.02 1.36 0.258

Cd 0.04 2.392 0.1315 0.12 7.84 0.010

SWC I 0.04 2.249 0.1415 0.02 1.46 0.229

Ni 0.03 1.514 0.2120 0.02 1.82 0.184

EC II 0.03 1.390 0.1995 0.10 7.49 0.014

EC I 0.02 1.327 0.2545 −0.00 0.35 0.545

Org II 0.02 1.304 0.2254 0.04 2.38 0.133

Cr 0.01 0.798 0.3790 0.02 1.17 0.296

Org I 0.01 0.603 0.4735 0.01 1.50 0.216

Org III 0.00 0.274 0.5945 0.01 1.10 0.327

Zn 0.00 0.181 0.6710 0.03 1.85 0.190

pH II 0.00 0.108 0.7405 0.02 2.10 0.155

SWC II 0.00 0.079 0.7760 0.01 1.16 0.290

pH III 0.00 0.077 0.7760 0.03 2.02 0.165

EC III 0.00 0.016 0.9075 0.02 1.25 0.262

pH I 0.00 0.005 0.9455 0.01 1.08 0.299

SWC III 0.00 0.000 1.0000 0.01 1.11 0.301

The first canonical axis of the CCA (Figure 2) explained 5.7% of the variation in species data and
16.4% of that in the species–environment relationship. The second canonical axis explained 3.9% and
11.1%, respectively. Almost all environmental factors pointed to the top left from the origin of the
diagram, with the exception of EC I and EC II pointing to the top right, and Cr, SWC I, and SWC III
pointing to the bottom left. Sampling plots that best fit into the ordination space located in the left
from the origin are 15-1 (top left), and 14-2 and 2-1 (bottom left). All others are located to the right
of the origin of the diagram. Species that best fit into the ordination space positively related to the
environmental factors are Stomis pumicatus and Licinus depressus (Pb, Zn, EC III), Pterostichus melanarius
(Cr, SWC I, SWC III) and Harpalus rufipes, Harpalus affinis, and Calathus melanocephapus (EC I, EC II).
However, a majority of species that best fit into the ordination space is rather negatively related to
the environmental factors (Calathus fuscipes, Calathus erratus, Syntomus truncatellus, Poecilus lepidus,
Badister peltatus, Harpalus anxius).
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Cd 0.01 0.693 0.4100 0.10 7.04 0.011 

EC I 0.01 0.519 0.4765 0.05 4.02 0.057 
EC II 0.01 0.416 0.4960 0.02 1.26 0.254 

Org III 0.01 0.296 0.5765 0.09 9.20 0.004 
Cr 0.00 0.246 0.6175 0.05 4.28 0.038 

SWC III 0.00 0.094 0.7500 0.01 0.80 0.366 
Ni 0.00 0.069 0.7740 −0.00 0.05 0.826 

SWC II 0.00 0.021 0.8855 0.01 0.77 0.401 
pH II 0.00 0.015 0.9035 0.01 0.63 0.412 
EC III 0.00 0.016 0.9035 0.01 0.76 0.373 
Org I 0.00 0.014 0.9110 −0.00 0.00 0.945 

 

Figure 2. Ordination plot based on Canonical Correspondence Analysis (CCA) for 15 sampling
plots (open circles) and 15 species (open triangles) that best fit into the ordination space and
environmental variables (arrows). Numbers of sites are listed in Table 1. SWC: Soil Water Content;
EC: Electrical Conductivity; Org: Organic Matter.

4. Discussion

The results have confirmed our assumptions that numbers of species, as well as numbers of
carabid beetle individuals, are negatively affected by increasing concentrations of trace elements in the
soil. Particularly, the trace elements Pb, Cu, and Cd showed a statistically significant negative impact.

Our study has revealed some clear differences in soil parameters, including the trace elements.
When it comes to the degree of soil pollution at an individual locality, historical aspects, as well as the
present situation of the study areas and sampling plots, are crucial. For example, Study Areas 15 and
16, which showed high pollutions with respect to some trace elements, are closely located to railway
tracks and a cement plant [36].

