
sustainability

Article

A High Step-Up Partial Power Processing DC/DC
T-Source Converter for UPS Application

Amirhossein Rajaei 1,*, Mahdi Shahparasti 2 , Ali Nabinejad 1 and Mehdi Savaghebi 2,*
1 Electrical and Electronics Engineering Department, Shiraz University of Technology,

Shiraz 71557-13876, Iran; a.nabinezhad.68@gmail.com
2 Department of Mechanical and Electrical Engineering, Electrical Engineering Section,

University of Southern Denmark, 5230 Odense, Denmark; mshah@sdu.dk
* Correspondence: a.rajaei@sutech.ac.ir (A.R.); mesa@sdu.dk (M.S.)

Received: 31 August 2020; Accepted: 9 December 2020; Published: 14 December 2020
����������
�������

Abstract: In this paper, a new modified structure of a DC/DC T-source converter is proposed.
Since the proposed converter provides high voltage gain, it is suitable for photovoltaic integration
into uninterruptible power supply (UPS) systems. The proposed structure employs partial power
processing technique to increase the output voltage as well as efficiency without requiring new
hardware. Partial power converters (PPCs) process only a fraction of flowing power while the
remaining power directly flows through output. This generally causes an improvement in efficiency
and output voltage. A total of two structures are presented: conventional partial power T-source
converters and improved partial power T-source converters. The key advantage of the improved
partial power converter is a higher voltage gain. Furthermore, it reduces the voltage and the
current stresses on switches and diodes. The steady-state operation principles are described for both
converters and the governed rules and equations are derived. The PPCs and full power converter are
compared in terms of efficiency, voltage gain, voltage stress, and current stress of converter elements.
The converter performance is evaluated through experimental and simulation studies. The presented
results show good consistency with the theoretical analysis.

Keywords: DC/DC converter; partial power processing converter; T-source converter; high voltage
gain; uninterruptible power supply (UPS)

1. Introduction

Uninterruptible power supply (UPS) systems have been extensively used in the infrastructure
of data centers, communication networks, and IT servers [1,2]. Recently, several studies focused on
integrating multiple energy sources into the UPS systems to enhance the performance under all operation
modes [3]. As a promising solution, integrating the photovoltaic (PV) system as an eco-friendly
generation system into UPS (Figure 1) helps to reduce the cost of the electricity from the grid [4].
The ordinary solution is the connection of several PV arrays in series, but this method is not optimal
mainly because of partial shading conditions and mismatched parameters [5–7]. Employing step-up
DC/DC converters is the other method to build up DC link voltage [8,9] (blue converter in Figure 1).
Output characteristics of PV are nonlinear and depend on the temperature, irradiance intensity,
and angle; therefore, the maximum power can be extracted only at one operation point [10–12].
The PV-side converter should be able to execute the maximum power point tracking (MPPT) algorithm
to extract the maximum available power [13,14].

Boosting the capability of the classical boost converter is limited due to the practical constraints;
hence, the following structures and techniques are presented in the literature to provide high
voltage gain [15,16]:

Sustainability 2020, 12, 10464; doi:10.3390/su122410464 www.mdpi.com/journal/sustainability

http://www.mdpi.com/journal/sustainability
http://www.mdpi.com
https://orcid.org/0000-0002-4301-5216
https://orcid.org/0000-0001-6188-0265
http://dx.doi.org/10.3390/su122410464
http://www.mdpi.com/journal/sustainability
https://www.mdpi.com/2071-1050/12/24/10464?type=check_update&version=2


Sustainability 2020, 12, 10464 2 of 19

• Structures based on a high-frequency transformer and coupled inductors;
• Employing voltage lift techniques;
• Employing voltage multiplier circuits;
• Impedance source converters;
• Partial power converters (PPCs).

Sustainability 2020, 12, x FOR PEER REVIEW 2 of 19 

 

Grid
DC

DC

DC

DC

Bat

DC

AC

DC

AC

P

P

P

P

PV 

PV Grid

Load

UPS with PV integration

 40 

Figure 1. On-line UPS with PV connection.  41 
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Figure 1. Online uninterruptible power supply (UPS) with photovoltaic (PV) connection.

Impedance-source converters are single-stage buck-boost converters, which can work for DC/AC,
AC/DC, AC/AC, and DC/DC energy conversions [17,18]. The following advantages of these topologies
make them suitable for low-voltage photovoltaic applications: high boosting capability; higher efficiency
due to single-stage operation; lower number of active switches; immunity to switching transient
short circuits.

