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Abstract: Flight departure delays cost airlines and airports millions of dollars and become a systematic
problem. The on-time performance at an airport is connected to and easily affected by delay
propagation from previous operations of flights using the airport. In this paper, we employ both
Ordinary Least Square (OLS) and quantile regressions to investigate the impact of various influencing
factors on flight departure delay. By using historical flight records and weather information,
the impacts of delay propagation-related and other factors are quantified to study the correlations
between the explanatory and response variables. Three variables, including previous arrival delay,
turnaround buffer time, and the first order of a day, are used to examine the propagation effects.
We find that aircraft type, flying on a weekday, and being the first flight of a day have significant
impacts on short departure delays. Ground buffer is conducive to mitigating delay propagation.
For long delays, however, ground buffer cannot work in an efficient way, and the previous arrival
effect is more important. Convective weather and aircraft type are the crucial factors in this situation.
Interestingly, flying on a weekday suddenly becomes one of the main components under extreme
delays. Meanwhile, propagated delay and airport congestion remain significantly impactful on the
on-time performance.
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1. Introduction

With an eightfold increase in global air traffic between 1978 and 2017 [1], flight delay has become
a major problem for many air transportation systems worldwide, costing airlines and passengers
billions of dollars each year [2–6]. This is especially the case for China, which has one of the largest
and fastest-growing air transportation systems in the world. In 2017, passenger throughput in China
exceeded 1.1 billion, or a 12.9% increase from the previous year, with total aircraft operations across
airports reaching 102.49 million nationwide. With the fast-paced growth of air traffic, the Chinese civilian
airspace—both near terminals and en route—is under increasing stress, with flight delays a common
phenomenon at many locations in the system [7,8]. In response, the Civil Aviation Administration of
China (CAAC) has introduced a series of new regulations on flight delays. For example, China’s Civil
Aviation Regulations for the on-time performance impose penalties, such as schedule cancelation and
a fine up to 30,000 RMB if a flight has serious delays. Besides financial losses due to regulatory penalty
as well as increased operating cost, flight delays also result in complaints about airline service quality
and consequently reputation damage to airlines.
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The first step to mitigating the negative impacts of flight delay is to understand them. Due to
the limited resources (time and space) that can be allocated to a flight’s departure, hefty regulatory
penalties, and the cascading effect on the on-time performance of downstream flights [9], minimizing
flight departure delay is especially critical in airline operations. To this end, this paper focuses on
investigating factors influencing flight departure delay using historic records at Shanghai Pudong
International Airport (PVG), one of the busiest airports in China. The influencing factors are classified
into two groups, depending on whether a factor is delay propagation-related or not. An econometric
analysis using both Ordinary Least Square (OLS) and Quantile Regression (QR) models is performed
to estimate the impact of various factors on flight departure delay. While OLS regression focuses on
the average effect of influencing factors on the response variable, QR models extend mean regression
to conditional quantiles of the response variable. In this regard, QR provides a more comprehensive
picture by considering the covariate of flight departure delay with independent variables over the
entire distribution, not merely the average effect.

This paper makes two major contributions. Firstly, a QR method is constructed with estimation of
several QR models to quantify the impact of various factors on different quantiles of flight departure
delay, based on which the contributing factors to either short or long delay are identified. According to
the finding, airlines can adopt more specific strategies to reduce flight delays. Secondly, the influencing
factors are classified into the two categories depending on their propagation, which is beneficial
to investigating how delay propagation-related effect vary when the quantiles of departure delay
are different.

The remainder of this paper is organized as follows. In Section 2, a literature review is conducted
regarding the delay propagation-related and the other factors in flight delay. In Section 3, the distribution
and composition of departure delay at PVG are described. Section 4 presents a descriptive analysis of
the plausible factors influencing flight departure delay. The data used for estimating the econometric
models are presented in Section 5. The estimation results are reported and discussed in Section 6.
In Section 7, conclusions of this paper are drawn and directions for further research are suggested.

