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Abstract: What is the state-of-the-art literature regarding the adoption of the complexity theory (CT)
in engineering management (EM)? What implications can be derived for future research and practices
concerning sustainability issues? In this conceptual article, we critically discuss the current status
of complexity research in EM. In this regard, we use IEEE Transactions on Engineering Management,
because it is currently considered the leading journal in EM, and is as a reliable, heuristic proxy.
From this journal, we analyze 38 representative publications on the topic published since 2000, and
extrapolated through a rigorous keyword-based article search. In particular, we show that: (1) the
adoption of CT has been associated with a wide range of key themes in EM, such as new product
development, supply chain, and project management. (2) The adoption of CT has been witnessed in
an increasing amount of publications, with a focus on conceptual modeling based on fuzzy logics,
stochastic, or agent-based modeling prevailing. (3) Many key features of CT seem to be quite clearly
observable in our dataset, with modeling and optimizing decision making, under uncertainty, as the
dominant theme. However, only a limited number of studies appear to formally adhere to CT,
to explain the different EM issues investigated. Thus, we derive various implications for EM research
(concerning the research in and practice on sustainability issues).
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1. Introduction

What is the state-of-the-art literature regarding the adoption of the complexity theory (CT) in
engineering management (EM)? What implications can be derived for future research and practices
concerning sustainability issues? In EM, addressing these questions through a critical discussion of
extant findings is relevant if we consider two, intertwined aspects.

First, in general, the adoption of approaches based on CT has become, in the 21st century,
increasingly popular and highly supported. Concerning sustainability related issues, in particular, this
is seemingly evident, especially when research grants, funding opportunities, and/or public tenders
are released on themes regarding, for example, technology management, open innovation, circular
economy, green procurement, or, more generally, sustainable ecosystems [1].

Second, as also highlighted by our analysis in this article, in the 21st century, the use of
complexity approaches recurs in decision-making problems, regarding how to improve the effectiveness
and efficiency of new product development (NPD), project management (PM), and supply chain
management (SCM), or team organization. We know that these aforementioned problems have always
been considered as key themes in EM. At the same time, we are confident that, to date, they also
represent key challenges towards more sustainable business models [2].
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As an example, in addressing a central issue for technology management research, i.e.,
understanding the nature of the industry environments in which firms play, Ndofor et al. [3] argue
that “if the microfoundations of industry environments are indeed strongly impacted by nonlinear
relationships, then the industry environment would evolve with chaotic dynamics, as opposed to
equilibrium systems” (p. 200). Relatedly, as maintained by McCarthy et al. ([4], p. 437), “early research
on NPD has produced descriptive frameworks and models that view the process as a linear system
with sequential and discrete stages. More recently, recursive and chaotic frameworks of NPD have
been developed, both of which acknowledge that NPD progresses through a series of stages, but with
overlaps, feedback loops, and resulting behaviors that resist reductionism and linear analysis.”

In the same vein, as stated by Amaral and Uzzi ([5], p. 1034), “a design engineer may know
about the reliability of individual parts but find it difficult to estimate how failures in one part of
system are tied together or how errors might cascade through the system when apparently separate
components have a low probability of failure.” Likewise, as posited by Baumann and Siggelkow ([6],
p. 116), “should a product design team always consider all components simultaneously, searching for
designs that have high overall performance? Or should it first experiment with a subset of components
and expand this set gradually in the course of the design process?”

On this premise, starting in the 1960s, several contributions to CT have arisen from various science
disciplines, such as biology, mathematics, physics, chemistry, and information technology [7,8]. This is
why CT is growing as a cross-disciplinary scientific perspective, offering new approaches and answers,
where reductionism demonstrates limits [9,10]. In particular, according to complexity science, the
assumption of Newtonian thinking, where everything can be broken down into single pieces, studied
separately, and then reassembled to form the initial totality, appears too simplistic when applied to
understanding situations characterized by uncertainty and unpredictability [11].

Due to the body of knowledge and continuous, massive expansion of CT, most complexity
theorists currently agree on some core characteristics of complexity, and a number of intertwined
definitions have been developed over time [12]. Maguire and McKelvey, for example, seminally
identify a complex system as “a system (whole) comprised of numerous interacting entities (parts),
each of which is behaving in its local context according to some rule(s), law(s) or force(s). In responding
to their own particular local contexts, these individual parts can, despite acting in parallel without
explicit inter-part coordination nor communication, cause the system as a whole to display emergent
patterns—orderly phenomena and properties—at the global or collective level” ([13], p. 4). Likewise,
Mitchell conjectures a complex system as a “system in which large networks of components with no
central control and simple rules of operation give rise to a complex collective behavior, sophisticated
information processing, and adaptation via learning or evolution” ([14], p. 13). Moreover, since
complex systems show a tendency to adapt, they are often referred to as complex adaptive systems
(CAS); hence, we will use the latter term in this article.

Considering the foregoing, it seems that a conceptual article that critically discusses the current
status of complexity research in EM is missing. Thus, the main contribution of our research is that
we conceive it as a theoretical start intended to fill this gap. To do so, in Section 2, we first provide
readers with the core concepts regarding CT. In Section 3, which constitutes the core of our research,
we chose the 21st century to investigate the diffusion of complexity-based accounts in EM. In this
regard, we use IEEE Transactions on Engineering Management (TEM), because it is considered as the
leading journal in EM [15], and as a reliable, heuristic proxy to start our focus. From this journal, we
analyzed 38 representative publications on the topic published since 2000, and went through a rigorous
keyword-based article search. Specifically, we provide the pillars of our contribution in terms of key
thematic areas investigated and authorship coverage, together with the main research methodologies
and core complexity features adopted. Therefore, in Section 4, we discuss some potential (and hopefully
valuable) implications of our analysis for sustainability research and practices in this EM field. Section 5
concludes our contribution and presents its limitations.
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As a piece of core evidence, our analysis shows that many key features of CAS seem to be clearly
observable in the dataset, with modeling and optimizing DM under uncertainty as the dominant theme.
Perhaps surprisingly, however, only a limited number of studies still seem to formally adhere to CT,
to explain the different EM issues under investigation. This is also why, among the various avenues
presented, we suggest that more all-inclusive complexity-based research frameworks would be needed.
Accordingly, formally embedding fine-tuned co-evolutionary logics in these frameworks could also
add value.