A front-end switching system in impedance-source DC/DC conversion systems includes
a conventional single switch, a full-bridge, and a push-pull structure, as shown in Figure 2 [19].
Using full-bridge and push-pull switching systems provides input to output voltage isolation, which is
preferred for some applications. As described below, voltage isolation proves the ability to apply the
partial power processing technique, which results in performance improvement.

Several structures of impedance networks are presented, such as Z-source, T-source, Y-source,
and A-source [20–22]. Compared to a traditional structure (Z-source), T-source requires a lower
number of passive elements and coupling inductors, which provides higher voltage gain for the
converter [22]. A total of two types of T-source converters, non-isolated and isolated, are depicted in
Figure 3. In the isolated type, a voltage multiplier is connected to the output of the isolated winding of
the transformer (Figure 3b).

The partial power processing technique is a technique which can be used to improve the voltage
gain and efficiency of a converter. A DC/DC converter can be considered a DC transformer with
a turns ratio of M(D), which is the converter voltage gain. Similar to the winding connection of
an AC autotransformer, an isolated DC/DC converter can be changed to a PPC. In a PPC, a part of the
energy is directly transferred to the output and only a fraction of power is processed by the converter;
therefore, the converter performance can be improved. There are two main types of PPC structures [23]:
input parallel output series (Figure 4a) and input series, output parallel (Figure 4b).

Using the partial power processing technique for non-isolated converters was investigated [23–28].
In this paper, this technique is applied to an isolated T-source DC/DC converter to improve the converter
voltage gain. A total of two structures of this converter are proposed and compared for possible
applications, including UPS systems. In Section 2, the proposed structures are presented and the main
relations for steady-state operation of the converter are derived. In Section 3, conventional PPC and
improved PPC and full-power converter (FPC) are compared. The simulation and experimental results
of the presented converter are provided in Section 4.
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Boosting the capability of the classical boost converter is limited due to the practical constraints; 
hence, the following structures and techniques are presented in the literature to provide high voltage 
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Impedance-source converters are single-stage buck-boost converters, which can work for 
DC/AC, AC/DC, AC/AC, and DC/DC energy conversions [17,18]. The following advantages of these 
topologies make them suitable for low-voltage photovoltaic applications: high boosting capability; 
higher efficiency due to single-stage operation; lower number of active switches; immunity to 
switching transient short circuits. 

A front-end switching system in impedance-source DC/DC conversion systems includes a 
conventional single switch, a full-bridge, and a push-pull structure, as shown in Figure 2 [19]. Using 
full-bridge and push-pull switching systems provides input to output voltage isolation, which is 
preferred for some applications. As described below, voltage isolation proves the ability to apply the 
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Figure 2. Different configuration of the front-end switching system in DC/DC impedance source
converter. (a) single switch switching system, (b) full-bridge switching system, and (c) push-pull
switching system.
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2. Operation Principles

A total of two configurations of partial power for a T-source converter are presented here:
conventional partial power T-source converter (PPTSC) and improved PPTSC. The schematics of the
converters are shown in Figure 5a,b, respectively. As shown in Figure 5, in the conventional form,
the series connection of input voltage and the voltage on the C3 capacitor creates the output voltage.
In the improved form, C3 and C1 are in series in the output. As the C1 voltage is greater than the input
voltage, higher voltage gain and improved performance are expected.Sustainability 2020, 12, x FOR PEER REVIEW 5 of 19 
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Figure 5. Schematic of the proposed PPC: (a) conventional partial power processing T-source converter
(PPTSC) and (b) improved PPTSC.

The converter circuit and current paths for two switching states are shown in Figure 6. During the
ON state operation (Figure 6a), the voltage across the second winding (W2) (with a turns ratio of N2) is
equal to C1 voltage (VC1) and the current goes through it; therefore, the current induces in the first
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and third windings (W1 and W3, respectively). This causes D1 and D2 to be turned off and D3 to be
turned on. Magnetizing the current (Ilm), which is modelled in parallel with W1, decreases during this
state. The W1 current (IW1) is equal to Ilm. The converter relationships during this switching state are
as follows:

Ilm + N2IW2 + N3IW3 = 0, (1)

VL =
VC1

N2
=

VC2 + VC3

N3
, (2)

IC1 = IW2 − Io, (3)

IC2 = IW3, (4)

IC3 = IW3 − Io. (5)

where IW2 and IW3 are the currents of W2 and W3 windings, respectively; Io is the output current of the
converter in Figure 6; N3 is the turns ratio of W3; and VL is the voltage across magnetizing inductance.
During the OFF state operation (Figure 6b), Ilm increases and D1 and D2 are ON while D3 is OFF.
The converter relationships during this switching state are as follows:

VL = Vin −VC1 =
VC2

N3
, (6)

IC1 = IW1 + Ilm − Io, (7)

IC2 =
IW1

N3
, (8)

IC3 = −Io. (9)

Employing (1)–(9) and using the inductor volt second balance and capacitor charge balance rules,
the steady-state relations are derived.