2. Literature Review

Research on flight delay propagation has been ongoing for almost two decades. As flight operations
are inherently connected, delay to one flight is likely to affect not only that flight itself but connected
flights, particularly downstream flights flown by the same aircraft. This phenomenon is flight delay
propagation. To mitigate this, it has become routine practice that airlines deliberately place buffer time,
i.e., some extra time beyond the minimum unimpeded flight time, into published flight schedules [10,11],
so that flight schedules are most robust to unexpected delays. Buffer time is also inserted during flight
turnaround, i.e., between the scheduled arrival of a previous flight and the scheduled departure of
its subsequent flight, as a means to reduce delay propagation [12,13]. For example, buffer time for
flight connection is taken into consideration in [14] as a significant variable in the estimation of flight
departure delay. A probabilistic model is developed by Tu et al. [15] to predict the distribution of
departure delay, by taking into account seasonal trends, daily propagation delay patterns, and random
residuals. The delay distribution is estimated, with Denver International Airport chosen as a case
study airport. Attempts have also been made to categorize flight delays into original delay, also known
as new formed delay, and propagated delay [9,16,17]. The first flight flown by an aircraft in a day is
considered to be merely impacted by the original delay, while other flights can both engender original
delay and receive delay propagated from upstream flights.

Empirical modeling and analysis have been performed to explore the impact of various factors on
flight departure delay. Airlines tend to show a significant difference in their preferences and reactions to
Ground Delay Program (GDP) design as well as turnaround time. In the United States, airlines negotiate
their GDP with the authorities, which may affect whether an airline’s flights are released on time or
subject to delay on the ground [18]. Lubbe and Victor discover a significant relationship between
severe delays (more than 15 min), day-of-week and period-of-day [19]. The authors find out that in
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South Africa, Wednesday, Thursday, and Friday are more likely to be affected by severe delays in
the week, with Wednesday hit the hardest. In addition, the two rush-hour periods, 5–9 a.m. and
3–7 p.m., have the highest number of delayed flights. Other research has further explored the impact
of meteorological factors on flight departure delay by incorporating weather conditions. The models
use the historical airport performance and actual weather/scheduled traffic data, which are identified
as having correlation with National Airspace System (NAS) delays [20,21].

While the above review shows that flight delay propagation has been statistically modeled in the
existing literature, the distribution characteristics of flight delays have not been considered. In this
paper, an econometric analysis is performed to investigate the influence of various factors exerted
by the distribution of flight departure delay. The results from estimating the econometric models
contribute to better understanding how much time passengers need to spend waiting while a departing
flight is delayed, and in which situation a wide range of delays would occur. In addition, the results
can assist airlines with flight schedule adjustment under different delay circumstances.

3. Departure Delay at PVG

This paper uses flight operation data in August of 2016 at Shanghai Pudong International Airport
(PVG), the second busiest airport in China in both flight and passenger traffic. We analyze flight
departure delay at gate, which is calculated as follows:

DD = ADPT − SDPT (1)

where DD denotes departure delay at gate; ADPT denotes Actual Departure Time; ADPT denotes
Scheduled Departure Time. It is noteworthy that the negative departure delay means that a flight
departs at an earlier time than scheduled.

By applying Equation (1), the calculated departure delay of each departing flight from PVG can
be obtained. Figure 1 shows the distribution of flight departure delays in 2016 at PVG. Delays are
divided into short delays (less than 15 min) and long delays (greater than 65 min) [4]. Based on this,
delays over 240 min are defined as extreme delays in this paper, which amount to the top 1% in our
dataset. Therefore, four categories are presented in Figure 1a. Cumulative probability plot (Figure 1b)
is used to present more detailed informations of departure delays. It can be seen that more than
30% of the flights are affected by departure delays. However, the average delay remains quite large,
at 18.7 min across all delayed and non-delayed flights. More than 10% of flights are delayed by more
than one hour. In particular, the average delay per flight amounts to 180 min among the flights with
a delay of over two hours. Although the flights with severe delays, over 4 h, account for as low as
roughly 1%, they entail a substantial amount of costs to airlines. In fact, these flights, despite making
up only 1% of the total number of flights, account for as much as 12% of the total departure delay
minutes at PVG. The longer the delay, the more detrimental to the integration of airline operations and
service quality.
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4. Model Specification

To analyze delay propagation-related and other factors regarding their impact on departure delay,
we specify the base econometric model as Equation (2). The specific variables considered in the model
specifications are listed in Table 1.

Departure Delay = f (Delay propagation-related factors, other factors) (2)

Table 1. Description of variables.

Variables Definition

Dependent

DepDelay Flight departure delay

Explanatory

Delay propagation-related

ArrDelay_PreFlt Arrival delay of the previous flight

Dif_TT Difference of the scheduled turnaround time and
minimum turnaround time

FirstFlight Dummy, equal to 1 if a flight is not the first flight of a day

Other

CumDepDelay Cumulated departure delay in the past hour of the
airport under study

ConvecWeather Dummy, equal to 1 if a flight is in the convective weather
at the departure airport

Daytime Dummy, equal to 1 if a flight scheduled departs in the
day (6 a.m.–8 p.m.)