2. Theoretical Background

As previously mentioned, CT represents a multi-disciplinary, modern approach that studies CAS,
following its own specific set of laws, behaviors, and characteristics, such as self-organization, and
emergence. In principle, CAS can be considered as open systems consisting of several agents locally
interacting in a non-linear manner and forming a unique, organized, and dynamic entity; this entity is
capable of adapting to, and evolving within, the environment [16]. In other words, CAS have many
features in common with living systems; they adapt and evolve through learning.

As mentioned above, a first important characteristic of CAS is the concept of self-organization.
The Austrian biologist Von Bertalanffy [17] seminally coins this term in reference to the growth of
organisms over time. Self-organizing reflects the ability of CAS to establish an internal organization
through adaptation and evolution, without central control.

Relatedly, emergence is a characteristic showed by CAS, where “the behavior of the whole is
much more complex than the behavior of its parts” [18] (p. 12). The peculiarity of emergence is that its
nature is not necessarily linked to that of the agents [19]. For example, in PM, it has been conjectured
that the complex interactions of various parts of a project can generate a specific behavior of the project
itself, which can be explained through systemic analysis.

In order to understand how CAS behave, we need to model them, i.e., identify a set of variables
that operationally describe these systems. System theory helps with this operationalization [20–22].
In particular, we can define a state variable of CAS as a measurable element of the systems that
describes their conditions in a given moment. The state of CAS at a given time is, thus, the set of
values held, at that time, by all their state variables [11]. In this regard, there is no formal rule for
choosing the appropriate number and type of state variables; however, we can assume that the greater
the complexity of CAS (in terms of number of agents and level of interdependence), the greater the
variety in type and number of the state variables [13]. Moreover, state variables are represented in an
n-dimension space, where n = number of state variables. In this space, each point defines a precise
state of the systems (such a state is the state space of CAS). Given a set of state variables, the evolution
in time of CAS is a trajectory in its state space [14].

Accordingly, another important characteristic of CAS is that their trajectories in the state space
can have three main types of behavior [23]:

1. Order, when the trajectory reaches a point (or an orbit) of the space and then stabilizes. This point
or orbit is defined as an attractor. The systems in this regime are stable;

2. Disorder or chaos, when the trajectory shows a chaotic path. In this regime, CAS are
completely unstable;

3. Complex regime (or edge of chaos), when the trajectory is attracted by a particular region of the
state space. This particular region is known as a strange attractor. In this regime, the systems
reach their dynamic equilibrium.

The most interesting type of trajectory appears to be the third (i.e., complex regime), since CAS in
this regime show their most relevant behaviors. When CAS reach the complex regime, the conditions
are set for all of its peculiarities, i.e., self-organization and emergent behavior, respectively, to be present.
However, despite the tendency of the trajectory to orbit around its strange attractor, the evolution of
CAS is generally unpredictable [11].
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To date, CAS may be found in different contexts, such as economics (e.g., a market), sociology
(e.g., a human group), biology (e.g., a cell), business (e.g., an organization), or EM (e.g., a NPD process).
In this regard, approaching these contexts through the lens of complexity can, appropriately help
face uncertainty and unpredictability [24,25]. In particular, complexity can help model the real world
through describing its main characteristics, especially when the deterministic approach seemingly
unveils its limits. To do so, to date there are many methodological tools available in the scientific
arena. Agent-Based Modeling (ABM), for example, allows simulating the actions and interactions
of simple agents, and capturing the emergent and usually complex behavior of the system to which
they belong [26]. ABM could also generate adaptive-learning models, which assume that agents
have non-linear behaviors, generally based on very simple agent rules [27]. Another tool is fuzzy
modeling, which helps face the ambiguity of complexity contexts by introducing un-precise values
for the selected variables [28,29]. Likewise, stochastic models countervail the inability to accurately
measure well-defined parameters, assuming that an optimal representation may be indeed found
within a probability distribution of such measures [30]. Finally, a contribution to help understanding
and modeling of complex systems can also be provided by the system of the systems approach [31]
because of its tendency to pool resources and capabilities from single systems into a more complex
entity, which performs more than the sum of the systems taken separately.

3. Analysis

In order to start discussing the impact of CT on EM, since 2000, after different methodological
attempts (in terms of search strings and protocols), we ultimately chose to scan only the IEEE TEM
journal—considered as the leading journal in the field [15]—through adopting a rigorous keyword-based
article search on the EBSCOhost/Business Source Complete research database. In this regard, an initial
clarification about the determinants of this methodological choice seems warranted here. This choice
happened for two main (intertwined) reasons:

First, at the very beginning of our research project, we attempted to adhere to a traditional
systematic review protocol (e.g., [32]). In other words, we initially scanned EBSCOhost/Business Source
Complete for all of the articles containing, at least, the keyword “complex*” in their abstract (as known,
the asterisk at the end of “complex” allows for different, related suffixes [e.g., complex or complexity]).
From a strict procedural view, we are confident that, in principle, this methodological choice would
have been, perhaps, more appropriate to initially circumscribing the potentially relevant literature in
the field. In practice, however, while performing it, this search produced a large amount of results.
These results, in substance, would have made the subsequent steps of a traditional systematic review
to be rigorously performed in terms of screening, scanning, evaluating, and selecting, substantively
not feasible [33].

We then made various attempts to limit the amount of potentially relevant papers through adding
more specific filters, e.g., “engineering management”, as keywords in their abstract. However, after
making some crash checks through looking at the papers’ text, we came to the opinion that this choice
would have been too risky, in that it would have probably added opacity to the article inclusion
(or exclusion) process. For example, various papers focused on complexity-based innovation, PM,
or SCM, thus, in line with the focus of the review, do not contain “engineering management” in
their abstract. In other words, at least in our view, this choice would have probably brought the
risk of biasing the accountability, rigor, and transparency that is at the core of any systematic review
process [34].
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Second, as a consequence of the above, we attempted to focus only on IEEE TEM to scan
EBSCOhost/Business Source Complete for all of the articles containing, at least, the keyword “complex*”
in their abstract. This initial step produced 120 results, which then became 111 after eliminating
all of the articles published in IEEE TEM before 2000 (our focus is on the 21st century), as well as
those articles that could not strictly be considered peer-reviewed (e.g., departmental notes or guest
editorials). This initial amount of results, we thought, made the subsequent, needed steps for the
article inclusion/exclusion, through a rigorous fit for purpose protocol [35] practically feasible.

