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Abstract: Human behavior modeling (HBM) is a challenging classification task for researchers
seeking to develop sustainable systems that precisely monitor and record human life-logs. In recent
years, several models have been proposed; however, HBM remains an inspiring problem that is
only partly solved. This paper proposes a novel framework of human behavior modeling based on
wearable inertial sensors; the system framework is composed of data acquisition, feature extraction,
optimization and classification stages. First, inertial data is filtered via three different filters, i.e.,
Chebyshev, Elliptic and Bessel filters. Next, six different features from time and frequency domains
are extracted to determine the maximum optimal values. Then, the Probability Based Incremental
Learning (PBIL) optimizer and the K-Ary tree hashing classifier are applied to model different human
activities. The proposed model is evaluated on two benchmark datasets, namely DALIAC and
PAMPA2, and one self-annotated dataset, namely, IM-LifeLog, respectively. For evaluation, we used a
leave-one-out cross validation scheme. The experimental results show that our model outperformed
existing state-of-the-art methods with accuracy rates of 94.23%, 94.07% and 96.40% over DALIAC,
PAMPA2 and IM-LifeLog datasets, respectively. The proposed system can be used in healthcare,
physical activity detection, surveillance systems and medical fitness fields.

Keywords: Discrete Hartely Transform; inertial sensors; Probability Based Incremental Learning;
sustainable surveillance system; K-Ary tree hashing classifier

1. Introduction

Recent developments in human behavior modeling (HBM) help individuals shift their goals
from merely counting steps to more comprehensive monitoring and surveillance especially associated
with human activities within a controlled environment [1]. Human movements can be analyzed
through sophisticated sensors that can be safely attached to the body for efficient monitoring and the
compilation of human life-log activities within both indoor and outdoor environments [2]. However,
wearable sensors possess certain challenges in recognizing human activities due to a lack of reliable
contextual information caused by inconsistency in human body movement, lapses during activity
recording and other interruptions like resting etc. [3]. Therefore, an efficient model is required that can
correctly detect complex human postures and their significance.

Wearable sensors can continuously monitor human posture and record different raw-signal
attributes such as life-log, biological, and physiological parameters [4]. Standard parameters include
heart rate, physical activities through wearable electrocardiogram (ECG), accelerometer and other
sensors in wearable devices [5]. Nowadays, such sensors are incorporated in body-mounted devices
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like smart-watches and gloves etc. Similarly, sensors can also be embedded in smart clothing,
mobile phone covers, hospital beds, car seats, mattresses etc. [6]. Wearable sensors have a wide
range of real-world applications that include patient healthcare management, interactive 3D games,
security and surveillance, robotics, sports assistance, and tele-immersion technologies. In patient
healthcare management, wearable sensors are used for fall identification, fall prevention, physical
activity monitoring, interaction monitoring, mental status monitoring, sports medicine, weight control
monitoring, and public education. In interactive 3D games, various games are playable within an indoor
environment [7]. These games are designed for young people to enhance participation in physical
exercise in indoor environments. In security surveillance systems, violence detection applications are
developed so that immediate action can be initiated against suspicious activities. These systems are
used by government intelligence agencies to gather relevant information and for the prevention of
crime. They are also used by business persons to gather intelligence on competitors and customers.
In robotics systems, robots can carry out life-threatening tasks and work for extended periods without
fatigue, service or maintenance. Robots like the social humanoid “Sophia” and waiter robots have been
introduced to socially interact with humans. They exercise intelligent abilities using activity recognition
technologies. In sports assistance, sensors help physical trainers, athletes, and coaches to conduct
exercises and to track functional movements utilizing wearable sensors to monitor and maximize
performance and minimize the potential injury [8]. In tele-immersion technologies, systems are used
by people in different geographic locations to come together in a common simulated environment.