Weekday Dummy, equal to 1 if a flight operates in weekdays

AirlineBase Dummy, equal to 1 if the departure airport is a base of
the airline to which the flight under study belongs

WideBody Dummy, equal to 1 if a flight is associated with a wide
body aircraft

4.1. Delay Propagation-Related Factors

The departure delay of a flight is influenced by a number of factors. Among them, three factors relate
to delay propagation: (1) arrival delay of the previous flight of the same aircraft; (2) aircraft turnaround
prior to departure; and (3) whether the flight is the first one flown by an aircraft. The hypotheses
associated with the three factors are that, everything else being equal:

• The longer the arrival delay of the previous flight, the more likely that the arrival delay of that
flight will propagate to the flight under study;

• The larger the amount of ground buffer prior to departure, the greater the capability of the ground
buffer to absorb the arrival delay of the previous flight and any new delay that occurs during
ground operations. Consequently, delays are less likely to propagate to the departure of the flight
under study;

• If a flight is the first one flown by an aircraft in a day, then the flight departure is unlikely to receive
propagated delay from earlier operations (which would be from the previous day). Consequently,
the flight’s departure is less likely to suffer delay (as shown in Table 2)
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Table 2. The impact of the first order on flight departure delays.

Flight Category Mean (min) Std. (min) N

First order flight 8.80 57.80 2971
Non-first order flight 26.46 56.80 7110

The first and third factors are easy to quantify. Characterizing the second factor is less intuitive,
as it involves the measure of ground buffer. In principle, the buffer is measured as the difference
in the amounts of time that are scheduled and needed if operating unimpeded [5,22]. Accordingly,
ground buffer is calculated as the scheduled turnaround time, i.e., the difference between the scheduled
departure time of the flight under study and the scheduled arrival time of the previous flight, minus the
Minimum Connection Time (MCT). In China, MCT is given by the CAAC, and varies by airport and
aircraft size [23]. Table 3, below, provides the MCT values for different aircraft sizes at PVG. If the
difference is negative, we consider that ground buffer is zero.

Table 3. Minimum Connection Time for flights of different aircraft types at Shanghai Pudong
International Airport (PVG).

Aircraft Size (Number of Seats) Minimum Connection Time (min)

Fewer than 60 40
Between 61 and 150 50

Between 151 and 250 60
Between 251 and 500 75

The distribution of the calculated ground buffer based on MCT (thus by aircraft size) is shown as
boxplots in Figure 2 (as there were no flights with 40-min MCT in our records, only three categories
are presented in the Figure 2). As a larger MCT is associated with a larger aircraft size, we observe
a negative relationship between aircraft size and ground buffer. This implies that all else being equal,
a flight with a larger aircraft would be more vulnerable to delay propagation than a flight with a smaller
aircraft size.
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4.2. Other Factors

Flight departure delay is not only affected by factors affecting vulnerability to delay propagation,
but also by other, factors related to the macroscopic flying environment and flight-specific characteristics.
As our focus is in flights departing from one airport (PVG), the macroscopic flying environment is
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mainly captured by the level of congestion, weather conditions, and time of flight departure at the
airport. For flight-specific characteristics, we include indicators of the airline to which the flight under
study belongs and the aircraft type. We detail these factors below.

4.2.1. Airport Congestion

The overall level of airport congestion affects the probability of a flight’s ability to depart on time.
In this paper, we introduce an airport congestion variable, which is defined as the total departure delay
of flights whose scheduled departure time is within 60 min prior to the scheduled departure time
for the flight under study. Figure 3 presents boxplots of the airport congestion variable, by dividing
airport congestion into four groups: less than 300 min, between 300 and 600 min, between 600 and
900 min, and greater than 900 min. As presented in Figure 3, the 25th, 50th and 75th quantiles of each
boxplot increase with airport congestion accumulating. This means that the more severe the airport
congestion, the more delays flights will suffer.
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4.2.2. Weather Conditions

Weather complications and frequent changes significantly impact flight operations. According to
China’s civil aviation regulations, take-off is prohibited in case of convective weather, which refers to
thunderstorms with heavy rain, as it has a potential to cause severe flight delays. Convective weather
could even affect the clearance separation, thus leading to widespread traffic jams and flight delays.
Due to the serious threat posed to in-flight safety, the more severe the thunderstorms and heavy rain,
the longer the separation between flights for departure, which could end up resulting in grounding
aircrafts in very severe conditions. This leaves many flights waiting for departure and causes ground
delay as a consequence.