On this premise, to ensure substantial relevance for our dataset, we scanned all 111 abstracts.
Specifically, to be selected: (i) the article abstracts had to formally adopt CT and/or CAS as their
theoretical framework; or (ii) if the formal adoption was absent, the presence of the most vivid
characteristics of CT had to be clearly identifiable in the abstracts. In particular, as explained in
our theoretical framework, this is the case for characteristics such as ABM, emergence, evolutionary
dynamics, fuzzy logics, non-linear dynamics, self-organization, stochastic modeling, system of systems,
and uncertainty. Overall, this phase reduced our results to 54. Additionally, to ensure conclusive
substantial relevance, we repeated this fit for purpose criterion through reading the article texts of all
54 abstracts selected; 38 articles (2000–September 2019) relevant to our research scope finally emerged.
In general, this size is consistent with that of many past (e.g., [36]) and recent (e.g., [37]) more traditional
systematic reviews, published in the management arena.

In sum, given the exploratory aims of this conceptual article, we believe that, due to the combined
mix between the consistency of our dataset and the IEEE TEM leading reputation in the EM field [15],
an IEEE TEM-based initial discussion about the topic coverage can represent: (1) not only a reliable,
internationally recognizable, heuristic proxy about the state-of-the-art literature regarding the topic;
(2) a (hopefully) challenging starting point to inspire future research efforts in what, as our results
show, demonstrates to be a fast-growing, although still not totally conceptually consolidated, area
in EM. In this regard, Table 1 synthesizes various, significant items of analysis emerging from our
sampled publications. We adapted the thematic areas used in the column “Main Area(s) of Interest”
from those present in the ABS 2018 Journal List.
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Table 1. An overview of the dataset (in decreasing chronological order per publication year).

N. Year (First)
Author Title Vol., Issue,

Pages
Main Area(s)

of Interest Methodology Industry Complexity
Characteristics Main Content

1 2019 De

Multiobjective approach
for sustainable ship

routing and scheduling
with draft restrictions

66, 1, 35–51 Operations
Non-dominated
Sorting Genetic

Algorithm

Maritime
Transportation

Evolutionary,
Non-linear

Through considering different
variables relevant in maritime

transportation, the work
provides a genetic algorithm to

support complex decisional
processes in this industry.

2 2019 Li
Optimizing the labor

strategy of a
professional service firm

66, 3, 443–458
Human

Resource
Management

Labor Strategy
Optimization

Global
Professional

Services

Stochastic,
Non-linear,
Uncertainty

Through non-linear analysis
and uncertainty modeling, the

work designs the Labor
Strategy Optimization

framework to strategically
optimize the use of workforce

at firm level.

3 2019 Yu
A complex negotiation

model for multi-echelon
supply chain networks

66, 2, 266–278 Operations

Simultaneous
Multi-attribute

Multi-item
Modeling

- ABM

Through using ABM, the work
proposes a framework to

support complex negotiation
problems in supply

chain networks.

4 2018 Ndofor Chaos in industry
environments 65, 2, 191–203 Strategy

BDS Test,
Correlation

Dimension Test,
Lyapunov
Exponent

Various CAS,
Non-linear

The work uses the nonlinear
dynamical system methods

from CT to study how different
industry environments evolve

over time.

5 2017 Liu

Novel two-phase
approach for process

optimization
of customer

collaborative design
based on

fuzzy-QFD and DSM

64, 2, 193–207 Innovation

Design
Structure

Matrix, Quality
Function

Deployment

Automotive Fuzzy,
Uncertainty

In the context of NPD, the
work uses design structure
matrix and quality function

deployment to propose a
two-stage model focused on

customer satisfaction
and cooperation.

6 2016 Geng

A new fuzzy process
capability estimation

method
based on Kernel

function and FAHP

63, 2, 177–188 Operations

Process
Capability

Indicators/Kernel
Function

Process
Fuzzy,

Non-linear,
Uncertainty

Through a simulation in the
Tennessee Eastman process,

the work proposes a new
method to estimate the

production process capability,
together with a new criterion

for the evaluation of
capabilities and performance.
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Table 1. Cont.

N. Year (First)
Author Title Vol., Issue,

Pages
Main Area(s)

of Interest Methodology Industry Complexity
Characteristics Main Content

7 2016 Giannoccaro

Examining the roles of
product complexity and

manager behavior on
product design
decisions: An

agent-based study using
NK simulation

63, 2, 237–247 Innovation NK Model - ABM, CAS,
Evolutionary

Through a methodology
drawn from complexity

science, the work studies what
behavioral factors can

influence project managers in
their choice regarding the
degree of centralization of

decisions about
product design.

8 2016 Sarker

Internal visibility of
external supplier risks

and the
dynamics of risk

management silos

63, 4, 451–461 Operations

Bounded
Rationality,

Contingency
Theory

Manufacturing Non-linear,
Uncertainty

The work uses bounded
rationality and contingency
theory to explain non-linear

and non-deterministic
perception of risks associated

with the SCM process.

9 2016 Zhang

A stochastic ANP-GCE
approach for

vulnerability assessment
in the water supply

system with
uncertainties

63, 1, 78–90 Operations

Analytical
Network

Process, Game
Cross

Evaluation

Water Supply

Fuzzy,
Non-linear,
Stochastic,

Uncertainty

Through the case study of the
Shanghai water supply system,
the work proposes a stochastic
multi-criteria approach for the

vulnerability assessment of
each component in the system.

10 2015 Herrmann

Predicting the
performance of a design

team
using a Markov chain

model

62, 4, 507–516

Innovation,
Human

Resource
Management

Markov Chain Motors ABM, Stochastic

Proposing a Markov chain
model, the work studies when
it is convenient for bounded

rational problem
solvers/agents in search for an

optimal solution, to
decompose complex problems

of product development in
different, less complex

sub-problems.

11 2015 Jiang

Optimizing cooperative
advertising, profit

sharing,
and inventory policies in
a VMI supply chain: A
Nash bargaining model
and hybrid algorithm

62, 4, 449–461 Operations

Non Linear
Nash

Bargaining
Model/Hybrid

Algorithm

Retail
Evolutionary,
Non-linear,
Stochastic

The work develops a Nash
bargaining and hybrid

algorithm model to optimize
the complex joint DM

regarding vendor managed
inventory supply chains.
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Table 1. Cont.

N. Year (First)
Author Title Vol., Issue,

Pages
Main Area(s)

of Interest Methodology Industry Complexity
Characteristics Main Content

12 2015 Parraguez

Information flow
through stages of

complex
engineering design
projects: A dynamic

network analysis
approach

62, 4, 604–617
Information

Management,
Innovation

Dynamic
Network
Analysis

Renewable
(bio-mass)

Energy

Emergence,
Evolutionary

Through the dynamic network
model developed, the work
offers a tool to dynamically
quantify and analyze the

information flows among the
activities of complex

engineering design projects.