Carabid beetles are known to react to soil conditions [11], as also shown by a significant effect
of organic matter (Org III) and electrical conductivity (EC II). Particularly, organic matter plays an
important role, because the organic layer plays an essential role for many species, for instance, as a
refugee after habitat disturbances, or as a place for foraging or laying eggs [37–39].

The effects of trace elements on carabid beetles observed by us correspond with the results obtained
previously by other researchers [40–42]. They suggested that trace elements in the soil significantly and
negatively affect carabids. Carabid beetles are one of the most intensively studied groups of epigeic
arthropods regarding their relation to trace element accumulation and their use as a bioindication of
environmental pollution. Responses of organisms to trace element pollution are greatly dependent on
several factors, such as species, form and concentration of metals, time of exposure, and pH conditions,
which are closely related to the bioavailability of metals [43,44]. Furthermore, Cu, Zn, and Mn are
micronutrients needed for the growth of organisms, while Cd and Pb are harmful even in small
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amounts [45]. The indicatory potential of carabid beetles can manifest itself not only as an absence
or presence of species, but also as altered physiological and/or morphological characteristics [46].
These authors had reported severe gut degeneration as a result of Cd, Ni, and Zn pollution; however,
the contribution of these metals to the development of the symptom was different. Other studies
showed a highly sensitive immune response to environmental pollution in the preimaginal stages [47]
and reduced size of individuals collected in polluted areas [48].

How strongly an individual species is affected depends on its autecological characteristics.
Undisputedly, feeding habits have an important impact on how much of the toxic substances are
accumulated, as demonstrated by researchers [49], especially for Cd. Researchers [16] showed that
autumn breeding species seemed to be more sensitive than spring breeders in the case of Zn and Pb
pollution. Feeding behavior of the respective species may also be of importance [15]. In our study,
however, the CCA (Figure 2) did not reveal a clear distinction with respect to the breeding type or
trophic specialization of the species (Table S1). However, the degree of pollution in the respective area
can be also relevant. Studies have indicated that in highly polluted habitats, carabid beetles showed
a very high accumulation potential for Cd, Pb, and Zn, whereas in habitats of low pollution they
were able to regulate the concentration of trace elements in their body via detoxification mechanisms.
In conclusion, carabid beetles as entomoremediators may be useful in the decontamination of soils
extremely polluted by trace elements [50].

Even if we could reject differences between the study sites with respect to the stage of succession as
a bias, other factors might have an influence on numbers of species and individuals, too. Some studies
have proven a decrease in species numbers from rural to urban forested sites [51], and accordingly,
the location of the sampling plots in the city space might have had some impact. The degree of
anthropogenic pressure may also depend on the location of the plots. Toxic pollutants and other
environmental factors often show interactions [18]. The combined effect of nickel and chlorpyrifos
was temperature-dependent both in the adults and larvae of Pterostichus oblongopunctatus [52,53].
Since pitfall traps measure the activity density of the carabids, particularly, numbers of individuals
may be also affected by factors influencing their mobility. For example, dense vegetation might impede
the movements of carabid beetles (“Raumwiderstand”) [54,55]. Locomotory activity also depends on
the feeding state of the individuals [56].

Even if the numbers of species and individuals of carabid species in individual sites depend on a
complex set of different biotic and abiotic environmental factors, our study has indicated the impact of
soil contamination and is in accordance with previously published data. The results also corroborate
the usability of carabid beetles as indicators for the environmental impact of soil pollution. Thus,
the increased levels of soil pollutants negatively impact the studied areas by both degrading the soil
quality itself and causing a reduction of carabid beetle species diversity. The results are of value when
it comes to the use of urban wastelands in the context of sustainable city development. Some obvious
tasks include solid assessments of contamination and ecological potential, since the reclamation of
wastelands demands to take into account natural processes, plants, animals, physical factors, nutrients,
and toxicities [57]. Future use of urban wastelands is going to be faced with trade-offs between the
use for public interests (e.g., housing space) and ecological interests. Already in the 1990s, the idea of
‘rotating wastelands’ was discussed, that is, to maintain a certain number of wastelands by building
on some wastelands only when new ones appear [58]. A different approach proposes a unifying
framework for urban wilderness as a social-ecological system [9]. Researchers [59] raised awareness of
the need for a more theoretically nuanced and historically grounded focus on the intersections between
urban ecology and culture in the contemporary city. Other researchers [5] emphasized that urban
wastelands, after not having been used for many years, have spontaneously generated their own social
and natural values, which should be taken into consideration at different levels of planning. In order
to increase the potential of the areas, the strategy of phytoremediation, that is, the use of plant species
to combat alterations in environmental conditions, can be of interest [60]. Phytoremediation seems to
be among the most effective measures in order to restore contaminated areas. As mentioned above,
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the carabid beetles themselves may even participate as entomoremediators. Yet, the results of studies,
such as the one conducted by us, may help to select the respective wastelands for certain purposes.