Wearable sensors have revolutionized the daily lives of patients in patient health care, making them
safer and more comfortable. Recently, heartbeat sensors, humidity sensors, touch sensors, thermistors,
accelerometers, gyroscopes, etc., are used to detect environmental changes. Inertial measurement unit
(IMU) sensors that include a 3-axis accelerometer, 3-axis gyroscope, and 3-axis magnetometer can
efficiently detect and monitor specific forces, angular rates, and the orientation of the body in life-log
activities [9]. Gyroscopes measure an object’s orientation and angular velocity; accelerometers can
only measure linear motion; magnetometers measure the direction, strength, and relative changes in
a magnetic field at a particular location. By fusing information from the accelerometer, gyroscope,
and magnetometer sensors, the IMU’s orientation can be estimated. Our work is specifically designed to
exploit for the affordances of such IMU sensors. However, these sensors still present certain challenges
that affect the wearable sensors’ capability to deliver comprehensive and reliable results [10].

Wearable sensors have revolutionized every aspect of human life from health care to general
comfort and convenience. In our daily lives, sensors for humidity, temperature, and thermostatic control
contribute a great deal to understand and work with our environments. With demands for increased
processing capacity and reduced size, sensors have been adapted to the micro electro-mechanical
sensors accordingly. Our motivation for this paper is facilitated by IMU technology.

In this paper, a novel multi-combined HBM system is proposed that will overcome the problems,
complexities and limitations posed by our need for the sustainable and comprehensive life-log
monitoring of daily activities. Initially, IMU sensor data is filtered using Chebyshev, Elliptic, and Bessel
filters. The proposed system adopts the two main approaches for feature extraction including time and
frequency domain features. The large dimensions of the features include computational complexity,
which is further reduced by using Probability Based Incremental Learning (PBIL) to efficiently
discriminate HBM based life-logging activities. Finally, a K-Ary-based tree hashing (KATH) classifier is
embodied in the model to identify and set parameters to classify human activities from feature vectors
to attain significant accuracy. To evaluate the performance of our proposed model, comparisons are
made with other state-of-the-art models. The proposed model is evaluated on DALIAC, PAMPA2
and IM-LifeLog datasets and is based on inertial and IMU sensors. In this paper, a novel KATH
classification algorithm is proposed to solve the complexity of human behavior recognition from a
triaxle wearable devices. The KATH algorithm is usually used to construct a traversal table to quickly
approximate the subtree patterns in graph classification using K-Ary trees. In our proposed model
the KATH classifier classifies the optimized features for activities classification purposes, so that the
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contextual information with behavioral transitions are maintained. The major contributions of our
paper are as follows:

• We propose a multi-feature extraction methodology from time and frequency domains that
improve the feature selection process of life-logging activities.

• Multiple features from different domains are then optimized with Probability Based Incremental
Learning and a K-Ary based hashing tree classifier that provides contextual information and
classifies behaviors.

• Comprehensive evaluation is performed on two public benchmark datasets and on a self-annotated
dataset that delivers significantly better performance than other state-of-the-art methodologies.

The rest of this paper is organized as follows. In Section 2, the literature review is presented based
on four main categories of human behavior modeling (HBM). Section 3 addresses the proposed HBM
model that includes time and frequency domain features, probability-based optimization, and the
K-Ary based tree hashing classifier. Section 4 discusses the experimental setup and a comparison of
the proposed method with other state-of-the-art methods. Finally, Section 5 presents the conclusion
and future work.

2. Related Work

A substantial amount of work has been done to develop life-logging activities using the image
and inertial sensors. This section divides the related work into four subsections: i.e., (1) feature-based
activity recognition using images, (2) feature-based activity recognition using wearable sensors,
(3) activity classification via images, and (4) activity classification via wearable sensors.