13 2015 Tsilipanos

Modeling complex
telecom investments: A

system of systems
approach

62, 4, 631–642 Strategy Genetic
Algorithm Telecom

Emergence,
Evolutionary,

Stochastic,
System of
Systems,

Uncertainty

Focusing on
telecommunications, and
adopting the system of

systems method from CT, the
work models a genetic

algorithm useful to study
optimal DM and

budget allocation.

14 2015 Villalba-Diez

Improving
manufacturing
performance by

standardization of
interprocess

communication

62, 3, 351–360
Operations,
Information

Management

Interprocess
Communication

Holon

Engine
Manufacturing CAS

Studying the standardization
of interprocess communication

in complex supply chain
networks, the work proposes a
holistic model from which the
manufacturing performance

can increase.

15 2014 Kaki

Scenario-based
modeling of

interdependent
demand and supply

uncertainties

61, 1, 101–113 Operations Scenario Based
Modeling Manufacturing

Non-linear,
Stochastic,

Uncertainty

Through the case of a
manufacturing company, the

work develops a
scenario-based framework for
modeling the interdependence

between demand and
supply uncertainties.

16 2014 van de
Kaa

Supporting decision
making in technology

standards battles based
on a fuzzy analytic
hierarchy process

61, 2, 336–348 Strategy
Analytic

Hierarchic
Process

Technology
Standards

Fuzzy,
Emergence,
Uncertainty

The study uses a fuzzy analytic
hierarchic process to model the

emergence, selection, and
survival of technological

standards over time.
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Table 1. Cont.

N. Year (First)
Author Title Vol., Issue,

Pages
Main Area(s)

of Interest Methodology Industry Complexity
Characteristics Main Content

17 2012 Muller

Relationships between
leadership and success

in different types of
project complexities

59, 1, 77–90

Management
Science, Human

Resource
Management

Leadership
Dimensions

Questionnaire

Project
Management

Institute/
International

Project
Management
Association

CAS,
Uncertainty

The work studies whether
project complexity moderates
the relationship between the
leadership competences of

project managers and
project success.

18 2012 Shafiei-Monfared
Fuzzy complexity model

for enterprise
maintenance projects

59, 2, 293–298 Management
Science

Graph
Complexity

Model
Aircraft Engines Fuzzy,

Uncertainty

Through fuzzy modeling, the
work defines different levels of

project (managerial and/or
technical) complexity, with the

model useful for budgeting,
planning, and

resource allocation.

19 2012 Stryker

Creating collaboration
opportunity: Designing

the
physical workplace to

promote high-tech team
communication

59, 4, 609–620

Information
Management,

Human
Resource

Management

Hierarchical
Regression
Analysis

Pharmaceutical Uncertainty

The work studies how the
probability to achieve complex
team tasks is impacted by the

relationship between the
physical design of the

workplace and the face-to-face
communication among

team members.

20 2012 Van der
Vooren

Managing the diffusion
of low emission vehicles 59, 4, 728–740 Strategy

Modeling based
on vehicle

technologies,
infrastructures,
and consumers

Automotive
ABM,

Non-linear,
Stochastic

Through using ABM, the work
studies the competition for

technological standards
between a number of low

emission vehicle technologies
and the dominant fossil

fuel based.

21 2011 Mikaelian

Real options in
enterprise architecture:
A holistic mapping of
mechanisms and types

for uncertainty
management

58, 3, 457–470 Management
Science

Real option
analysis Surveillance

Emergence,
Evolutionary,
Uncertainty,

The work develops a holistic
approach based on real option
analysis to manage flexibility
and DM under uncertainty in
complex engineered systems.
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Table 1. Cont.

N. Year (First)
Author Title Vol., Issue,

Pages
Main Area(s)

of Interest Methodology Industry Complexity
Characteristics Main Content

22 2011 Revie

Supporting reliability
decisions during defense

procurement using a
Bayes linear

methodology

58, 4, 662–673
Operations,

Management
Science

Bayes Linear
Modeling Defense Uncertainty

Through an industrial
application in a defense

procurement project setting,
the work proposes a Bayes

linear methodology to support
the reliability of DM.

23 2011 Tripathy

Organizing global
product development

for complex engineered
systems

58, 3, 510–529
Innovation,

International
Business

Design
Structure Matrix Various CAS

Adopting the perspective of
complex engineered systems,

the work models the
offshoring and onshoring of
the activities associated with

NPD at global level.

24 2010 Goh

Uncertainty in
Through-Life

costing—Review
and perspectives

57, 4, 689–701 Management
Science

Through-Life
Cost - Fuzzy,

Uncertainty

The work reviews how
uncertainty is classified in the
engineering literature and how

it is conceived in the
through-life cost estimation

methodology.

25 2010 Zhang

An
optimal-control-based

decision-making model
and consulting

methodology for service
enterprises

57, 4, 607–619 Management
Science

Approximate
Dynamic

Programming
Algorithm

Service Fuzzy

In the context of service
management, the work

proposes a DM model based
on an approximate dynamic

programming algorithm,
which can be useful to manage
the planning and evaluation of

complex projects.

26 2009 Levardy

An adaptive process
model to support

product development
project management

56, 4, 600–620
Innovation,

Management
Science

Adaptive
Product

Development
Process

Modeling

Packaging

ABM, CAS,
Evolutionary

Fuzzy,
Stochastic,

Uncertainty

The study conjectures the
process of product

development as a CAS,
featured by a general class of

self-organizing activities/rules,
able to adapt to the changing

state of the process.

27 2008 Jun

A modeling framework
for product

development process
considering its
characteristics

55, 1, 103–119 Innovation

Modeling based
on product

development
characteristics

Automotive,
Electronics

CAS,
Evolutionary,
Uncertainty

The work provides modeling
patterns for the product

development process based on
its iterative, evolutionary,

uncertain, and cooperative
characteristics.
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Table 1. Cont.

N. Year (First)
Author Title Vol., Issue,

Pages
Main Area(s)

of Interest Methodology Industry Complexity
Characteristics Main Content

28 2007 Pathak
On the evolutionary
dynamics of supply
network topologies

54, 4, 662–672 Operations

Modeling based
on supply
network

topologies

Automotive

ABM, CAS,
Emergence,

Evolutionary,
Stochastic,

Uncertainty

Through combining CAS with
industrial growth, network,
market structure, and game

theories, the work investigates
how supply network

structures evolve and survive
over time.