Supplementary Materials: The following are available online at http://www.mdpi.com/2071-1050/12/24/10673/s1,
Table S1: Numbers of collected carabid beetle individuals (100-trap-days) at the sampling plots including
information about functional traits of the species: Habitat preference (o—open habitat species, f—forest species,
e—eurytopic species), trophic specialization (hz—hemizoophagous species, sz—small zoophagous species,
bz—big zoophagous species) and breeding type (s—spring breeder, a—autumn breeder).
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Appendix A

Table A1. Concentrations of selected trace elements (TE; mg·kg−1 dry matter), soil pH, electrical conductivity (EC; mS·cm−1), organic matter (Org, % dry matter) and
soil water content (SWC, % w/w) in the studied wastelands (n = 3).

Sampling Plot pH I pH II pH III EC I EC II EC III Org I Org II Org III SWC I SWC II SWC III Pb Cd Ni Cr Cu Zn

1-1 6.23 6.03 5.48 0.88 0.54 0.10 1.79 2.17 1.60 3.30 7.46 11.08 10.0 0.18 8.0 8.0 5.8 34.8

1-2 6.46 6.20 5.89 0.57 0.52 0.17 3.98 6.13 1.10 2.10 10.10 6.66 10.0 0.18 8.0 8.0 5.8 34.8

1-3 6.46 6.20 5.89 0.57 0.52 0.17 3.98 6.13 1.10 2.10 10.10 6.66 10.0 0.18 8.0 8.0 5.8 34.8

1-4 6.46 6.20 5.89 0.57 0.52 0.17 3.98 6.13 1.10 2.10 10.10 6.66 10.0 0.18 8.0 8.0 5.8 34.8

1-5 7.21 7.07 5.45 0.61 0.63 0.48 2.76 6.69 1.03 1.80 6.54 3.96 10.0 0.18 8.0 8.0 5.8 34.8

2-1 7.03 6.97 7.30 0.38 0.39 0.24 4.29 5.51 2.64 6.00 13.64 11.55 19.7 0.24 8.0 13.2 8.5 47.7

2-2 7.47 6.95 7.89 0.60 0.51 0.28 2.04 6.16 2.18 5.60 14.10 12.00 19.7 0.24 8.0 13.2 8.5 47.7

2-3 7.29 5.53 5.30 0.56 0.14 0.08 3.58 3.97 1.19 4.10 10.95 12.21 19.7 0.24 8.0 13.2 8.5 47.7

3-1 7.7 7.58 7.48 1.42 1.00 1.29 3.04 3.94 3.41 5.10 8.72 7.32 54.8 0.32 8.0 8.0 33.3 259.0

3-2 7.67 7.53 7.72 1.01 1.11 0.75 2.87 5.79 4.03 6.10 8.13 5.31 54.8 0.32 8.0 8.0 33.3 259.0

3-3 7.89 7.60 7.31 1.49 0.72 0.85 3.56 3.01 6.43 4.80 8.95 5.81 54.8 0.32 8.0 8.0 33.3 259.0

4-1 7.25 7.20 7.33 0.96 0.66 1.41 3.25 3.60 7.26 5.00 6.05 11.45 57.8 0.41 15.2 17.1 37.0 273.0

4-2 7.17 7.36 7.15 0.71 0.64 1.13 2.91 4.91 4.04 12.60 10.71 4.31 57.8 0.41 15.2 17.1 37.0 273.0