Weather conditions play a significant role in flight operations at PVG. In this paper, our focus is
placed primarily on thunderstorms. There were four thunderstorm periods at PVG in August 2016,
obtained by METAR. From Table 4, it can be seen that the majority of flights scheduled for these
periods suffered long delays, especially the second period, which resulted in an average delay of nearly
two hours.
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Table 4. The impact of thunderstorms on flight departure delays.

No Date Time Interval Scheduled
Flights

Delayed
Flights

Average
Delays (min)

1 2 August 2016 10:30 a.m.–11:00 a.m. 12 3 24.92

2 2 August 2016 08:00 p.m.–10:00 p.m. 44 42 110.64

3 3 August 2016 08:00 p.m.–10:00 p.m. 46 41 82.07

4 19 August 2016 09:30 p.m.–10:30 p.m. 25 13 16.84

4.2.3. Time Effects

Two variables are introduced to capture the time of flight departure. First, we consider a binary
variable indicating whether the scheduled departure is within the daytime (taking value one), which is
defined as between 6 a.m. and 8 p.m. Generally, a higher density and complexity of flight operations
at an airport occurs during the daytime, resulting in a greater propensity for flight demand to exceed
airport capacity and thus delay when a flight departs from the airport.

The second variable is also binary, indicating whether the day of scheduled departure is a weekday
(taking value one) or not. Again, weekdays are characterized by more flights and thus more air traffic
congestion in the macroscopic environment. Therefore, a flight flying on a weekday is expected to
suffer more departure delay than a flight during the weekend.

4.2.4. Airline and Aircraft Effects

Many airlines have flights flying out of PVG. These airlines employ different operation strategies,
resulting in differences in the management of flight delays. For example, CAAC, ATM, PVG, and airlines
with a base in PVG establish a committee for cooperative management of flight on-time performance [24].
More particularly, we conjecture that if an airline is headquartered in the city where the airport is
located (in our case, Shanghai), then the airline may receive better ground services from their hub
airports and support from ATC which can be conductive to reducing flight departure delay [25].
This effect, on the other hand, may be at the expense of the lower priority given to flights not based in
PVG and thus greater delays of those flights. In our study, the China Eastern group (China Eastern
Airlines, Shanghai Airlines, and China United Airlines), Spring Airlines, and Juneyao Airlines have
their headquarters at PVG.

Besides the airline effect, other effects may come from aircraft size. Flights flown by larger aircrafts
have more passengers onboard, suggesting greater importance especially when on-time performance
of passengers is concerned. In addition, wake turbulence separation is another important reason to
distinguish wide body aircrafts from other aircraft types. To this end, an aircraft dummy, WideBody,
is introduced, taking value one if the aircraft of the flight under study has a wide body. Aircraft types
with twin-aisle, such as A310, A330, A340, A380, B747, B767, B777, and B787, fall into this category.
For other aircraft types, the dummy variable takes value zero.

5. Data

5.1. Data Source

Domestic flight data were collected from the CAAC for August 2016 in PVG. The dataset includes
detailed daily operation information for each flight. In order to analyze how convective weather
conditions impact on the departure delay, weather records in August were referenced to conduct this
research. As for weather conditions, weather records from METAR (Meteorological Terminal Aviation
Routine Weather Report) were used to conduct research on the occurrence of thunderstorms near the
airport. As for the frequent thunderstorms in August at PVG, this analysis is effective in determining
whether the apparent positive trend observed in departure delays in the summer is associated with the
convective weather conditions.
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Based on the aircraft model information acquired from the Civil Aviation Aircraft Database of
China, two aircraft types, narrow-body and wide-body, are taken into consideration in this paper.
The aircraft type and weather information are then merged into the flight operation dataset by matching
aircraft tail numbers. With the merged dataset applied, the ground turnaround time and departure
delays in the previous one hour are calculated for each flight.

5.2. Data Filtering

To ensure the reliability of data for model estimation, data filtration is required to eliminate
erroneous recording, such as missing or inconsistent historical flight data and meteorological data.
These abnormal data could hinder the regression analysis and thus should be removed from the dataset.
The detailed filtering process involves two steps as follows:

Step 1: Missing data filtering. The original data contain incomplete information, which is possibly
related to the approach to data collection, means of transmission, and transmission path. The missing
data could also result from abnormalities caused by different coding modes of the same data by
multi-processors. For example, flights for which the actual arrival time is empty in the dataset are
treated as canceled flights and are deleted in this paper. Some of the crucial attributes of data in
such original databases as Actual Departure Time, Actual Arrival Time, Actual Departure Airport,
Actual Arrival Airport, Aircraft Registration Number, etc. are either missing or incorrect. Such data
are deleted.

