
sustainability

Article

Eco-Acoustic Indices to Evaluate Soundscape
Degradation Due to Human Intrusion

Roberto Benocci 1,* , Giovanni Brambilla 2, Alessandro Bisceglie 1 and Giovanni Zambon 1

1 Department of Earth and Environmental Sciences (DISAT), University of Milano-Bicocca, Piazza Della
Scienza 1, 20126 Milano, Italy; alessandro.bisceglie@unimib.it (A.B.); giovanni.zambon@unimib.it (G.Z.)

2 CNR-INM Department of Acoustics and Sensors “O.M. Corbino”, via del Fosso del Cavaliere 100,
00133 Rome, Italy; giovanni.brambilla@artov.inm.cnr.it

* Correspondence: roberto.benocci@unimib.it

Received: 21 October 2020; Accepted: 7 December 2020; Published: 14 December 2020
����������
�������

Abstract: The characterization of environmental quality and the detection of the first sign of
environmental stress, with reference to human intrusion, is currently a very important goal to
prevent further environmental degradation, and consequently habitat destruction, in order to take
appropriate preservation measures. Besides the traditional field observation and satellite remote
sensing, geophonic and/or biophonic sounds have been proposed as potential indicators of terrestrial
and aquatic settings’ status. In this work, we analyze a series of short audio-recordings taken in urban
parks and bushes characterized by the presence of different human-generated-noise and species
abundance. This study aims to propose a tool devoted to the investigation of urban and natural
environments in a context with different soundscape qualities, such as, for example, those that can
be found in urban parks. The analysis shows the ways in which it is possible to distinguish among
different habitats by the use of a combination of different acoustic and sound ecology indices.
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1. Introduction

The biodiversity in different habitats is threatened mostly as a result of human activity. Monitoring the
environment is the only way to capture the early indications of ecosystem degradation and the fragmentation
of natural environments [1], causing the endangerment of many species [2]. Compared to the sampling
strategies that rely on the collection of animals and vegetable specimen, the use of passive acoustic monitoring
(PAM) is spreading as a complementary method of environmental monitoring [3–7]. PAM consists in
recording and analysing the sounds of an environment, extracting information on the abundance of species,
the ecosystem condition, and degradation due to human intrusion [8–11]. The complexity of the sound
blends is usually referred to as a soundscape. The soundscape at a location includes sounds of different
natures which are generally recognized as: (i) biophony, with frequency emissions between 2 and 14 kHz [12];
(ii) anthrophony, corresponding to mechanical signals, with a frequency band between 0.1 and 2 kHz;
and (iii) geophony (e.g., due to wind or rain), which tends to cover the entire spectrum, with more energy in
the lower frequencies [13].

Discrimination among such sound sources is usually performed by the visual inspection of
sonograms. However, such analysis is time consuming, especially if it is applied to long time
recordings, even though automated methods have been developed in order to investigate the presence
of different biological sound sources from the spectrogram of long-term recordings [14].

However, the introduction of eco-acoustic indices simplifies the analysis, as they focus on different
characteristics of the sound, such as pitch, modulation, saturation, and amplitude. These indices,
also referred to as eco-acoustic metrics, have been developed in order to evaluate the complexity and
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dynamics of the acoustic environment, and to act as proxies of species assemblage diversity measures in
order to characterize environmental quality [15–17]. In general, eco-acoustic metrics provide additional
information with respect to the barely-physical properties of a sound (like sound pressure level or
power spectrum density), and have been extensively used in ecological studies in order to investigate
diel cycles in tropical forests [18] and seasonal activities in temperate and tropical habitats [19,20].
It has been also demonstrated how the different soundscapes of different types of habitat can be
successfully recognized, showing that eco-acoustic indices have great potentiality for environmental
research [21–23]. On the other hand, contradictory results have also been reported [9,24–26]. Such an
evolution may have been caused by the non-congruity of the collected recordings and the misuse of
indices for soundscape appraisal. The fact that guidelines for the assessment of faunal activity have been
issued, but not regarding soundscapes themselves, may underlie a methodological insufficiency [17,27].

Many issues are still open: for example, geophony is always present in natural soundscapes,
but typically high levels of geophony are often ruled out from analyses, even though a threshold has not
been defined [28–30]. The same considerations hold for anthrophony, as some indices can be strongly
influenced by these elements [31]. Many studies often take into consideration one or two indices,
without justifying for their selection, thus limiting the efficacy of acoustic indices in the monitoring of
biodiversity. As each index reflects different spectro-temporal features [32], the consideration solely of
a limited number of indices could provide only a partial representation of the soundscape. This issue
has been pointed out in Bradfer-Lawrence et al.’s [33] research. Here, the authors address the issue
regarding the most representative sample recording sequence, its length, and the most promising
combination of indices that reflects the environmental dynamics.

In this paper, we extend the above analysis using a statistical analysis of six eco-acoustic indices
extracted from short audio-recordings, and by defining the most significant statistical descriptor of the
distribution with the aim to quantify the soundscape of a site and to discriminate among habitats with
different degrees of human intrusion.