29 2007 Raisinghani

Strategic e-business
decision analysis using

the analytic network
process

54, 4, 673–686 Strategy
Analytic
Network
Process

E-Business Non-linear

In the context of e-business,
the work uses the analytic
network process to model

optimal DM when decision
complexity increases.

30 2006 Batallas

Information leaders in
product development

organizational networks:
Social network analysis
of the Design Structure

matrix

53, 4, 570–582

Information
Management,

Human
Resource

Management,
Innovation

Social Network
Analysis/Design
Structure Matrix

Aircraft Engines CAS,
Non-linear

In settings featured by the
complexity of product

development projects, the
work uses social network

analysis to model and evaluate
the information flow, with a
focus on the identification of

information leaders.

31 2005 Cho

A simulation-based
process model for

managing complex
design projects

52, 3, 316–328
Innovation,

Management
Science

Design
Structure Matrix

Simulation
Modeling

Aerospace Stochastic,
Uncertainty

Through an industrial
application in the aerospace
industry, the work uses the

design structure matrix
modeling to propose an
approach for managing

complex product
design projects.

32 2005 Jun

On identifying and
estimating the cycle time
of product development

process

52, 3, 336–349 Innovation
Modeling based

on product
development characteristics

Automotive Evolutionary,
Stochastic

The work provides modeling
patterns for the product

development process based on
its characteristics of interaction,

evolution, and uncertainty.

33 2005 Williams

Assessing and moving
on from the dominant
project management

discourse in the light of
project overruns

52, 4, 497–508 Management
Science

Systemic
Modeling -

CAS,
Emergence,
Stochastic,

Uncertainty

Through reviewing PM
theories, the work proposes

systemic modeling as a useful,
learning based approach to
manage the uncertainty and

emergence characteristics
associated with

complex projects.
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Table 1. Cont.

N. Year (First)
Author Title Vol., Issue,

Pages
Main Area(s)

of Interest Methodology Industry Complexity
Characteristics Main Content

34 2004 Lin

New product go/No-go
evaluation at the front
end: A fuzzy linguistic

approach

51, 2, 197–207 Innovation

Logic-Based
Screening

Model/Linguistic
Multi-criteria

Decision

Machinery Fuzzy,
Uncertainty

Through an industrial
application on a new

machining center, the work
proposes a new screening

model based on fuzzy logics
and linguistic approximation

to assess the design of
new products.

35 2004 Sia

Effects of environmental
uncertainty on

organizational intention
to adopt

distributed work
arrangements

51, 3, 253–267
Human

Resource
Management

Partial Least
Square Various Uncertainty

The work is an exploratory
study about the convenience of

using distributed working
arrangements as an

organizational innovation
to face

environmental uncertainty.

36 2004 Xirogiannis

Fuzzy cognitive maps in
business analysis and
performance-driven

change

51, 3, 334–351 Management
Science

Cognitive
Mapping Financial Sector

Evolutionary,
Fuzzy,

Non-linear

Positioned in the business
process reengineering area, the

work uses fuzzy cognitive
mapping to analyze
performance-driven

reengineering processes.

37 2003 Huntley

Organizational learning
in open-source software
projects: An analysis of

debugging data

50, 4, 485–493 Information
Management

Adaptive
Learning,

Debugging

Open Source
Software

Non-linear,
Uncertainty

The work studies open-source
debugging as a form of

organizational learning, with a
focus on the open source

approach as a hedge against
system complexity.

38 2002 Vachon

An exploratory
investigation of the

effects of supply
chain complexity on

delivery performance

49, 3, 218–230 Operations

Modeling based
on

supply chain
characteristics

Textile,
Machinery

Stochastic,
Uncertainty

The work provides a
conceptual model

characterizing the complexity
features of a supply chain,

which is useful to understand
the linkage between SCM and

delivery performance.

Source: own elaboration.
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In the four sub-sections below, we analyze these items per key content lines.

3.1. Themes

In terms of fields, as a premise, we can consider about two-thirds of our sampled publications as
falling into traditional EM, one-third into technology management, and substantially none in emerging
technologies (Figure 1).
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In more detail, as Figure 2 shows, since 2000 CT has been associated with a wide spectrum of
topics and themes associated with the fields above.
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In particular, as Figure 2 shows, innovation, operations, and management science represent, as we
could somehow expect, the most investigated areas. In this respect, works on the use of CT in DM
processes, regarding NPD, procurement, and supply chain, or PM, specifically prevail. Interestingly,
at the same time, considerable (although minor) amounts of observations fall into the areas of human
resource management, strategy, and information management. In this instance, for example, the focus is
on the use of CT to increase team productivity, competitive capabilities in (technological) environments,
or the efficiency/effectiveness of intraorganizational communication.

3.2. Timely Distribution and Authorship

As Figure 3 illustrates, the time distribution of the publications witnesses an increase, especially if
we separate the articles published in the years between 2000 and 2010 from those published between
2011 and 2019.
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Figure 3. Evolving trend of the publications. Source: own elaboration.

On this premise, interesting evidence seemingly emerges if we focus on various features regarding
the authorship coverage of our sampled publications (Figures 4 and 5).
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Figure 4 substantially shows what we could consider the geographical source of our sampled
publications. In particular, we developed this data-driven figure by contemporaneously considering:
(1) the first author (N = 37, net of duplicates) of each publication; (2) the country in which s/he was
awarded her/his PhD. In this regard, we chose to specifically focus on first authors because of the
internationally acknowledged leadership role, which, in general, any first author has in terms of the
research design of a publication. At the same time, we preferred to focus on the country in which the
first authors were awarded their PhD rather than on their strict nationality because we thought the
former could represent a more reliable proxy for the cultural orientation (and associated approach)
towards the topic.

Having clarified the above, as shown in Figure 4, the geographical source of our dataset appears
substantially balanced between Europe and North America, followed, at the same time, by a significant
presence of Far East countries (e.g., China, Japan, Taiwan, Hong Kong, Singapore, and South Korea).

Correspondingly, Figure 5 shows the publications’ coverage by author affiliation. In this case,
we developed this data-driven figure by considering all of the authors (N = 107, net of duplicates)
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in our dataset. Interestingly, as shown in the figure, engineering schools/departments prevail, but
business schools/departments also occupy a significant portion. at the same time, although in minor
percentages, Figure 5 also evidences the presence of scholars from other schools/departments, such as
information technology or mathematics, and practitioners as well. We could argue that this evidence
can be interpreted as consistent, as explained in our theoretical framework, with the multidisciplinary
nature of the approaches to CT.