Step 2: Inconsistent data filtering. It is possible for inconsistent data generation, resulting in
recording errors. Though such records in the dataset are complete, they are neither reasonable nor
consistent. For example, a flight’s departure time was earlier than the arrival time of its previous flight
leg. The canceled and diverted flights are further removed due to the possibility that these records are
subject to inconsistent recording. These records are also treated as noise for deletion.

After the filtering process, the dataset for model estimation contains 10,081 flight operation records.
The total number of aircraft from more than eleven carriers is 1531. The descriptive statistics of the
variables are presented in Table 5.

Table 5. Descriptive statistics for variables in the departure delay model (N = 10,081).

Variable Mean Std. Dev. Min. Max.

DepDelay 21.25 58.08 −634 726
ArrDelay_PreFlt 14.24 44.10 −253 662

Dif_TT 26.73 59.63 0 440
FirstFlight 0.29 0.46 0 1

CumDepDelay 456.81 492.44 0 4141
ConvecWeather 0.01 0.09 0 1

Daytime 0.85 0.36 0 1
Weekday 0.71 0.46 0 1

AirlineBase 0.77 0.42 0 1
WideBody 0.03 0.18 0 1

6. Estimation and Discussion

6.1. Estimation Method

Considering the irregular distribution of the response variables, the quantile regression method is
applied to model the departure delay on different percentiles of departure delay, while OLS regression
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is taken as a benchmark. The resulting coefficients yield elasticities with regard to the continuous
explanatory variables. The OLS model equation is represented as follows:

Y = b0 + b1ArrDelay_PreFlt + b2Di f _TT + b3FirstFlight + b4CumDepDelay
+b5ConvecWeather + b6Daytime + b7Weekday + b8AirlineBase

+b9WideBody + ε
(3)

The QR model equation is represented as:

Yp = bp
0 + bp

1ArrDelay_PreFlt + bp
2Di f _TT + bp

3FirstFlight + bp
4CumDepDelay

+bp
5ConvecWeather + bp

6Daytime + bp
7Weekday + bp

8AirlineBase
+bp

9WideBody + εp
(4)

where Y represents flight departure delay; b0 indicates the intercept; b1, . . . , b9 denote the slopes
of the covariates; and ε refers to the error term. In the QR model specification, p denotes the pth
quantile. Equation (3) gives one coefficient for each variable. In OLS regression, ε is assumed to be
Identical Independent Distributed (IID) across observations with a zero mean and constant variance.
Our preliminary investigation, by performing the White test, suggests that error heteroskedasticity
could be present. To mitigate this issue, OLS was performed together with the White heteroskedasticity
consistent estimator [26]. For Equation (4), a separate equation was specified and estimated for each
quantile. Considering that severe delays always result in a large amount of costs to the civil aviation
industry, three quantiles were added above the 90th quantile to investigate how severe a delay can be
caused. Therefore, twelve quantiles are taken into consideration in the paper: 10th, 20th, 30th, 40th,
50th, 60th, 70th, 80th, 90th, 93rd, 96th, and 99th percentiles.

In this paper, quantile regression is adopted to capture the tail features of the distribution, which
is a significant characteristic and represents a serious problem in airline operations. Compared to OLS
regression, the QR estimator is regarded as a consistent estimator in the presence of heteroskedasticity
or non-normally distributed errors. Therefore, QR can be used to analyze the change in coefficients
with quantiles even in the skewed tails.

6.2. OLS Estimation Results

The estimation results are shown in Table 6. Over the course of estimating the departure delay
model as specified below, the coefficients obtained from the OLS model invariably manifested the
anticipated signs and were of statistical significance. Figure 4 shows the impact of all the dummy
variables. The signs of coefficients were expected for these variables.

Table 6. Estimation results of the OLS model for flight departure delay (N = 10,081).