2. Materials and Methods

2.1. Background

The analysis performed in a previous work [34] showed the behaviour of different indices under
completely different background and biophonic activity conditions. The aim of that preliminary study
was to evaluate the potential of soundecology indicators for the discrimination of the different types
of sounds present in medium-large urban parks. For this purpose, two environmental settings were
considered: a large urban park surrounded by busy roads, and a shrub-dominated area, the latter of
which was used as a reference site for natural areas. The two sonic environments were characterized
by the presence of different anthropogenic noises, especially in the urban park, and sounds from avian
species. Soundecology indicators, or their combinations, could help to identify the urban park areas
with higher biophonic activities and, therefore, the areas that offer greater relief and restorative value.

2.2. Study Sites

Twenty audio-recordings were considered for the analysis. They were taken in areas characterized
by different degrees of road traffic noise and faunal activity (Table 1). Site A was located in the ‘Parco
Nord’ of Milan, at the northern bound of the city. It is a big metropolitan park within the town of Milan
and its hinterland, recovering green areas which once were industrial or uncultivated lands surrounded
by congested roads. The recorder’s position was approximately 90 m from a peri-urban arterial road
with continuous road traffic noise emissions (see Figure 1a); more specifically, the daily mean traffic
flow is approximately 22,000/24,000 vehicles, while the traffic flow during the sound recordings was
approximately 1500 vehicles per hour; the estimated mean traffic speed was approximately 50–60 km/h,
with very rare congested flow events. Site B was a bush area, taken as a reference setting of a natural
undisturbed area, whereas sites C and D refer to natural areas, but with the presence of vehicular
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disturbance with intermittent events, and with a markedly different naturalistic footprint with respect
to site A, in terms of avian species abundance. Sites B, C and D are located in the Appennino mountains
(central Italy), but their exact locations were not available.

Table 1. List of the audio-recordings used for the analysis, grouped by location. The type of sound, as
identified by an operator and some characteristics of the birds’ chorus distance (1 = near; 2 = distant), the
birds’ chorus duration (percentage with respect to the total recording duration; 1: <25%; 2: 25–50%; 3:
50–75%; 4: >75%), and the road traffic type (0 = no traffic; 1 = continuous; 2 = intermittent) are reported.

Site Code Name Description by the Operator Birds’ Chorus Road Traffic Type
Distance Duration

A

file 1 Dominant traffic noise, presence of bird
vocalization 1 4 1

file 2 Dominant traffic noise, presence of bird
vocalization, motorbike pass-by 1 3 1

file 3 Dominant traffic noise, presence of bird
vocalization, airplane fight-over, footsteps 2 1 1

file 4 Dominant traffic noise, presence of bird
vocalization, faint sirens 1 2 1

file 5 Dominant traffic noise, presence of bird
vocalization, a bird species very close 1 4 1

B

file 6 Many bird species 1 4 0

file 7 Many bird species 1 4 0

file 8 Many bird species (less vigorous singing) 1 4 0

file 9 Many bird species 1 4 0

file 10 Many bird species 1 4 0

C

file 11 Traffic noise, many bird species
vocalization 1 4 1

file 12 Traffic noise and traffic noise background,
bird vocalization 1 4 2

file 13 Traffic noise and traffic noise background,
bird vocalization 1 4 2

file 14 Traffic noise and traffic noise background,
bird vocalization 2 4 2

file 15 Traffic noise and traffic noise background,
bird vocalization 2 4 2

D

file 16 Traffic noise (multi pass-by), bird
vocalization 2 3 2

file 17 Traffic noise with two pass-by, bird
vocalization 1 4 2

file 18 Traffic noise (multi pass-by), bird
vocalization 2 4 2

file 19 Traffic noise (multi pass-by), bird
vocalization 1 4 2

file 20 Traffic noise (multi pass-by), bird
vocalization, church bells 1 4 2
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Figure 1. (a) Google Earth image of ‘Parco Nord’ location (Milan) selected for the sound recording (site
A); (b) SET unit mounted on a tree.

2.3. Recording and Instrument Characteristics

Table 1 reports the information related to the audio-recordings used for the analysis, grouped by
location. The recordings were labelled according to visual inspections of the sonograms while listening
to the recorded acoustic signals in order to annotate the events they contain. As indicated by the
information on the type of sounds identified by the operator, the audio-recordings contain sounds of
bird vocalizations differing in intensity (1 = near; 2 = distant), duration of singing activity (percentage
with respect to the total recording duration; 1: <25%; 2: 25–50%; 3: 50–75%; 4: >75%), and degree of
road traffic noise: absent, quite uniform backgrounds, and intermittent time patterns (0 = no traffic;
1 = continuous; 2 = intermittent). The audio-recordings were taken on 2nd May 2019 for Site A and 3rd
May 2016 for the other sites, starting at 7:00 a.m. Each measurement was one-minute long, followed by
a pause of 59 min (from 7:00 to 11.00 a.m.). The recordings were taken in springtime, when the singing
activity of birds is at its peak, and when it is easy to detect their presence and study their singing
dynamics. The weather conditions were stable during the recordings: cloud cover was present at site
A, and it was partly covered at the other sites. Details about the recording times and average weather
conditions are reported in Table 2.