D
(

VC1

N2

)
+ D′

(
Vin −VC1

)
= 0⇒

VC1

Vin
=

N2(D− 1)
D + N2(D− 1)

(10)

D(VC2 + VC3)

N3
+

(1−D)VC2

N3
= 0⇒ VC3 =

VC2

D
(11)

(Vin −VC1)N3 = VC2 ⇒
VC3

Vin
=

−N3

D + N2(D− 1)
(12)

Vout

Vin
=

VC1 + VC3

Vin
=

N1(1−D) −N2

D + N1(D− 1)
=

N2 −N1(1−D)

(1−D)N1 −D
(13)

D(IW3 − Io) − (1−D)Io = 0⇒ IW3 =
Io

D
(14)

D(IW3) + (1−D)
IW1

N3
= 0⇒ IW1 =

−IoN3

1−D
(15)

(IW2 − Io)D + (IW1 + Ilm − Io)(1−D) = 0 (16)

Ilm + N2IW2 + N3IW3 = 0 (17)

Ilm =
(1 + N3)N2 + N3

(1−D)N2 −D
Io (18)

IW2 =
−

(1−D)N3
D − (1 + N3)

(1−D)N2 −D
Io (19)

where D is the duty cycle of the switch.
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The capacitor voltage and IlM ripples (∆VCi and ∆IlM) are calculated as:

2Lm∆Ilm
DTs

=
VC1

N2
⇒ ∆Ilm =

∆VC1

2LmN2 fSW
, (20)

2C1∆VC1

DTs
= IW2 − Io ⇒ ∆VC1 =

(IW2 − Io)D
2C1 fSW

, (21)

2C2∆VC2

DTs
= IW3 =

Io

D
⇒ ∆VC2 =

Io

2C2 fSW
, (22)

2C3∆VC3

DTs
= Io ⇒ ∆VC3 =

(1−D)Io

2C3 fSW
. (23)
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All the relations for the steady-state analysis of the converters are derived, which can also be used
for other analyses such as calculating the voltage and current stress on the elements and comparing the
performance of the converters. In the next section, full-power TSC, conventional PPTSC, and improved
PPTSC are compared in different terms.

3. Comparison of Full-Power TSC, Conventional PPTSC, and Improved PPTSC

To analyze the performance of the presented converters; full power TSC (FPTSC) (Figure 3b),
conventional PPTSC (Figure 5a), and improved PPTSC (Figure 5b) are compared in terms of voltage
gain, voltage and current stress on semiconductor devices, and converter efficiency. The fraction of
power process (FPP) is shown in Figure 7. FPP is the proportion of total output power to the power
processed by the converter and is one of the important values for comparison of PPCs [29]. Lower FPP
is desirable as it is associated with less voltage and current stress on the elements and improves the
converter performance. Figure 7 demonstrates that FPP is lower for the improved PPTSC.
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Figure 7. Fraction of power process (FPP) comparison of conventional and improved PPTSC.

In Figure 8, output voltage gain versus D is plotted and compared for three discussed converters in
non-ideal conditions. The input voltage is 30 V. The value of non-idealities and converter parameters
considered here are the same as the values mentioned for the prototype in Section 4. As shown in Figure 8,
improved PPTSC shows a greater voltage gain for D < 0.3. Although the maximum achievable gain is
achieved for the conventional PPTSC, the improved PPSC shows higher voltage gain for a wide range
of duty cycle. In high values of D, the voltage drop of W1 is increased for improved PPTSC as a higher
current passes through it. This limits the voltage gain of the improved PPTSC at high values of D.