3.3. Methodologies, Settings, and Complexity Features

Almost all of the studies are based on conceptual, mathematical modeling, with the vast majority
also tested through industrial applications, relying, for the largest part, on quantitative methods.
Interestingly, on the one hand, the conceptual modeling is featured by a wide range of techniques,
these varying, for example, from genetic algorithms to design structure matrices, or analytical
hierarchical/network processes. At the same time, on the other hand, many of these techniques
share the common feature of grounding on fuzzy logics, stochastic modeling, or ABM as their basis.
From more than one aspect, similar highlighting can also regard the context of the industrial applications.
In fact, the general settings are heterogeneous ranging, for example, from aerospace, to automotive,
manufacturing, or services. However, almost all of these settings share a strong hi-tech component in
what is specifically observed.

Figure 6 expands on Table 1, offering statistics about the presence of the inner complexity
characteristics in our dataset. In particular, we built this figure through the assumption that more than
one characteristic can be simultaneously present in the observed publications.
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As evidenced in Figure 6, the study of DM and problem solving under uncertainty (and how
to manage it) largely prevails, and generally serves as the ground basis for various lines of inquiry,
with one or more complexity characteristic often contemporaneously present with uncertainty itself.
In particular, as evidenced in the figure, uncertainty is frequently associated with non-linear dynamics
and/or, as previously mentioned, stochastic modeling. The former, for example, is interestingly
highlighted by Xirogiannis and Glykas [38] in their study on how performance-driven business
reengineering processes work and how they could eventually work better. The latter, in parallel, is
used more than once to provide insight on how to model the complexity, towards efficiency and
effectiveness, regarding NPD, PM practices, or SCM.

An interesting number of observations also include the use of fuzzy logics in conjunction with
uncertainty. In the area of management science, for example, and with a focus on PM, Shafie-Monfared
and Jenab [39] use fuzzy modeling to identify different degrees of project complexity, based on the
differentiation of managerial and technical features. Their framework can usefully provide support to
budgeting, planning, and resource allocation. Similarly, through the case study of a new machining
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center, Lin and Chen [40] propose a new method to evaluate new product design, based on fuzzy
logics in general, and linguistic approximation in particular.

Finally, in our dataset, uncertainty is also repeatedly associated with evolutionary dynamics.
For example, Mikaelian et al. [41] develop a holistic, evolutionary approach, based on real option
analysis, to manage flexibility and DM under uncertainty. In a similar vein, Giannoccaro and Nair [42]
heavily rely on complexity science and evolutionary mechanisms to study what (and how) behavioral
traits of project managers can shape their decisions regarding product design.

3.4. Complexity-Based Evidences

In relation to the third issue analyzed above, however, it seems that only a limited number of
studies still formally adhere to the lenses of CT, and/or CAS, to explain the different EM issues under
investigation. For example, in the innovation area, Tripathy and Eppinger [43] focus on complex
engineered systems, with particular regard to the offshoring and onshoring activities associated with
NPD at a global level. In detail, they use five case studies from electronics, equipment, and aerospace to
study the complexity of the interactions between the product and process structures, and the strategies
planned and implemented at firm level. On the basis of their findings, these scholars then propose
theoretical trajectories aimed at improving the DM configuration regarding global product development
in complex engineered systems. As their core idea, the modularity in design and development should
be separated from that in manufacturing; furthermore, the development of the system architecture,
which is a core capability, should not be offshored.

In a similar vein, Levardy and Browning [44] conjecture the processes of NPD as CAS. These
scholars oppose linear, time-based vertical scheduling, in that they theorize these processes as featured
by a general class of activities/rules, which can self-organize and adapt to their changing state.
The implications of their modeling for DM in EM are interesting; in fact, their adaptive model considers
product development as a DM process, in which each decision is potentially able to maximize the
expected value of the overall project based on the particular state, in any given moment, of its internal
and external variables.

Again, in the context of NPD, the work by Jun and Suh [45] appears particularly worth of
explanation. They also provide a theoretical framework for the process, composed not only of iterative
but also evolutionary, uncertain, and cooperative characteristics. Through an industrial application in
the automotive, electronics, and environmental settings, their modeling demonstrates its potential
utility to engineers and project managers involved in planning, organizing, and monitoring the design
and implementation of new product initiatives.

Following the above evidences about innovation, in the strategy area, Ndofor et al. [3] use the
nonlinear, dynamical system methods from CT to study how different industry environments evolve
over time. In particular, adopting three operationalizations, classically utilized to discover nonlinear
variable dynamisms, these scholars evidence that many industries evolve in a chaotic regime, where
uncertainty increases proportionally to hypercompetitive settings. Similarly, Tsilipanos et al. [30]
analyze investments in the telecommunication industry through using a methodological approach
typical of CT. Specifically, these scholars model this industry as a system of systems, and use the
MATLAB software to create a genetic algorithm able to provide results based on stochastic, emergent
modeling. Tested through an industrial application, the more general value of their modeling, also in
terms of implications for EM, mainly consist of the possibility to provide prospective investors with
theoretical support to efficient DM and budget allocation.

Finally, in the operations and supply chain area, the research by Pathak et al. [46] seemingly
deserves attention. Through combining the CAS approach with industrial growth, networks, market
structure, and game theories, these scholars investigate how supply network structures can evolve and
survive over time. The observations from their agent-based study in the U.S. automotive industry
can be of particular appeal to engineers. Specifically, they find that the type of environment and the
speed of adaptability both affect the survival chances of supply networks; in peaceful settings, on the
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one hand, the topological evolution of the networks is relatively stable, with centralized or linear
network structures, often able to guarantee survival over the long term. In more competitive settings,
however, only the hierarchical structure seems able to provide networks with adequate long-term
survival chances.

4. Discussion and Implications

In this conceptual article, we have focused on the adoption of CT in EM since 2000. At the
beginning, we introduced the key conceptual pillars of CT (and CAS). Subsequently, because of its
status of being a leading journal in the field, we chose IEEE-TEM as a reliable, heuristic proxy to analyze
and discuss those publications formally, and/or substantially, referring to complexity approaches.
Therefore, we can synthesize the results from our analysis into the following three main evidences.

First, from 2000, the adoption of CT in EM has been associated with a wide range of key
themes in the field. NPD, SCM, and PM prevail. At the same time, a considerable number of
observations also regards team productivity, competitive capabilities in (technological) environments,
and intraorganizational communication.