A Soundscape Explorer Terrestrial (SET) instrument was used, which is a sound and meteorological
data recorder for terrestrial environments. It is equipped with two microphones, an electronic control
board, a full set weather sensors, and a rechargeable lithium battery pack, all contained in a waterproof
plastic case. The two microphones are:

• a low frequency microphone, used to acquire data in the audio range (up to 24 kHz, sampling rate
48 kHz);

• a high frequency microphone, used to acquire data in the audio and ultrasonic range.

For this specific application, only the low frequency microphone was used. The electronic board
contains all of the recording and processing devices, as well as the atmospheric sensors (pressure,
temperature, relative humidity, ambient light). It is based on a high performance low power DSP
(Digital Signal Processor). The SET recorder was mounted on a tree, approximately 5 m high above the
ground, as shown in Figure 1b for site A.1.
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Table 2. Audio-recording information: day, start time, end time, and weather condition during
the recording.

Site Code Name Day Start Time
(hh:mm)

End Time
(hh:mm) Weather Conditions

A

file 1

2nd May 2019

07:00 07:01

cloud cover no rain

file 2 08:00 08:01

file 3 09:00 09:01

file 4 10:00 10:01

file 5 11:00 11:01

B

file 6

3rd May 2016

07:00 07:01

partly cover no rain

file 7 08:00 08:01

file 8 09:00 09:01

file 9 10:00 10:01

file 10 11:00 11:01

C

file 11 07:00 07:01

file 12 08:00 08:01

file 13 09:00 09:01

file 14 10:00 10:01

file 15 11:00 11:01

D

file 16 07:00 07:01

file 17 08:00 08:01

file 18 09:00 09:01

file 19 10:00 10:01

file 20 11:00 11:01

2.4. Analysis and Indices Computation

The growing interest in the ecological applications of acoustic indices is mainly motivated by
different approaches to the measurement of the variations in acoustic activity, which are predominantly
derived from statistical summaries of the amplitude variation in time domains, or the magnitude
differences between the frequency bands of a spectrogram. All of these indices aim to provide a quick
analysis of the sound characteristics of an environment, but with different emphases. The analysis and
computation of the indices were performed in the ‘R’ environment, version 1.2.5033 [35]. In particular,
the Fast Fourier Transform (FFT) was computed by the function ‘spectro’ within the R package
‘seewave’ [36], setting as the frequency bounds the interval between 100 Hz and 24 kHz, and 1024
points for the computation. This setting corresponds to a frequency bin resolution (FR) of FR = 46,875 Hz
and, therefore, to a time resolution (TR) of TR = 1/FR = 0.0213 s. All of the indices reported in this
paper were computed using the R package ‘soundecology’ [37], with the exception of the Dynamic
Spectral Centroid (DSC), for which a dedicated script was written.

A detailed description of the indices considered in this paper is given in [34], and a short
summary is reported here to help readers. The indices are the DSC, Acoustic Complexity Index (ACI),
Acoustic Diversity Index (ADI), Acoustic Evenness Index (AEI), Bioacoustic Index (BI), and Normalized
Difference Soundscape Index (NDSI).

The DSC is based on the time evolution (with resolution of 100 ms) of the gravity centre of the
spectrum, and thus reveals both the spectral and temporal analysis of the composition of the sound
events and the background sounds [38,39]. The ACI measures the absolute difference of two adjacent
intensities in a specific temporal interval and within a single frequency bin [16,19]. This latter is strictly
linked by the FFT computation window.

The ADI [13,40] divides the spectrogram into bins and applies the Shannon index [41–43] to the
proportion of the signals in each bin above a threshold. Thus, it provides the diversity of the frequency
bins weighted by the intensity (level) of each bin. The AEI [40] applies the same scheme as the ADI,
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but using the Gini index applied to the signals in each bin, and, therefore, aims to measure the degree
of the inequality in a distribution [44]. The BI is calculated as the area under the mean frequency
spectrum, which provides a measure of both the sound level and the number of frequency bands used
by the species [45]. The NDBI simply computes the ratio between the anthrophony, for example in the
frequency range 0.1–2 kHz, and the biophony acoustic components, typically in the frequency range
between 2 and 11 kHz, in order to evaluate the disturbance of a habitat [46].

2.5. Cluster Analysis

Cluster analysis is a data-mining tool employed in order to group together the data or objects
found to be ‘close’ to one another, with the purpose of uncovering some inherent structure within
the data. Clustering is an unsupervised method that works on datasets in which there is no outcome
(target) variable, nor anything known about the relationship between the observations, that is,
the unlabelled data. The most common clustering algorithms, which were considered in the present
study, are: ‘hierarchical’ agglomeration using Ward algorithm [47], ‘k-means’ [48], ‘DIvisive ANAlysis’
(DIANA) [49], ‘Self Organizing Tree Algorithm’ (SOTA) [50], ‘ Partition Around Medoids’ (PAM) [49],
‘Clustering for LARge Applications’ (CLARA) [49] and ‘AGglomerative NESting’ (AGNES) [49].