Variable Est. Robust Std. Err. T-Stat

ArrDelay_PreFlt 0.575 *** 0.028 20.81
Dif_TT −0.081 *** 0.012 −6.60

FirstFlight −3.178 *** 1.237 −2.57
CumDepDelay 0.029 *** 0.002 16.53
ConvecWeather 15.519 *** 5.659 2.74

Daytime 7.479 *** 1.464 5.11
Weekday 2.776 *** 0.949 2.93

AirlineBase −5.285 *** 1.322 −4.00
WideBody 11.281 *** 3.843 2.94

Const −1.683 1.945 −0.87
R square 0.317

*** p < 0.01, ** p < 0.05, * p < 0.10.
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A variety of delay propagation-related factors, including ArrDelay_PreFlt, Dif_TT and FirstFlight,
demonstrate the impact of the previous flight due to the chain effect. There is a possibility that the
previous arrival delay of an aircraft might propagate to the next flight leg if the turnaround time is
limited. As shown by the result in Table 6, a minute of ArrDelay_PreFlt will lead to 0.575 min (p < 0.01)
of departure delay, which suggests that a 100-min arrival delays tend to cause the next departure to
suffer a 1-hour delay. There is another crucial delay propagation-related factor, that is, ground buffer
time—or Dif_TT, in this paper. It explains how the previous arrival delay of an aircraft is absorbed
during the turnaround time. In addition to the MCT of each flight, the buffer time will be applied to
recover some previous arrival delays. One minute of buffer time will lead to the reduction of 0.081 min
(p < 0.01) of the departure delay. If a flight is allowed an hour of buffer time, only a 4.8-min departure
delay can be reduced, on average. Supposing that a flight is in the first order of a day, it will suffer no
previous arrival delays. In the absence of delay propagation-related effects, a flight is more likely to be
punctual. The estimation shows that flights in the first order will take 3.178 min less on average.

CumDepDelay variable is used to capture airport congestion for departure delays. The accumulated
departure delays at an airport for the previous hour might also to propagate to a scheduled flight. Despite
not being operated by a single aircraft, these flights share the same airport and terminal areas. It is
likely that a more congested airport means a longer queue for flights to take off. As revealed by the
estimation result, CumDepDelay will lead to 0.029 min (p < 0.01) of departure delay per minute of airport
accumulated delay, which implies that if there are 100 min of CumDepDelay, a flight will face 2.9 min
of departure delay. According to the CAAC rules, flights are prohibited from take-off when facing
convective weather conditions. As shown in Table 6, the anticipated result is listed for ConvecWeather
effect. It causes an additional 15.519 min (p < 0.01) of departure delay and is the dominant variable in
all the dummies, which is consistent with the strict requirements of the CAAC.

The daytime variable is used to determine whether a flight scheduled for departures in the
daytime, since operating in the busy period, could suffer more delays. It is observed that each flight
carried out in the daytime has an extra 7.479 min of delay (p < 0.01) on average. Human behavior is one
of the reasons for people to choose flights operating during daytime, due to their business. Another
time variable, weekday, also causes 2.776 min (p < 0.01) of departure delay. One potential reason for
weekday to cause more delays is that the higher demand for people to deal with their business on
weekdays leads to more severe airspace congestions.

The coefficient of the AirlineBase confirms the view that having a base in an airport could reduce
departure delay on average, which implies that airlines with the airport as the base have a shorter
departure delay of 5.285 min on average. Wide-body aircrafts experience a longer departure delay—of
11.281 min, on average—than narrow-body aircrafts. Besides, they requires more services offered on
ground, and have a larger number of passengers on board, which may extend the delay.



Sustainability 2020, 12, 10553 11 of 16

6.3. QR Estimation Results

QR represents an extension to the linear model, for the purpose of estimating rates of change in all
parts of the distribution of a response variable. In this paper, an analysis is conducted on the departure
delay distribution from the 10th percentile to the 99th percentile. A total of four quantiles are set in the
long delays (from 90th to 99th), since understanding the factors that affect extreme delays is important
to the prevention of such extreme situations. Table 7 presents quantile regression estimation for each of
the twelve quantile models considered in this paper. According to Table 7, the changes in coefficients
with quantiles are shown in Figure 5.

Table 7. Estimation results of QR models for flight departure delay (N = 10,081).

0.1 0.2 0.3 0.4 0.5 0.6

ArrDelay_PreFlt 0.267 *** 0.314 *** 0.410 *** 0.501 *** 0.566 *** 0.614 ***
Dif_TT −0.123 *** −0.062 *** −0.045 *** −0.037 *** −0.031 *** −0.023 ***

FirstFlight −2.624 *** −1.164 *** −0.615 * −0.604 * −0.931 ** −0.988 *
CumDepDelay 0.005 *** 0.007 *** 0.010 *** 0.014 *** 0.020 *** 0.027 ***
ConvecWeather 1.029 2.189 2.794 3.739 2.907 10.226

Daytime 3.661 *** 3.136 *** 3.300 *** 2.859 *** 3.239 *** 4.564 ***
Weekday −0.414 0.340 0.174 0.109 0.247 0.860 *