Second, this adoption was seen in an increasing amount of publications, especially if we consider
the years 2011 to 2019. Conceptual modeling developed through a wide-range of techniques largely
prevails in our dataset, then quantitatively tested in various (almost hi-tech based) industrial settings.
This, again, also appears in line with the plurality and heterogeneity of analytical tools and (high-tech)
settings traditionally employed in EM [47]. At the same time, the common feature among these
techniques is that they are mostly based on fuzzy logics, stochastic modeling, or ABM.

Third, many key ingredients of CT seem to be quite clearly observable in the analyzed publications.
Accordingly, modeling and optimizing DM under uncertainty results as the dominant theme; this
theme, at the same time, is not only often associated with the mentioned fuzzy logics, stochastic
modeling, and ABM, but also with non-linear and/or evolutionary dynamics. Perhaps surprisingly,
however, only a limited number of studies still seems to formally adhere to CT to explain the various
EM issues under investigation.

From what is summarized above, some implications for EM (concerning the research in and
practice on sustainability issues) can also be derived. These implications are exposed below, sequentially
ordered per item of focus.

4.1. Areas of Investigation and Leadership

Regarding the areas of investigation, on the one hand, as previously written, our results show
good coverage of complexity-based approaches in key EM areas. On the other hand, we think that
additional areas could also become objects of research in this field. For example, the emerging
technologies/technology intelligence area could be expanded through complexity-based observations
concerning artificial intelligence or Internet of Things. In fact, on both of these topics, we could not
find any evidence in our analysis. Moreover, further studies could also look into how to develop, from
engineers to leaders; correspondingly, we could find good coverage of human resource management in
general, but, apart from scant exceptions, we could not find sizeable evidence about complexity-based
leadership [48] in our analysis.

Regarding the above, for instance, and with a focus on the potential impact of complexity-based
leadership on the effectiveness and efficiency of innovation (e.g., NPD) and change, the recent work by
Burnes [49] appears remarkable. In particular, according to this scholar (p. 84), “unless employees
have the freedom to act as they see fit, self-organization will be blocked, and organizations will die
because they will not be able to achieve continuous and beneficial innovation.” Furthermore, he states
(p. 84), “neither small-scale incremental change nor radical transformational change works: instead,
innovative activity can only be successfully generated through the third kind of change, such as new
product and process development brought about by self-organizing teams.”
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Relatedly (p. 84), “because organizations are complex systems, which are radically unpredictable
and where even small changes can have massive and unanticipated effects, top-down change cannot
deliver the continuous innovation which organizations need in order to survive and prosper. Instead,
it is argued that organizations can only achieve continuous innovation if they position themselves
at the edge of chaos”. According to Burnes, self-organization is the only way to reach and keep this
position, and is itself based on rules that are order-generating. The key point here is that, if the latter
(i.e., rules) result in no longer fitting the organizational context, they can be re-created exactly because
of the existence of the former (i.e., self-organization).

Having explained the above, a noteworthy example of complexity-based leadership can be offered
by a recent case study considering a military organization as a CAS [50], with a focus on its inner
complex dynamics, as an enabler to increase organizational effectiveness. As the case demonstrates,
despite the traditionally hierarchical and linear characteristics of military organizations, in order to
face the surrounding complexity, the rapidly changing defense environment has substantially proved
to need a more adaptable and flexible structure.

On this basis, the military leader willing to adopt a complex approach to the commanding action
will seek to foster those dynamics typical of CT (such as non-linear relationships and feedback) in
order to increase adaptability and organizational learning. This also implies the need to drive the
organization from hierarchical to network-centered dynamics, thus assuring governance cohesion
throughout the organization, thanks to the development of a shared vision across the top management
team. In principle, this perspective can also be considered as presenting similarities with many
conceptual underpinnings featuring the notion of socio-technical systems (e.g., [51]].

4.2. Settings of Observation and Research Methodologies

Concerning the settings of observation, in a similar vein as above, we could argue that, together
with the key high-tech contexts in EM already emerging from our analysis, other central contexts
in the sustainability field, such as energy, healthcare, and construction, could become the basis of
complexity-based observations. Regarding these contexts, in fact, apart from a few exceptions our
analysis could not evidence any specific focus.

Relatedly, with respect to research methodologies, on the one hand, our findings have shown
that conceptual modeling tested through quantitative techniques has largely prevailed in the
complexity-based observations in EM. On the other hand, however, we maintain that designing
and conducting in-depth qualitative case studies [52] should also be important in the field. In this
regard, (a) we are substantially in line with those scholars [53,54] who have, for a long time, generally
argued that case studies are highly appropriate in complementing computational methods to understand
the distinctive features of CAS; and (b) we are particularly in line with those scholars who have used
the properties of case studies to develop complexity-based observations in key EM fields, such as NPD.

Taking the above into account, for example, McCarthy et al. [4] used a comparative analysis of
three cases to examine how the CAS features of non-linearity, self-organization, and emergence can
occur in NPD processes. In particular, these scholars conceive a model of NPD processes, as CAS,
featured by three levels of DM, in stage, review, and strategic, respectively. Taking a middle ground
between stage gate, chain linked, and chaotic models of NPD, their analysis produces interesting
results. In their view, NPD is not necessarily a fixed process; it can adapt and switch from linear to
chaotic (and vice versa), thus producing corresponding degrees of incremental or radical innovation.
In the practice of EM, their model would be very helpful to avoid the DM traps, potentially regarding
the search for fit between (new) product, (new) process, and market demand.

4.3. Conceptual Frameworks

Our analysis has shown that, among the many key ingredients of CT quite clearly observable in the
analyzed publications, modeling and optimizing DM under uncertainty appears to prevail. Accordingly,
we support the recent argument by Baumann and Siggelkow [6] that, in conditions of rationally bounded
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problem solving, understanding whether integrated (i.e., entirely and simultaneously performed) or
chunky (i.e., incrementally expanded) search processes are the most appropriate could also add value.
Again, in a technology innovation context of NPD, these scholars focused on this issue through the
application of a simulation model. Their analysis has evidenced interesting results: incremental should
be preferred to integrated patterns of search when time pressure is not a variable under consideration;
moreover, the larger the chunks added at the beginning of the search process, the less the need of a
totally incremental search.