In the Ward hierarchical agglomeration, the Ward’s minimum variance criterion minimizing the
total within-cluster variance is used. To implement this method, at each step, the pair of clusters that
leads to the minimum increase in the total within-cluster variance is found after merging. This increase
is a weighted squared distance between the cluster centers. The result is a tree-based representation of
the objects named a dendrogram.

The k-means algorithm aims to partition n observations into k clusters, in which each
observation belongs to the cluster with the nearest cluster centroid. k-means clustering minimizes
within-cluster variances.

The DIvisive ANAlysis (DIANA) algorithm starts by including all of the objects in a single large
cluster. At each step of iteration, the most heterogeneous cluster is divided into two. The process is
iterated until all of the objects are in their own cluster.

The Self-Organizing Tree Algorithm (SOTA) is an unsupervised neural network with a binary tree
topology. The clustering process is performed from the top to the bottom, i.e., the highest hierarchical
levels are resolved before entering the lowest levels.

The PAM algorithm is considered to be a more robust version of the k-means because, unlike the
k-means, the PAM function does not introduce medoids randomly, but uses data points as the medoids.
This makes it less sensitive to outliers. Medoids are representative objects of a data set or a cluster
with a data set whose average dissimilarity to all of the objects in the cluster is minimal. Medoids are
similar in concept to means or centroids, as in the case of the k-means algorithm.

Clustering for LARge Applications (CLARA) is an extension to k-medoids (PAM) methods to deal
with data containing a large number of objects (more than several thousand observations) in order to
reduce the computing time.

AGNES (Agglomerative Nesting) is the most common type of hierarchical clustering used to
group objects in clusters based on their similarity. The algorithm starts by treating each object as a
singleton cluster. Next, pairs of clusters are successively merged until all of the clusters are merged
into one big cluster containing all of the objects. The result is a tree-based representation of the objects
named a dendrogram.

Given the large number of available algorithms, deciding which clustering method to use and the
number of clusters that are most appropriate for the data can therefore be a daunting task. Ideally,
the resulting clusters should not only have good statistical properties (compact, well-separated,
connected, and stable), but also yield results that are significant.

The package “clValid” [51–53] contains a variety of methods for the validation of the results from
a cluster analysis. The available validation measures fall into the three general categories of ‘internal’,
‘stability’, and ‘biological’. For the scope of our study, the latter has not been considered.
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Internal validation measures take only the dataset and the clustering partition as their inputs,
and use the intrinsic information in the data to assess the quality of the clustering. Such validation
considers three features of the cluster partitions: connectedness, compactness, and separation.
Connectedness relates to the extent to which observations are placed in the same cluster, and is
measured by the connectivity [54], a parameter between zero and ∞ that should be minimized.
Compactness assesses the clusters’ homogeneity, usually by looking at the intra-cluster variance.
Separation quantifies the degree of separation between the clusters. Because compactness and
separation demonstrate opposing trends (compactness increases with the number of clusters,
and separation decreases it), some popular methods combine the two measures into a single score,
such as the Dunn index [55] or silhouette width [56]. The Dunn index has a value between zero and∞,
and should be maximized. The silhouette width lies in the interval (−1, 1), and should be maximized.
High clustering performance is indicated by these indices being minimized.

The stability measures are a special version of the internal measures. They evaluate the consistency
of a clustering result by comparing it with the clusters obtained after each column is sequentially
removed. The included measures are the average proportion of non-overlap, the average distance,
the average distance between the means, and the figure of merit. The figure of merit is related to
the average intra-cluster variance of the observations in the deleted column, where the clustering is
based on the remaining (undeleted) samples [57,58]. High clustering performance is indicated by
these indices being minimized. All the clustering algorithms were ranked based on their performance,
as determined simultaneously by all the validation measures [59].

2.6. Correlation Analysis

In order to obtain more insights into the use of acoustic and eco-acoustic indices, and to figure out
the most representative ones that are suitable to highlight the sensitivity among different environmental
and biophonic conditions, we decided to adopt an approach that was as independent of the analyst
as possible. For each sound clip (described in Table 1), the temporal analysis of DSC, ACI, ADI, AEI,
BI, and NDSI was calculated. The time resolution of each time series was set at 0.1 s for all of the
indices except NDSI, for which 1 s was chosen because it could not be calculated at a higher time
resolution due to the ‘soundecology’ package’s constraints. The first selection among the indices
can be obtained by calculating the correlation among the time series corresponding to each of the
indices with the same time resolution. In this case, the idea is to retain only those indices which
have a low correlation, and which therefore carry different/independent information. The scheme of
the adopted method is illustrated in Figure 2. Two time series are considered correlated when their
Pearson’s correlation coefficient is greater than 0.4 (absolute value). We recall the definition of Pearson’s
correlation coefficient between two time series s(t) and s’(t) as the ratio between the covariance—cov(s,
s’)—of the two time series and the product of their standard deviations, σs , σs′ :

ρ(s, s′) =
cov(s, s′)
σsσs′

(1)

where the covariance is a measure of the joint variability of the two times series for s and s’, and it is
defined as the mean value of the product of the deviations from their mean values [60]. This correlation
analysis is well suited for continuous variables.
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Figure 2. The scheme of the adopted method to determine the most representative indices.