4-3 7.17 7.36 7.15 0.71 0.64 1.13 2.91 4.91 4.04 12.60 10.71 4.31 57.8 0.41 15.2 17.1 37.0 273.0

5-1 7.04 6.31 7.11 1.29 0.63 0.34 6.68 5.73 10.93 12.70 20.35 15.09 26.4 0.38 25.5 25.9 31.7 140.0

5-2 7.04 6.31 7.11 1.29 0.63 0.34 6.68 5.73 10.93 12.70 20.35 15.09 26.4 0.38 25.5 25.9 31.7 140.0

6-1 7.45 7.82 7.59 1.21 0.57 2.92 3.87 3.03 3.00 6.90 9.87 9.06 15.8 0.28 14.0 16.2 15.8 77.8

6-2 7.47 7.23 7.36 0.82 1.55 6.00 1.94 4.32 5.71 4.60 13.64 9.93 15.8 0.28 14.0 16.2 15.8 77.8

6-3 7.45 7.38 7.42 0.91 2.96 0.75 2.88 2.49 2.56 6.70 11.26 9.28 15.8 0.28 14.0 16.2 15.8 77.8

7-1 6.98 7.13 7.33 1.92 0.33 1.60 7.54 3.36 2.86 16.70 8.05 7.56 30.4 0.61 30.4 27.4 29.9 130.0

7-2 7.23 6.81 6.96 0.63 0.88 0.70 9.40 7.26 6.65 15.00 21.09 13.56 30.4 0.61 30.4 27.4 29.9 130.0

8-1 7.64 7.52 7.52 0.71 4.46 6.90 8.59 19.38 19.61 8.00 27.20 41.11 19.9 0.25 8.0 8.0 12.9 87.8

8-2 7.64 7.52 7.52 0.71 4.46 6.90 8.59 19.38 19.61 8.00 27.20 41.11 19.9 0.25 8.0 8.0 12.9 87.8

9-1 7.39 7.16 6.96 0.82 0.80 0.54 7.35 6.47 7.11 7.80 7.87 21.61 97.8 0.71 14.2 18.7 56.7 495

9-2 7.39 7.16 6.96 0.82 0.80 0.54 7.35 6.47 7.11 7.80 7.87 21.61 97.8 0.71 14.2 18.7 56.7 495

10-1 6.38 5.17 5.04 0.56 0.14 0.30 3.31 4.84 3.73 2.70 3.69 5.81 10.00 0.08 8.0 8.0 3.5 14.9

10-2 7.40 7.19 7.69 1.10 0.86 0.74 3.44 7.57 3.26 3.90 4.14 9.35 10.00 0.08 12.6 12.6 5.9 32.8

10-3 7.5 7.35 7.4 1.09 1.15 0.80 3.44 6.13 6.11 3.90 7.32 10.42 10.00 0.06 8.0 8.0 6.0 26.7
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Table A1. Cont.

Sampling Plot pH I pH II pH III EC I EC II EC III Org I Org II Org III SWC I SWC II SWC III Pb Cd Ni Cr Cu Zn

11-1 7.9 7.48 7.95 0.46 0.07 1.00 1.96 2.84 0.44 4.30 2.38 11.20 89.3 0.22 8.0 22.3 305.0 126.0

11-2 7.9 7.48 7.95 0.46 0.07 1.00 1.96 2.84 0.44 4.30 2.38 11.20 89.3 0.22 8.0 22.3 305.0 126.0

12-1 6.56 5.8 6.82 0.40 0.12 0.36 6.41 6.13 7.44 8.00 8.28 15.71 119.0 0.27 8.0 8.0 244.0 88.8

12-2 6.56 5.8 6.82 0.40 0.12 0.36 6.41 6.13 7.44 8.00 8.28 15.71 119.0 0.27 8.0 8.0 244.0 88.8

12-3 6.64 6.42 7.26 0.92 0.29 0.27 8.05 7.57 7.06 13.40 17.30 13.92 119.0 0.27 8.0 8.0 244.0 88.8

13-1 7.57 6.36 6.25 1.02 0.17 0.40 5.98 1.75 3.04 5.00 1.63 6.82 40.2 0.20 8.0 8.0 40.6 110.0