According to our results for EM, complexity-based observations have often associated the
uncertainty variable with fuzzy logics, stochastic modeling, and ABM, but also with non-linear and/or
evolutionary dynamics. As this association has mostly happened on a separate basis (see Table 1), we
argue that all-inclusive, complexity-based frameworks could be developed further. Again, this claim
corresponds with other key evidence from our analysis: as previously stated, we have shown that,
in EM, only a limited number of studies still seem to formally adhere to CT to explain the EM issues
under investigation.

The more comprehensive frameworks elicited above could then be tested in different EM settings to
assess their reliability. For example, a recent, remarkable attempt of this kind has been the Generalized
Complexity Index developed by Jacobs [55]. Based on the three dimensions of multiplicity, diversity,
and interconnectedness, this index can be used as an analytical decision tool to evaluate the pros and
cons of potential portfolio diversification and/or product differentiation. Furthermore, especially in
these learning-based, innovation contexts, distinguishing between complex adaptive and complex
generative systems [56] could also be valuable. While the former systems are able to adapt without the
need for radical changes, the latter can witness changes which largely modify their inner features and
even generate new entities.

4.4. Co-Evolutionary Dynamics in Complexity-Based Research Designs

The issue of the interconnectedness brings us to the last item to be discussed in terms of potential
implications for sustainability, which is a direct call to embed more fine-tuned co-evolutionary
perspectives in complexity-based research designs [57,58]. Specifically, we argue, this call appears
to have particular momentum if (and when) hypercompetitive technology environments are under
investigation. In fact, recalling what was recently demonstrated by Ndofor et al. [3] on the basis of
their 36-year observations of 19 industry sectors, these environments are often chaotic, i.e., featured
by a significant degree of a non-linear relationship among elements, together with inter and path
dependence. As a fast growing meta-theoretical perspective in social sciences [59–62], and being
generally conceived as the joint and dynamic outcome between industry, managerial, and environmental
forces [63–65], co-evolution demonstrated effectiveness in capturing all three distinctive features
surrounding complexity [66].

In the context of technological entrepreneurship, for example, as maintained by McKelvey ([67],
p. 67), “An entrepreneur could have co-evolutionary dynamics going on in his/her firm; a change in
one part of a product leads to a change in another part, which then leads to further change in the part
showing the initial change; these changes could affect marketing, production, supply chains, and so on.
Finally, it could happen that an entirely new product appears. For example, think of all of the coevolving
changes in computer, cell-phone, battery, and touch-screen technologies, computer programming, cell
towers, the Internet, and the development of apps that led to current smart-phone products.”

Similarly, in the context of technological ecosystems, Phillips and Ritala [68] interestingly build
(and apply) a specific complexity-based, co-evolutionary framework. In particular, they suggest that
three intertwined dimensions, i.e., conceptual (boundary and perspectives), structural (hierarchies and
relationships), and temporal (dynamics and co-evolution) should be taken into account to understand
(and predict) the behavior of complex ecosystems, especially in the case of an innovation (e.g.,
NPD) context.
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Relatedly (and finally), as far as understanding the institutional complexity [69] of co-evolutionary
ecosystems is specifically concerned, we are also in line with those scholars [70] who have recently
claimed the increasing adoption of a neo-configurational perspective based on qualitative comparative
analysis (QCA). Hence, for example, Misangyi [71] recently offered remarkable evidence regarding
28 business facilities projecting and implementing an environmental management system.

More generally, the claim towards the use of QCA is also in line with our claim above (please
see Section 4.2.) that more qualitative research methodologies should be adopted to understand
the complex nature of innovation-based settings. In this regard, for example, in a novel case study
regarding innovation and change in organizational culture, Schlaile et al. [72] used a meme-based
approach [73] to investigate the complexity-based interdependencies occurring in a German automotive
consultancy firm.

5. Limitations and Conclusions

Through the results (and proposed implications) of this conceptual article, we do not aim to
propose CT as the solution to all of the current EM sustainability-related issues. We also agree with
those scholars who, seminally [74,75] or more recently [76,77], have identified the risks of transforming
CT, when (even more generally) applied to management, as the fad of modern times. Specifically,
we do not believe that this fast-growing approach will totally overwrite all of those theories based on
positivism and reductionism [10,78].

Relatedly, we are also conscious that, from a methodological point of view, the results from our
analysis present some limits, in that they are, at present, strictly focused on the leading journal in the
EM field and on a static explanation. At this stage, in other words, our analysis of the 38 articles should
be considered through the lens of a (hopefully useful) initial qualitative assessment, rather than the
lens of a quantitative research, which has statistics and trends also aimed at being predictive. In this
regard, however, we believe that our results could serve as a heuristic proxy, i.e., a conceptual start to
be expanded through more journal-based searches and/or dynamic analyses.

In sum, although aware of the limitations above, and through discussing the implications of our
findings, we attempted to explain how CT can contribute to govern many current issues associated with
the EM research (concerning the research in, and practice of, sustainability issues). If firms are modeled
as CAS, through the identification of agents, their interactions, feedback, and emergent phenomena,
CT can then help find novel ways of working to foster a supposed desired emergent behavior
(e.g., improved efficiency and effectiveness in NPD, team organization, technology management,
or PM); thus, providing engineers and managers with new tools for improving decision-making and
performance [79–81]. In this regard, for example, Bianchi et al. [82] innovatively deal with complexity
management in a recent NPD context through a study of the interaction between stage-gate and agile
models (and their associated principles to reduce uncertainty).

Of course, scholars and practitioners argue that, in order to be more than a metaphorical device,
a relevant CT framework will need to always be more rigorous from the theoretical, mathematical, and
computational modeling points of view [83,84]. We also believe that this modeling will need to be
tested in different industry settings to ensure appropriate comparisons between models and real world
structures [85–87]. In this way, CT may also be taken as a useful approach, for engineers and managers,
to test the reliability and consistency of more conventional methods intended to improve sustainability.

In conclusion, firms, clusters, networks, and industries, may be seen, from some aspects, as similar
to living organisms [88,89], which grow, evolve, and die [90,91]. They can be healthy or sick [92–94]
and their behavior emerges from their internal qualities and dynamics, which provide complexity
to the system, and from their interactions with the environment [95–97]. A firm’s behavior is both
affected by linear control, such as that imposed by bureaucracy or top-down management decisions,
and natural, uncontrolled dynamics. If enterprise complexity fits the complexity of the environment,
then desired behaviors, such as high performance and synergy, emerge [98,99].
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To date, complexity represents one of the main problems surrounding sustainable business.
While we think that the application of CT to business cannot eliminate this problem, we believe that it
can help reduce it to a satisfying level.
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