Another important issue regards the identification of the most representative statistical metrics
describing the distribution of the values of each index. For this purpose, seven descriptors were
considered: the mean value, median, mode, standard deviation (SD), interquartile range (IQR),
skewness, and kurtosis. The choice was also determined, in this case, by calculating the correlation
analysis based on Pearson’s method, and keeping those with low correlation.

3. Results

The results of the correlation analysis obtained according to Pearson’s method (see Equation (1)
are reported in Figure 3. The outcome of the analysis suggests the keeping of DSC, ACI and ADI as
low-correlated indices. NDSI was also considered, as it cannot be included in the correlation analysis.

As for the most representative statistical metrics describing the distribution of the values of each
index, the Pearson’s correlation coefficients were computed between all of the pairs of statistical metrics
for all of the selected indices, NDSI included. The results of the analysis are reported in Figure 4,
which shows a strong correlation among the mean, median, mode, SD and IQR, and a relatively high
correlation between the skewness and kurtosis. For this reason, we decided to retain the mean and the
kurtosis values as the most representative descriptors of the indices’ distribution.

After the selection of the less-correlated indices (DSC, ACI and ADI, plus NDSI) and statistical
metrics (mean and kurtosis), we applied the cluster analysis in order to find out the similarities among
the observations. The analysis was initially performed on each single index, keeping as variables the
two statistical metrics.
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1 
 

 

Figure 3. Pearson’s correlation plot of each index. The distribution of each variable is shown on the
diagonal. On the bottom of the diagonal, the bivariate scatter plots with a fitted line are displayed.
On the top of the diagonal, the values of the Pearson’s correlation coefficient plus the 95% significance
level are shown as stars (‘***’ corresponds to a p-values < 0.001, no stars correspond to a p-values > 0.1).

Figure 4. Correlation plot of each statistical descriptor calculated according to Pearson’s method. The
distribution of each variable is shown on the diagonal. On the bottom of the diagonal, the bivariate
scatter plots are displayed with a fitted line. On the top of the diagonal, the values of the Pearson’s
correlation coefficient plus the 95% significance level are shown as stars (‘***’ and ‘*’ correspond to a
p-values < 0.001 and <0.05, respectively, no stars correspond to a p-values > 0.1).
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Because of the data range within the different intervals, they needed to be scaled (mean = 0
and standard deviation = 1) before clustering; in addition, the Euclidean distance was considered
to represent the similarity between the data pairs. The optimal solution for the clustering in terms
of the agglomeration algorithm and the number of clusters can be obtained by the ‘clValid’ R
package. The selected clustering algorithms to be compared were ranked based on their performance,
as determined simultaneously by all of the validation measures considered in the package.

In order to give a rough distinction between the two extreme situations, the clValid procedure
was set to provide the optimal clusterization at two clusters, and to compare among the following
clustering algorithms: ‘hierarchical’, ‘k-means’, ‘DIvisive ANAlysis’ (DIANA), ‘Self Organizing Tree
Algorithm’ (SOTA), ‘ Partition Around Medoids’ (PAM), ‘Clustering for LARge Applications’ (CLARA)
and ‘AGglomerative NESting’ (AGNES). The performance ranking was based on ‘internal’ validation
measures only, as the ‘stability’ measures were not available due to constrains on the limited number
of variables (only two, i.e., mean and kurtosis) as descriptors of the distribution of each index value
versus time. The results of clValid, reported in Table 3, clearly show that the DIANA algorithm and
two clusters was the optimal solution. Thus, this clustering setting was applied to all of the indices.

In order to identify the possible correlations among the obtained results, Spearman’s correlation
analysis was undertaken, as it is suitable for categorical/ordinal variables (the cluster membership).
The results are given in Figure 5.

This result shows that the ACI and NDSI indices have very similar cluster composition, and this
implies that they act almost equally on the recorded time series. On the other hand, DSC and ADI
are completely uncorrelated, and thus carry very different information. Table 4 reports the results
of the cluster analysis with the information of Table 1 for a direct comparison between the cluster
membership and the observed recording characteristics.

1 
 

 Figure 5. Correlation matrix calculated according to Spearman’s method, among the cluster membership
for the different indices shown in Table 3. The distribution of each variable is displayed on the diagonal.
On the bottom of the diagonal, the bivariate scatter plots are displayed with a fitted line. On the top of
the diagonal, the values of the Spearman’s correlation coefficient plus the 95% significance level are
shown as stars (‘***’ corresponds to a p-values < 0.001, no stars correspond to a p-values > 0.1).
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Table 3. Performance of the clustering algorithms set at two clusters obtained by the clValid package
for each index represented by the two least-correlated parameters: mean and kurtosis.