13-2 7.57 6.36 6.25 1.02 0.17 0.40 5.98 1.75 3.04 5.00 1.63 6.82 40.2 0.20 8.0 8.0 40.6 110.0

14-1 7.12 7.14 6.00 1.19 1.01 0.14 8.98 7.34 2.79 5.00 4.96 11.05 54.6 0.47 8.0 18.4 42.6 86.7

14-2 7.23 6.82 5.73 0.77 0.60 0.37 5.41 6.55 4.80 4.30 8.38 8.97 54.6 0.47 8.0 18.4 42.6 86.7

15-1 7.64 7.3 8.42 0.84 0.95 1.12 5.39 9.96 4.71 5.30 20.94 10.64 58.9 0.67 17.2 17.6 113.0 321.0

16-1 7.74 7.45 8.50 0.65 0.49 0.38 6.86 5.44 1.77 7.20 16.29 12.13 196.0 0.96 14.5 20.6 131.0 277.0

16-2 7.74 7.45 8.50 2.33 0.58 0.49 6.86 5.44 1.77 7.20 16.29 12.13 196.0 0.96 14.5 20.6 131.0 277.0

17-1 6.28 6.99 6.25 0.60 0.52 0.53 6.30 5.14 5.94 13.10 10.01 10.96 19.6 0.58 12.6 15.9 24.8 114.0

17-2 6.28 6.99 6.25 0.60 0.52 0.53 6.30 5.14 5.94 13.10 10.01 10.96 19.6 0.58 12.6 15.9 24.8 114.0

17-3 6.48 6.25 6.08 0.76 0.20 0.49 5.26 4.42 3.69 10.80 8.73 8.41 19.6 0.58 12.6 15.9 24.8 114.0

17-4 6.28 6.99 6.25 0.60 0.52 0.53 6.30 5.14 5.94 13.10 10.01 10.96 19.6 0.58 12.6 15.9 24.8 114.0

17-5 6.28 6.99 6.25 0.60 0.52 0.53 6.30 5.14 5.94 13.10 10.01 10.96 19.6 0.58 12.6 15.9 24.8 114.0

18-1 7.00 6.94 7.80 0.66 0.98 0.60 8.79 7.13 9.08 11.30 21.27 9.51 33.4 0.25 8.0 8.0 18.2 72.9

19-1 7.68 7.41 7.25 0.75 1.19 1.00 2.79 4.28 3.68 8.50 11.26 16.40 10.0 0.88 8.0 13.5 7.4 106.0

20-1 7.42 7.50 7.40 0.75 0.96 0.69 4.59 0.67 2.11 4.30 17.43 15.26 33.5 0.50 8.0 15.0 13.9 109.0

21-1 7.00 7.83 7.21 0.55 0.49 0.52 3.66 2.87 3.22 6.68 7.18 12.74 49.2 0.28 13.8 8.0 29.8 98.1

21-2 6.88 7.38 6.97 0.62 0.85 0.66 4.69 7.23 5.03 7.13 22.77 19.90 49.2 0.28 13.8 8.0 29.8 98.1

22-1 7.57 7.92 7.13 0.73 0.47 0.36 4.14 5.07 4.52 4.90 11.13 8.19 10.0 0.23 8.0 8.0 3.5 60.7

22-2 7.50 7.50 7.15 0.61 0.86 0.60 1.90 3.15 3.01 5.10 15.86 7.68 10.0 0.23 8.0 8.0 3.5 60.7

23-1 7.63 7.44 7.32 0.67 0.60 0.92 4.60 4.67 5.16 6.67 5.66 14.96 71.9 0.12 8.0 8.0 16.5 74.9

23-2 7.45 7.35 7.93 0.54 0.66 0.52 3.82 2.88 1.60 5.99 4.60 11.12 71.9 0.12 8.0 8.0 16.5 74.9

24-1 4.50 4.12 4.60 0.51 0.63 0.46 4.23 4.63 5.22 5.32 3.33 9.54 75.2 0.15 8.0 8.0 56.2 50.0

24-2 6.30 6.70 6.33 0.35 0.31 0.43 2.87 1.30 3.64 6.49 1.69 16.00 75.2 0.15 8.0 8.0 56.2 50.0
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