2.1. Feature Based Activity Recognition Using 2D/3D Images

Image processing techniques that increase the perception of certain features have been used to
improve the interpretability of 2D/3D videos and still images. Due to the variety of features extraction
methodologies, this has become a trending topic and numerous methods have been proposed. Most of
the approaches can be divided into five broad categories: (i) Spatio-Temporal (ii) Frequency-based
(iii) Local Descriptors (iv) Shape-based and (v) Appearance-based methods. For example, Hu et al. [11]
proposed a local features descriptor based on spatial displacement and direction relations for human
interaction recognition. 3D skeleton data is captured by Kinect sensors and is determined by a
spatial-temporal saliency-based representation method. Anitha et al. [12] presented Laplace smoothing
transforms (LST) as a feature extraction method for human action recognition. The LST is used to
extract action recognition properties via low frequency characteristics of the image based on a Laplacian
function. The extracted frequency features are later used for classification purposes. The major
limitation in this model is that the KNN classifier deliver poor performance with high dimensional
data and it takes too much time calculating the distance between dataset points all of which drastically
reduce the performance of this model. Mahmood et al. [13] proposed a WHITE STAG model and
angular-geometric sequential based features to extract features in space-time methods. This approach
is applied over full-body silhouettes and skeleton joints to track human activities. Sreela et al. [14]
proposed an image action recognition model in which a deep neural network, i.e., a residual neural
network, is used for feature extraction. The neural network eliminates the vanishing gradient problem
as the errors are back propagated through a short-cut connection. This also reduces the training
time for the deep network. The input image to the neural network is 224 × 224 × 3 in size and the
convolution layer is a 7 × 7 kernel. The model is evaluated over a Pascal VOC action dataset and it
outperforms in fifteen classes of actions. This model has been used in deep neural networks that can
perform well on the trained dataset but has failed badly on external real world images. Moreover, it is
highly sensitive to changes in the context of the images. Jalal et al. [15] proposed invariant features
of depth silhouettes using R transform. They used body shape information to encode depth values
for human activity recognition in indoor environments. In [16], Weng and Fu proposed histogram of
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oriented gradients (HOG) features for searching indexes by combining the upper body part and pose
estimation to recognize human activities.

2.2. Feature Based Activity Recognition Using Wearable Sensors

Developments in sensing technologies help researchers build various smart systems to monitor
daily human life activities. Nowadays, wearable sensors have the ability to detect abnormal and
unforeseen situations and can provide assistance in times of dire need. Numerous researchers have
proposed different human activity recognition models by monitoring various physiological parameters
along with other symptoms. In a comparative study, Jalal et al. [17] proposed hierarchical features to
recognize human behavior. These hierarchical features include mostly statistical features that respond
to abrupt changes, temporal variation, and signal magnitude. Tahir et al. [18] developed a combination
of multiple features that include statistical features, 1-D walsh Hadamard wavelet transform features,
and 1-D local binary pattern features. Statistical features include mean, variance, peak to peak and
peak magnitude to RMS ratio which together achieve a reasonable accuracy rate. Batool et al. [19]
proposed Mel-frequency cepstral coefficients and statistical features to detect physical activity using
accelerometer and gyroscopic sensors. Shahar et al. [20] analyzed the accelerometer and gyroscope
signal via sensors mounted at the chest, waist, and left and right wrists of the body. The mean,
standard deviation, maximum, and minimum peak features are extracted for hockey playing activities.
The model outperforms configurations where the sensors are mounted at the waist and the left wrist
location only. Their model is best suited for gaming activities. This model can also be further enhanced
and applied for daily life activities. The major limitations in extracting features from mean, standard
deviation, maximum, and minimum peak features is that obtained features might not be optimal as
redundant features will be obtained that might not give optimal performance in real time situations.
Uddin et al. [21] proposed a feature selection methodology based on Guided Random Forest. To select
the features, the Guided Random Forest is first trained on the dataset to get important scores for the
features. The selected scores are then injected to influence the feature selection process. The Random
Forest allows parallel computing, low computational cost, and the selection of high quality features
which helped to develop an improved activity recognition model. Iqbal et al. [22] collected a CUI-HPAR
dataset of physical activities represented as feature vectors. The extracted statistical and frequency
features include mean, standard deviation, entropy, cross-correlation, root mean square, zero crossing,
and max value. The extracted features are classified using a supervised learning model. The depicted
model achieved an accuracy rate of 90%.