Ranking of Solutions from the Optimal One (1)

Indices 1 2 3 4 5

DSC DIANA PAM SOTA kmeans hierarchical

ACI DIANA kmeans AGNES SOTA hierarchical

ADI DIANA PAM SOTA kmeans hierarchical

NDSI DIANA PAM SOTA kmeans hierarchical

Table 4. Observed recording characteristics and cluster membership for the DSC, ACI and ADI indices
obtained by applying the DIANA algorithm and the two clusters setting.

Site Code Name Comments DSC Cluster ACI Cluster ADI Cluster

A

file 1 Dominant traffic noise,
presence of bird vocalization 1 1 1

file 2
Dominant traffic noise,

presence of bird vocalization,
motorbike pass-by

1 1 2

file 3
Dominant traffic noise,

presence of bird vocalization,
airplane fight-over, footsteps

1 1 1

file 4
Dominant traffic noise,

presence of bird vocalization,
faint sirens

1 1 2

file 5
Dominant traffic noise,

presence of bird vocalization,
a bird species very close

2 1 2

B

file 6 Many bird species 1 2 1

file 7 Many bird species 1 2 1

file 8 Many bird species (less
vigorous singing) 1 1 1

file 9 Many bird species 1 2 1

file 10 Many bird species 1 2 1

C

file 11 Traffic noise, many bird
species vocalization 2 1 1

file 12 Traffic noise and traffic noise
background, bird vocalization 1 1 1

file 13 Traffic noise and traffic noise
background, bird vocalization 2 1 1

file 14 Traffic noise and traffic noise
background, bird vocalization 2 1 1

file 15 Traffic noise and traffic noise
background, bird vocalization 1 1 1

D

file 16 Traffic noise (multi pass-by),
bird vocalization 1 1 1

file 17 Traffic noise with two pass-by,
bird vocalization 1 2 1

file 18 Traffic noise (multi pass-by),
bird vocalization 1 1 1

file 19 Traffic noise (multi pass-by),
bird vocalization 1 2 1

file 20 Traffic noise (multi pass-by),
bird vocalization, church bells 1 1 1
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Figure 6 shows the box plots of the two metrics (mean and kurtosis) in the two clusters obtained
for each index (NDSI excluded, because its cluster membership is strongly correlated to that of ACI).
For the DSC and ADI indices, the kurtosis can separate the two clusters quite well, whereas this
happens for the mean value for the ACI index. The clusterization for DSC based on the mean and
kurtosis variables shows that cluster 1 (16 recordings) shows a median value slightly above 1 kHz,
but with a high variability. This explains why many sites with completely different characteristics are
included in the same group. The kurtosis of about 1 indicates a platykurtic distribution. Cluster 2 (only
4 recordings) shows lower values of DSC (around 500 Hz) but a high kurtosis (around 3), and thus has
a normal distribution. This result seems to suggest that the discrimination among the recordings is not
satisfactory, since it does not reveal significant differences among the recordings.

Figure 6. Box plots of the two metrics (mean and kurtosis) in the two clusters obtained by the DIANA
algorithm for the three indices.

The analysis of the ACI index shows the way in which cluster 1 (14 recordings) is mainly composed
of roads with a lower ACI index than cluster 2 (6 recordings). This means that cluster 1 includes sites
with different environmental noise pollution, but with low frequency modulation (for example, file 8
shows non-vigorous bird singing activity). The kurtosis of about 1 is quite similar for both clusters,
but shows different variability.

The ADI index presents quite similar mean values (about 6 for cluster 1 and 6.1 for cluster 2).
The higher diversity in cluster 2 is most likely due to the presence of different noise sources, such as a
motorbike pass-by (file 2), sirens (file 4), and a bird species that was very close-by (file 5). The kurtosis
indicates a distribution with larger tails than the reference gaussian (kurtosis = 3) for cluster 1, and an
almost flat distribution for cluster 2 (kurtosis <−1).

This analysis shows that this simplistic approach is not able to describe all of the variability and
differences in the environment.

In order to obtain a deeper insight into the obtained results, a cluster analysis was performed on
the indices all together. Thus, a matrix formed of 12 variables (2 for each index) and 20 observations
was considered as the input. Additionally, in this case, the optimal solution for clustering was
obtained by the ‘clValid’ R package, the performance of which was determined simultaneously by all
of the validation measures, namely ‘internal’ and ‘stability’. The number of clusters was set between
two (corresponding to the minimal discrimination between the data) and nine (corresponding to a
sufficiently high number of groups). The best solution was the AGNES algorithm with two clusters,
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followed by the hierarchical and k-means agglomeration algorithms, both with a grouping into two
clusters. The cluster membership turned out to coincide with the one provided by the analysis of the
ACI index, as reported in Table 4. This result can be explained by the high correlation between ACI
and NSDI that might drive the cluster formation. This agglomeration tends to separate quite clearly
two extreme recording environments: the urban park (Site A in Table 4) belonging to cluster 1 and the
pristine bush (Site B in Table 4) belonging to cluster 2. The other recordings are attributed to cluster
1 because of the presence, besides the singing activity, of a road traffic noise background. The only
exception is clip #17 belonging to Site D, because of the presence of just two vehicles passing by.