The relationships for voltage and current stresses of the switches and diodes are shown in Table 1.
The equations for voltage stress of any elements in all three converters are the same, but in similar
operation conditions, i.e., the same input and output voltage, the required D for the improved PPTSC
is lower and (1 − D)N2 − D (denominator of the voltage stress equation) is a decreasing function.
Therefore, the voltage stress of the switch and diodes in the improved PPTSC is lower than the other
two converters. Comparing the relations for current stress in Table 1 demonstrates that:

• The relations for the current stresses of the switch for all structures are the same. Although the
relations are the same, lower D leads to lower current stress in PPTSC structures.
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• The current stress of D2 and D3 are lower for improved PPTSC. The reason is the same as the
above description. Although the relations are the same, a lower D leads to lower current stress in
PPTSC structures.
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Figure 8. Output voltage gain versus duty cycle for FPTSC, conventional PPTSC, and improved PPTSC.

Table 1. Voltage and current stress of the switches and diodes for FPTSC, conventional PPTSC,
and improved PPTSC.

FPTSC Conventional PPTSC Improved PPTSC

Gain N3
(1−D)N2−D

N3+(1−D)N2−D
(1−D)N2−D

N3−N2(1−D)
(1−D)N2−D

VSW
N2Vin

(1−D)N2−D
N2Vin

(1−D)N2−D
N2Vin

(1−D)N2−D

VD1
Vin

(1−D)N2−D
Vin

(1−D)N2−D
Vin

(1−D)N2−D

VD2
N3Vin

(1−D)N2−D
N3Vin

(1−D)N2−D
N3Vin

(1−D)N2−D

VD3
N3Vin

(1−D)N2−D
N3Vin

(1−D)N2−D
N3Vin

(1−D)N2−D

ISW
D+N2

D(1−D)N1−D2 Io
D+N2

D(1−D)N1−D2 Io
D+N2

D(1−D)N1−D2 Io

ID1
N3

((1−D)N2−D)(1−D)
Io

N3+(1−D)N2−D
((1−D)N2−D)(1−D)

IO
(N3+(1−D)N2)Io

((1−D)N2−D)(1−D)

ID2
Io

1−D
Io

1−D
Io

1−D

ID3
Io
D

Io
D

Io
D

The efficiency comparison of the converters shown in Figure 9 was obtained according to the
relations described [30] for conduction and switching losses of the converters.
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The main non-idealities considered for the converters are metal oxide semiconductor field effect
transistor (MOSFET) conduction resistance (Ron), transformer winding resistances (RW1, RW2, and RW3),
and forward voltage of the diodes (Vf). Regarding these parasitic elements, the main power losses are
as follows:

• Conduction losses of switches, transformer windings, and diodes.
• Turn-ON and turn-OFF switching losses of the switches.

The conduction loss of windings (PCOND(W)) can be calculated:

PCOND(W) =
∑

RWiI2
Wi i = 1, 2, 3. (24)

The expressions for the winding currents are extracted in Section 2 of the paper.
Using the root-mean-square (RMS) value of switch current and diode average current, the conduction

losses of the switch and diodes (PCOND(S) and PCOND(D)) are given by (25) and (26), respectively.

PCOND(S) =
√

DRonI2
W2 (25)

PCOND(S) =
√

DRonI2
W2 (26)

MOSFET switching loss PSW is estimated based on the amount of dissipated energy ESW in the
switches during turn-ON and turn-OFF transitions [31], and given by (27).

ESW = (αON + αOFF)(VSWISW) (27)

where,

αON =
3t f v − 3t f vtri + t2

ri
6

, (28)

αOFF = 0.5
(
trv + t f i

)
, (29)

ISW = IW2, (30)

VSW = VC1 + N1(Vin −Vc1). (31)
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The above equations are the same for all structures. The difference in the value of D for a given
output (PP converters require a lower duty cycle) results in efficiency improvement using the PP structure.

The converter parameters used to plot the efficiency diagram are the same as the parameters used
for simulation, which is discussed in the next section. Figure 9 demonstrates a higher efficiency of
PPCs compared to the full power converter. Comparison of efficiency diagrams for improved and
conventional PPTSCs shows that, for lower loads, improved PPTSC efficiency is better, while at high
loads, conventional PPTSC improves. The main reason for this is related to the conduction loss of
W1 winding and D1. Whereas W1 and D1 process full power in improved PPTSC, their currents are
higher than conventional PPTSC; therefore, efficiency is limited in this case while the current that goes
through them increases (higher loads). The region in which improved PPTSC has higher efficiency is
related to the converter parameters, while winding resistance of W1 and forward voltage of D1 play
an important role in this.