2.3. Activity Classification via Images

Image classification is a vital topic in the computer vision research field. Many methods have been
developed to improve image classification models and they can be broadly classified into supervised
and unsupervised learning. The supervised learning model usually selects class label information
from the same class, ignoring with-in class image variability and thereby degrading feature selection
performance. Some contributions in the image classification field follow: Adama et al. [23] proposed
a methodology for human activity recognition (HAR) for assistive robotics. Eleven features are
acquired from an RGB-depth sensor and redundant features are removed by an ensemble of three
classifiers, namely, Support Vector Machine, K-nearest neighbor, and Random Forest. Their proposed
methodology performed better compared to methods having a single classifier. Ijjina et al. [24] used
a Convolution Neural Network to train discriminative features to recognize human activity-based
motion sequence information from RGB-D video images. The performance evaluation is demonstrated
on Weizmann, MIVIA, SBU, and NATOPS datasets. The model performed well but it has certain
limitations; if the images contain any degree of rotation then this model cannot classify the image
accurately. Moreover, the information about position can be lost and will not be able to classify the
image accurately. Cippitelli et al. [25] exploited the multiclass Support Vector Machine (SVM) classifier
for HAR to monitor elderly people in home environments. The SVM classifier is trained on skeleton
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data extracted by RGBD sensors. Koppula et al. [26] developed the descriptive labeling of sub-activities
and human interaction with objects by Markov random field. The labelled objects are further trained
via a Structural Support Vector Machine (SSVM) methodology. The SSVM methodology, which is tested
over a challenging dataset, obtains an accuracy of 79.4%. Jalal et al. [27] trained spatiotemporal features
based on skeleton joint features using a Hidden Markov Model (HMM) to detect human activities
in their HAR system. The HMM is trained with the code vectors to recognize the segmented human
activity by the forward spotting scheme. This model gives better results than other state-of-the-art
models. Zanfir et al. [28] designed a moving pose descriptor by using a modified KNN classifier to
evaluate the pose information of low-latency information and applied it to HAR.

2.4. Activity Classification via Wearable Sensors

Human activity classification applications mostly rely on wearable sensor technologies. However,
in practical applications, several factors like noise, data losses, and data quality need to be addressed.
Therefore a data-driven classification algorithm is required that is capable of tackling experimental
constraints. In a comprehensive study, Mannini et al. [29] presented a wavelet-based activity classifier
to separate dynamic motion components from gravity components using multiple accelerometer
sensors that produce a significantly improved performance accuracy. Akram et al. [30] evaluated
the performance of five classifiers that include multilayer perceptron, SVM, LMT, Random Forest,
and Simple Logistic using a 10-fold cross-validation method of daily life activities. The proposed
method delivers an accuracy rate of 91.15%. Tahir et al. [31] exploited a Maximum Entropy Markov
Model classifier to measure the highest entropy for human activities. This model provided an accuracy
of more than 91% against IMSB and USC-HAD datasets. Cao et al. [32] proposed a group-based
context-aware classifier to recognize human activities on smartphones. The Group-based context-aware
system exploits hierarchical features known as GCHAR that design two-level inter and intra-group
structures to detect transitions in activity groups. It achieved an accuracy rate of 94.1%. This model
becomes non-responsive if the input space is very large in real time situations. These issues caused
a serious downgrade in the performance of this model. Golestani et al. [33] implemented a Deep
Recurrent Neural Network (RNNs) based on long/short-term memory (LSTM) units. This model
can learn complex activities compared to the commonly used classifiers. Zebin et al. [34] proposed
a feature learning methodology to classify human activities using a Convolution Neural Network
(CNN). The inertial sensors were located at five different locations of the lower body to systematically
classify CNN from the feature learning methodology. Murahari et al. [35] introduced attention models
as a data-driven approach for exploring relevant temporal contexts. The attention model learns
a set of weight over input data and adds this attention layer to the Deep Convolution LSTM for
classification decisions. This model is evaluated over a PAMPA2 dataset and it achieved an accuracy
of 87.5%. Xi et al. [36] used dilated convolutional layers to automatically extract inter-sensor and
intra-sensor features by using convolution neural network (CNN) and recurrent neural network (RNN).
They also proposed a novel dilated Simple Recurrent Unit (SRU) approach to capture latent time
dependencies among PAMPA2 dataset features. The proposed model achieved an overall accuracy of
93.5%. Hammerla et al. [37] explored convolution neural network (CNN) to evaluate over the PAMPA2
dataset which contains movement data captured with wearable sensors. The proposed model achieved
an accuracy of 93.7% over the PAMPA2 dataset.