AirlineBase −0.952 −2.455 *** −2.918 *** −3.534 *** −3.622 *** −3.794 ***
WideBody 2.801 ** 3.454 *** 3.181 *** 4.352 *** 5.191 *** 6.975 ***

Cons. −11.376 *** −8.309 *** −6.385 *** −3.748 *** −2.304 ** −1.642
R square 0.047 0.063 0.093 0.130 0.173 0.218

0.7 0.8 0.9 0.93 0.96 0.99

ArrDelay_PreFlt 0.646 *** 0.669 *** 0.690 *** 0.695 *** 0.713 *** 0.725 ***
Dif_TT −0.016 ** −0.017 * 0.014 0.016 0.019 0.000

FirstFlight −1.748 *** −1.701 * 0.736 −0.813 5.070 26.467
CumDepDelay 0.037 *** 0.049 *** 0.067 *** 0.074 *** 0.079 *** 0.067 ***
ConvecWeather 13.515 * 25.474 ** 52.518 ** 48.054 *** 47.621 * 54.622

Daytime 5.451 *** 6.741 *** 4.938 * 6.468 1.153 15.615
Weekday 1.692 *** 2.743 *** 4.564 *** 6.335 ** 18.279 *** 60.870 ***

AirlineBase −4.801 *** −5.964 *** −10.757 *** −14.152 *** −28.349 *** −27.486
WideBody 12.067 *** 20.604 *** 23.552 *** 30.080 *** 23.809 36.268

Cons. 0.802 5.305 ** 19.849 *** 28.108 *** 54.848 *** 84.314 ***
R square 0.262 0.302 0.329 0.331 0.322 0.272

*** p < 0.01, ** p < 0.05, * p < 0.10.

In this paper, quantile regression is performed by R Language [27]. In each plot of Figure 5,
the regression coefficient at a given quantile indicates the effect on departure delay of a unit change in
that variable, assuming that all the other variables are fixed, with 95% confidence interval bands.

Figure 5 presents a summary of quantile regression results for departure delay. For each of
the nine factors, 12 distinct quantile regressions are estimated for p ranging from 0.10 to 0.99 as the
solid curve with filled dots. For every single covariate, it is possible for these point estimates to be
interpreted as the impact of a one-unit change of the covariate on departure delay, with other covariates
remaining unchanged. Thus, each of the plots is assigned a horizontal quantile in delays to indicate
the covariate effect. The orange line in each plot indicates the OLS estimation of the conditional mean
effect, while the orange shadow part represents conventional 95% confidence intervals. The covariate
changes with quantile, as shown in the blue line. As in OLS estimation, the blue shadow part indicates
a 95% pointwise confidence band for the QR estimates.
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nine factors, 12 distinct quantile regressions are estimated for p ranging from 0.10 to 0.99 as the solid 
curve with filled dots. For every single covariate, it is possible for these point estimates to be 
interpreted as the impact of a one-unit change of the covariate on departure delay, with other 
covariates remaining unchanged. Thus, each of the plots is assigned a horizontal quantile in delays 
to indicate the covariate effect. The orange line in each plot indicates the OLS estimation of the 
conditional mean effect, while the orange shadow part represents conventional 95% confidence 
intervals. The covariate changes with quantile, as shown in the blue line. As in OLS estimation, the 
blue shadow part indicates a 95% pointwise confidence band for the QR estimates. 
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6.4. Results Comparison

The quantile regression estimation results are listed in Table 7. Three delay propagation-related
variables listed in Table 7 show different tendencies. ArrDelay_PreFlt effect continues an upward
trend, but at a slower pace, especially after the average effect. It reaches the maximum at 70% marginal
effect on departure delay after the 80th quantile of the response variable. Moreover, ArrDelay_PreFlt
represents a statistically significant factor for the whole quantile models (p < 0.01), indicating that
previous arrival delays can affect departure delay through all parts of the distribution. Dif_TT is
typically significant at 10% level below or equal the 80th quantile (p < 0.1). Nevertheless, the delay
reduction effect is mitigated with the increase of quantile. Notably, the Buffer effect enters an area with
a positive sign in the right tail. Moreover, the coefficients after the 90th quantile are made insignificant,
suggesting that more buffers are incapable of taking delay recoveries better for long delays. Therefore,
it is not regarded as an effective way to allocate more buffers to improve on-time performance for
flights facing long delays. FirstFlight overweighs relative to short and median delays, with significant
estimations from the 10th to the 80th quantile (p < 0.01, p < 0.05 or p < 0.1 respectively). The significant
part matches the common sense, and the negative effect is shown, which indicates that the first-order
flights suffer less delays.