The same parasitic elements are considered for calculating the non-ideal voltage conversion ratio
(VCR). Modifying the relationships in two switching states can provide the relationship. As the voltage
drop on windings and switches depends on the winding and switch currents, respectively, it is almost
impossible to derive a unique relation for VCR in non-ideal conditions. For obtained non-ideal VCR,
Equations (2) and (6) can be modified as follows:

VL =
VC1 −R1IW1 − (R2 + Ron)IW2

N2
=

VC2 + VC3 − 2V f −R3IW3

N3
, (32)

VL = Vin −VC1 −R1IW1 =
VC2 −V f

N3
. (33)

The current of W1 is the same for all structures; therefore, the current of other windings and the
switch (which is equal to IW2) are lower for the improved PPTSC, which result in a lower voltage drop.
The lower voltage drop on elements improves the non-ideal VCR of the improved PPTSC compared to
the other structures.

4. Simulation and Experimental Result

To verify the performance of the presented converters, several simulations were performed and
a prototype converter was built (Figure 10). Several experimental tests are carried out and compared
with simulations and theoretical analysis. The parameters are listed in Table 2.

Table 2. Simulation and experimental parameters.

Parameter Symbol Value

Input voltage Vin 30 V

Output voltage Vout 150 V

Load R 400 Ω

Switching frequency f 30 kHz

Turns ratio of three winding transformer 1:N2:N3 00:06.6

Magnetizing inductance Llm 330 µH

Capacitance C1, C2, C3 470 µF

Diode forward voltage Vf 1.2 V

Conduction resistance of switch Ron 0.09 Ω

First winding resistance R1 0.2 Ω

Second winding resistance R2 0.1 Ω

Third winding resistance R3 0.3 Ω
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A total of two structures (conventional PPTSC and improved PPTSC) with the same duty cycles
(Figure 11a) were simulated and the results are shown in Figure 11. Drain-source voltage, voltage
across the transformer windings, magnetizing current, and capacitor voltage are shown in Figure 11b–i,
respectively, for two converters. As expected by theoretical analysis, during the first subinterval
(the switch is turned on) magnetizing inductance, C3 charged while C1 and C2 discharged. Figure 11f
shows that the peak value of magnetizing currents for both converters were maintained around
constant values; therefore, an appropriate design of the transformer can guarantee it will work in
the linear core region and prevent saturation. A disadvantage of the improved PPTSC compared to
conventional PPTSC is related to the magnetizing current of the transformer. Figure 11f shows that
the transformer magnetizing current for the improved PPTSC is higher than that of the conventional
PPTSC. This is mainly because the first winding processes all the power and this part of the converter
needs to be considered full power. This increases the peak value of the magnetizing current and affects
the transformer design. The voltages of capacitors are regulated with a ripple of less than 0.1 V (0.5%).
The ripple of the output voltage for both converters is less than 0.06%, and the proposed improved
PPTSC has a higher voltage gain than the conventional PPTSC according to Figure 11j. Using the
steady-state relations derived in the previous section and the simulation parameters listed in Table 2,
the steady-state values for the capacitor voltages and magnetizing inductor currents were calculated
as VC1 = 53 V, VC2 = 22 V, and VC3 = 105 V for both structures and IlM = 2.05 A and IlM = 3.25 A for
conventional and improved PPTSC, respectively. The capacitor voltage is the same if similar duty
cycles are applied to both structures. The obtained simulation results match the theoretical outcomes.

The experimental results of both presented converters are shown in Figures 12 and 13.
The experiments were performed similarly to simulations for better comparison. The obtained
results match the theoretical analysis and simulation results. Figure 14 shows the converter efficiency
for three structures based on experiments and simulations for different output powers. The difference
between input and output power is considered the converter loss. This efficiency curve verifies the
theoretical analysis that improved PPTSC has higher efficiency compared to a conventional PPTSC
and a full-power converter.
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Figure 11. Simulation results for the proposed converters, left: conventional PPTSC, right:
improved PPTSC. (a) Command signal, (b) switch drain-source voltage, (c) first winding voltage,
(d) second winding voltage, (e) third winding voltage, (f) magnetizing current, (g)VC1, (h)VC2, (i)VC3,
and (j) output voltage.
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5. Conclusions

In this paper, a new DC/DC converter was proposed for renewable energy integration in UPS
systems by adapting a T-source converter in a partial power processing structure. This converter,
compared to other impedance source converters, requires fewer components, and we showed that its
efficiency is higher. The operation principle of this converter was presented, and governing relations
were obtained. The presented comparisons proved that it has higher voltage gain, lower voltage,
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and current stresses on the semiconductors. Finally, the simulation and experimental results were
presented to verify the performance of the converter.
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