3. Proposed Methods

The proposed model has been integrated by passing the signal through a standardized model
to achieve enhanced classification. The block diagram of the proposed HBM is shown in Figure 1.
It includes five main steps, namely data acquisition, data segmentation and denoising, feature extraction,
data optimization, and classification. The data of the signal is first segmented with a fixed window
frame. The signal is refined using Chebyshev, Elliptic, and Bessel filters. Then, the filtered and denoised
signals are used for the extraction of features. The extracted features include both frequency and
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time-domain features. Next, extracted features are optimized using a Probability Based Incremental
Learning (PBIL) optimizer. Finally, the optimized data is classified using a K-Ary Tree Hashing
(KATH) classifier.Sustainability 2020, 12, x FOR PEER REVIEW 6 of 21 
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3.1. Preprocessing Stage

An inertial sensor, like an IMU sensor, is highly prone to error, so any unintentional change can
alter the signal shape and complicate feature extraction. Therefore, signal data is first preprocessed
using multiple filters such as Chebyshev, Elliptic, and Bessel filter. The Chebyshev filter removes
power line interference, smooths the raw data, and increases the accuracy of the data (See Figure 2a).
The Elliptic filter removes the random oddities in raw signals as shown in See Figure 2b. The Bessel
filter preserves the shape of the filtered signals in the passband and eliminates the impulsive type of
noise. The Bessel filter provides a better response than Chebyshev and Elliptic filter as illustrated in
Figure 2. Meanwhile, the Bessel filter denoises the signal in the proposed model.
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3.2. Windows Selection

A signal cannot be processed in a non-stationary form. Therefore, framing or windowing is needed
to divide the signal into short stationary segments. In this way, each behavior can be accommodated to
recognize different signal patterns. The three datasets used in this paper reflect different behavioral
patterns. Human motion patterns such as ascending stairs, treadmill running, bicycling, and rope
jumping in the DALIAC dataset required a short time duration frame to accurately analyze and predict
the subject’s behavior.

Inertial signals are taken as a stream and subjected to feature extraction for the sensor data stream.
Initially, the definitive parameters are considered, namely window selection into a fixed size for better
recognition of signal patterns. Conventionally, a 4–5 s window has been utilized because the same
pattern of the activity is followed in most of the databases [38–40]. In our case, due to the proposition
to use a physical activities dataset that reveals more dynamicity in the data, the selection of the
traditional approach was considered less effective and needs further analysis. While considering our
data, different window sizes from 4 s to 9 s were chosen to quantify the effect of the varying window
length on DALIAC, PAMPA2, and IM-LifeLog datasets, as shown in the Table 1. In the proposed
model a 9 s window was used to obtain accurate results.
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Table 1. Adaptive window size selection over DALIAC, PAMPA2, and IM-LifeLog datasets.

Datasets Four Second Five Second Six Second Seven
Second

Eight
Second

Nine
Second

DALIAC 72.47% 76.35% 83.88% 84.70% 92.01% 94.23%
PAMPA2 70.66% 73.40% 81.06% 88.91% 90.22% 94.07%

IM-LifeLog 74.54% 72.87% 86.55% 82.35% 94.12% 96.40%

3.3. Features Extraction

In the features extraction methodology, we proposed a novel combination of features that included
Discrete Hartley Transform, Local Mean Decomposition, Spectral Kurtosis, Transient Detection
Principles, Envelope Estimation, and Empirical Mode Decomposition. Algorithm 1 defines the novel
set of features as;

Algorithm 1. Human Locomotion Feature Extraction.