In order to highlight the smaller differences between the recordings, the number of clusters was
set at four, thus mimicking the number of different sites. Additionally, in this setting, the cluster
performance ranking provided by clValid was considered, using all of the validation measures.
The obtained optimal solution was the hierarchical clustering, followed by k-means and AGNES.
The cluster membership provided by this grouping algorithm is given the Table 5 (column ‘Cluster
membership for 4 clusters’).

Table 5. Recording characteristics and cluster membership obtained by the application of a division
into two, four and seven clusters.

Site Code Name Comments
Cluster Membership

2 Clusters
DIANA

4 Clusters
Hierarchical

7 Clusters
k-Means

A

file 1 Dominant traffic noise,
presence of bird vocalization 1 1 7

file 2
Dominant traffic noise,

presence of bird vocalization,
motorbike pass-by

1 1 7

file 3
Dominant traffic noise,

presence of bird vocalization,
airplane fight-over, footsteps

1 1 7

file 4
Dominant traffic noise,

presence of bird vocalization,
faint sirens

1 1 7

file 5
Dominant traffic noise,

presence of bird vocalization,
a bird species very close

1 2 1

B

file 6 Many bird species 2 3 2

file 7 Many bird species 2 3 6

file 8 Many bird species (less
vigorous singing) 2 3 6

file 9 Many bird species 2 3 6

file 10 Many bird species 2 3 2

C

file 11 Traffic noise, many bird
species vocalization 1 2 1

file 12 Traffic noise and traffic noise
background, bird vocalization 1 4 4

file 13 Traffic noise and traffic noise
background, bird vocalization 1 4 5

file 14 Traffic noise and traffic noise
background, bird vocalization 1 4 3

file 15 Traffic noise and traffic noise
background, bird vocalization 1 1 7

D

file 16 Traffic noise (multi pass-by),
bird vocalization 1 4 5

file 17 Traffic noise with two pass-by,
bird vocalization 2 3 2

file 18 Traffic noise (multi pass-by),
bird vocalization 1 4 4

file 19 Traffic noise (multi pass-by),
bird vocalization 1 4 4

file 20 Traffic noise (multi pass-by),
bird vocalization, church bells 1 4 4
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The split of recordings is in quite good agreement with the four sites, with some exception
due to the differences within each site. The boxplot of the mean values for each index in the four
clusters is given in Figure 7. Cluster 1 is mainly composed of recordings belonging to Site A (4 out
of 5), in addition to clip #15 belonging to Site C. They are characterized by very low values of ACI,
meaning low sound modulation, which is typical of road traffic noise, low mean SC values (<500 Hz),
and a mean NDSI very close to −1, indicating the prevalence of anthropogenic noise sources. The mean
value of the ADI index is almost the same for all of the clusters and, therefore, it does not provide
additional information. Cluster 2 is very similar to cluster 1, but with a slightly higher value of mean
ACI. It is made up of just two recordings. Cluster 3 is made up of 6 sound clips belonging to Site B,
in addition to clip # 17. This cluster has the same composition as the one found in the previous analysis
with two clusters. It is characterized by higher values of mean ACI, SC and NDSI, emphasizing the
presence of biophony with a larger sound modulation, higher frequencies, and low values of road
traffic noise background. Cluster 4 presents similar mean index values to clusters 1 and 2, but with
slightly higher values of mean SC and NDSI, indicating the presence of more biophonic activity. Surely,
in the clustering process formation, the kurtosis is also involved, meaning that the distribution of the
index in each recording is also an important clustering factor.

Figure 7. Box plots of the mean values for each index in the four clusters obtained by applying the
hierarchical algorithm.