Turning now to other variable impacts, airport congestion is represented by CumDepDelay.
Severe delays at an airport are speculated to bear relation to some unexpected situations, such as
airspace congestion, terminal area congestion, or air traffic management procedures. Furthermore,
the significance of all QR estimations reveal that flights are easily affected by the state of airport traffic
(p < 0.01). After the cross of two type of regression curves, the impact of CumDepDelay increases at
a faster pace, except for the extreme delay.

Convective weather makes a huge impact from the 70th to the 96th percentile, reaching the mean
effect between the 70th and the 80th quantile. Thunderstorms contribute almost an hour (52.5 min,
p < 0.05) to flight departure delay at the 90th percentile of the conditional distribution, thus reaching
its maximum effect. However, ConvecWeather effect is found insignificant before the 70th quantile.
This conforms to our expectations that convective weather has a higher likelihood to contribute to
severe delays. It is noteworthy that the estimation at the 99th quantile is not significant, indicating that
convective weather is not a contributing factor for extreme delay. One possible explanation for this
situation is that some of the other unobserved factors, such as equipment malfunction or military
activities, could be contributory to the extreme delay as well.

With respect to the temporal characteristics, DayTime variable is involved to characterize flights
operation in the daytime (from 6 a.m. to 8 p.m.). The coefficients exhibit all positive effect, but no
significant variation for all quantiles. On the other hand, the weekday effect shows a significant
increase on weekdays after the 90th quantile, and even the efforts in the models are made much more
moderate compared to other variables for short delays (statistically insignificant). It is worth noting
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that this effect is significantly enhanced and tends to be one of the major causes of an extreme delay
(at the 99th quantile).

AirlineBase determines whether a flight can be obtained with better ground service. As anticipated,
Airl effect bears a negative association with a continuous decrease trend on the departure delay in all
quantiles (p < 0.01), except for the insignificant estimation at the 10th and 99th quantiles. Meanwhile,
the coefficients in the right-tail show a steep decrease, which conforms to the fact that setting an airline
base at an airport will be beneficial for airlines to reduce risks when emergencies occur. WideBody
effect also exhibits an increasing trend from 2.8 min to 30 min (p < 0.01 or p < 0.05, respectively),
although no statistical significance was found for the extreme delays, as demonstrated by the factor of
airline base.

With QR analysis, variables that affect departure delay in different quantiles can be analyzed,
which helps airlines study how these cause impact departure delay specifically. Moreover, it provides
airlines with a different perspective to prevent flight delays. For short delays (less than 15 min),
delay propagation-related factors play an important role from the 10th to the 60th quantile. Daytime,
AirlineBase, and WideBody are also non-negligible factors in delays. All variables show the significances
from the 70th to the 80th quantile. Convective weather and aircraft type begin to present much more
influence. Flight buffer and FirstFlight are not efficient anymore when facing long delays (above 65 min).
Besides, weekday impact grows increasingly, while daytime is almost insignificant.

7. Conclusions

Understanding the influencing factors and their impact on flight delay is very important,
considering the high levels of flight delay in the past decade and the projected growth in air traffic.
In this paper, an empirical investigation is conducted on the effect of both delay propagation-related
and other factors for flight departure delay, using flight data at Shanghai Pudong International Airport
in China. The major contribution of the paper is that the effects of different factors on various levels
of departure delay are analyzed and compared. Considering the distribution of departure delay,
this paper specifies and estimates both ordinary least square and quantile regression models to quantify
the relationship between flight departure delay at PVG and many of its important determinants,
including delay propagation-related and other factors. A number of diagrams are generated to indicate
the sensitivity of the impact made by various factors on the delay quantiles. To improve the flight
on-time performance, airlines can adjust some of these factors, such as changing the day-of-week for
departure or the aircraft type, to prevent extreme delays. The estimation results provide a clearer picture
of how delay propagation-related and other factors could affect flight departure delays. The drivers of
flight departure delay are distinct in various quantiles, compared to the results from previous studies
in which no quantiles are considered.

Future research can be extended in a few directions. First, limited to our dataset, only one-month
flight records at PVG are used in the paper. Efforts may be made to construct a larger amount of
data covering more airports throughout the air traffic network in China in a year. By doing so,
results would provide a broader perspective on how delay propagation-related or other factors impact
flight departure delays, both spatially and temporally. Second, other factors, such as complexity
network and season variables, will be introduced to our study when the system-wide air traffic records
become available. Further efforts can be directed to collecting information which will improve the
goodness-of-fit and interpretability of the estimated models.
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