Different types of sound sources were observed in the recordings at each site (see the ‘Comments’
column in Table 5), leading to an ‘a priori’ classification into seven groups. Thus, a further clustering
was performed with the number of clusters set to seven. Again, the algorithm clValid provided the
following ranking of clustering algorithms (descending from the optimal solution): k-means, DIANA,
and PAM. The corresponding cluster membership is reported in Table 5 (column ‘Cluster membership
for 7 clusters’). Cluster 1 contains two sound clips, one belonging to Site A and the other to Site
C. They are characterized by low values of both mean SC and NDSI, meaning that an important
road traffic noise background is present, but also by relatively high values of mean ACI and ADI,
suggesting higher sound modulation and species diversity due to the presence of biophonic sources
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(see Figure 8). Cluster 2 contains three recordings, two belonging to Site B (pristine bush) and one
to Site D (bush with only two passers-by). It shows the higher values of all of the mean indices,
indicating high sound modulation with a high frequency content, a relatively high species (sound)
diversity, and low background noise. Cluster 3 is made up solely of a sound clip belonging to Site C,
characterized by high background road traffic noise and bird vocalization. The analysis provides lower
mean values of ACI and ADI than cluster 1; thus, the algorithm provided the formation of a stand-alone
cluster. Cluster 4 is made of sound clips belonging to Site C (one) and D (three), and is characterized
by mean values of SC, ACI, ADI and NDSI in-between the highest and the lowest calculated values.
This indicates both the presence of biophonic (with quite an important diversity) and anthrophonic
sources (relatively low mean NDSI value). Cluster 5 is very similar to cluster 4, and is made up of
two sound clips belonging to Site C and Site D. Cluster 6 is made up of three sound clips belonging to
Site B. The high values of mean SC, ACI and NDSI indicate that this site is dominated by biophonic
sound sources. The lower value of ADI than the one observed for cluster 2 indicates the presence of
lower diversity, most likely due to the presence of fewer singing species. Finally, cluster 7 (four clips
belonging to Site A and one belonging to Site C) presents similar characteristics to cluster 1 and cluster
3, but with relatively lower mean values of ACI than cluster 1, and relatively higher values of mean
ADI than cluster 3.

Figure 8. Box plots of the mean value for each index in the seven clusters obtained by applying the
hierarchical algorithm.

4. Discussion

The advantage of the proposed method is its ability to ascertain the extent to which two or more
acoustic communities or soundscapes are different, and to evaluate the changes between landscapes
and biophonic activity by using both the uncorrelated indices and synthesis descriptors of their
distribution. This aspect cannot be fully described by the use of either a single index [59] or a generic
descriptor (which is not representative of the distribution) and the consideration of all of the indices
simultaneously, as they carry correlated information [33].
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The consideration of more indices in the analysis led to a finer discrimination among the different
soundscape scenarios, enabling us to differentiate among urban environments and natural sound
abundance. Our preliminary study aimed to provide a rough distinction between two extreme
settings [34]: a shrub-dominated area and an urban park with both biophonic activity and the presence
of anthropogenic sources. In this further investigation, the analysis based on the use of two statistical
descriptors (mean and kurtosis) and each single uncorrelated index proved not to be satisfactory,
since it cannot catch the subtle differences among the habitats. The subsequent analysis performed
on all of the indices provided, as the ‘optimal solution’, a grouping into two clusters overlapping the
cluster analysis based on the ACI (NDSI) index alone. This agglomeration tends to separate quite
clearly two extreme recording environments: the urban park (Site A in Table 4) belonging to cluster 1
and the pristine bush (Site B in Table 4) belonging to cluster 2. The other recordings are attributed to
cluster 1 because of the presence, besides the singing activity, of an anthropogenic noise background.

By forcing the number of clusters to four, smaller differences can be revealed. In this case,
the singularity of each site matches the group division quite well. Eventually, an ‘a priori’ classification
into seven groups, representing the different types of sound sources recognized by an operator,
allows subtle changes among the habitats to emerge.

As in previous works [16,61,62], our statistical approach is still lacking information on
community-level dynamics, as was already pointed out by the work of Eldridge et al. [32], owing to
the restricted time-frame that was analyzed, and to our use of statistical summaries of the frequency
or time domain signal. However, this method may potentially highlight the correlation dynamics
between different indices, thus revealing similarities among the soundscapes or monitoring slight
changes in complex ecosystems which are crucial for ecological research.

5. Conclusions

The complexity of information in the acoustic environment makes its interpretation quite difficult
and even misleading, especially if it is based on a single acoustic indicator. In this work, 20 short
audio-recordings were analyzed. They were taken in urban parks and bushes, and were characterized
by the presence of different human-generated-noise and species abundance, with the aim of deriving
information on the capability of a single sound acoustic index or combination of indices to distinguish
among different habitats. A statistically-based analysis was applied, in which both the choice of
the index and of the distribution descriptors were chosen according to a correlation analysis. DSC,
ACI ADI and NDSI are the indices that were found to be uncorrelated, and the mean and kurtosis
were the descriptors considered.

Higher discrimination among different soundscape scenarios can be achieved by considering
more indices in the analysis. This allowed the differentiation of urban environments and natural sound
abundance. Conversely, the use of only one single index provides partial information, making the
discrimination among different habitats less effective. The analysis also pointed out the importance
of an ‘a priori’ discrimination by the operator, who may supervise the statistical analysis in the
diversification of the habitats when they are characterized by complex sound components. The results
obtained, despite being preliminary, are encouraging, even though deeper insights are needed in order
to assess the robustness of the findings. In particular, a longer duration of the analysed recordings (or a
wider distribution across the day) can strengthen the results regarding the significance of the correlation
dynamics among the indicators. This could help to reveal similarities among the soundscapes, and to
monitor subtle changes in complex ecosystems, which are crucial for ecological research.
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