Input: Inertial sensors data Accelerometer (x, y, z), Gyroscope (x, y, z), Magnetometer (x, y, z);
Output: FeatureMatrix (vm1, vm2, vm3, . . . . . . . . . . . . . . . ., vmN)
FeatureMatrix← []
WindowSize← GetWindowSize ()
While signal data in (acc, gyro, mag) do
FramedSignal←WindowSignal (signal data, WindowSize)
DHT← Extract_DiscreteHartleyTransform (FramedSignal)
LMD← Extract_LocalMeanDecomposition (FramedSignal)
SKT← Extract_SpectralKurtosis (FramedSignal)
TDP← Extract_TransientDetectionPrinciples (FramedSignal)
EET← Extract_EnvelopeEstimation (FramedSignal)
EMD← Extract_EmpiricalDiscreteHartleyTransform (FramedSignal)
FeatureMatrix.append (DHT, LMD, SKT, TDP, EET, EMD)
return FeatureMatrix

3.3.1. Discrete Hartley Transform Feature

The Discrete Hartley Transform (DHT) feature is an orthogonal transform that computes complex
numbers Xn to accurately capture the behavior of the signal as a function of time. The real Xn_real
and imaginary Xn_img part of the complex number represent the cosine and sine components in real
numbers with embedded magnitude and phase information. The standard DHT is defined as;

X(k) =

√
1
N

N−1∑
n=0

x(n)cas(
2Π
N

kn) 0 ≤ k ≤ N − 1 (1)

x(n) =

√
1
N

N−1∑
n=0

X(k)cas(
2Π
N

kn) 0 ≤ n ≤ N − 1 (2)

where,

cas(x) = cos(x) + sin(x) =
1− j

N
e jx +

1 + j
N

e jx (3)

where N represents the total number of Discrete Hartley Transform of a sequence x(n), for 0 to N − 1.
Figure 3 represents Discrete Hartley Transform of signal components.
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3.3.2. Local Mean Decomposition Feature

Local Mean Decomposition (LMD) gradually and smoothly decomposes the complicated signal
into many single components known as product functions (PFs). The PFs give the information of two
important attributes: frequency and envelope of the signal from which a time-varying instantaneous
frequency can be derived. The LMD process will continue until all the PFs components are formed,
as shown in Figure 4. The following are the steps of the LMD method:

• Calculate the Local Mean Decomposition of the adjacent samples, i.e., ni and ni+1 of the signal as;

mi =
ni + ni+1

2
(4)

• Then, calculate the envelope estimation of the signal of the frame of the signal, i.e., ai

ai =

∣∣∣∣∣ni − ni+1

2

∣∣∣∣∣ (5)

• Next, the calculated mean value m(t) is separated from the current sample x(t). Then, the frequency
modulation signal s(t) is achieved by dividing the separated function g(t) from the envelope
function a(t) as;

g(t) = x(t) −m(t) (6)

s(t) =
g(t)
ai(t)

(7)

• Later on, all estimated envelops are multiplied to attain an envelope signal a(t).

a(t) = a1(t)a2(t) −−−−− ai(t) =
n∏

i=1

ai(t) (8)
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• Next, the PFs components are obtained by multiplying the frequency modulated signal, i.e., s(t)
and the envelope signal a(t) together.

PFk = s(t)a(t) (9)

• Finally, calculated PFs components are then subtracted from the original current sample to
determine whether uk(t) is a monotonic function or not. If the result is not monotonic then all the
above processes are repeated from the first step.

x(t) =
n∑

k=1

PFk + µk(t) (10)
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3.3.3. Spectral Kurtosis Feature

The Spectral Kurtosis (SKT) is the time-frequency domain method. It calculates the nearness
arrangement of transients in the frequency domain by taking a proportion of peakedness and signal
impulsiveness. Hence, it is a useful tool for characterizing non-stationary or non-Gaussian behavior in
the frequency domain. The SKT is depicted as;

µ4 =

b2∑
k=b1

( fk − µ1)
4sk

µ4
2

b2∑
k=b1

sk

(11)

where fk is the frequency in Hertz, sk is the spectral value, µ1 and µ2 are the spectral centroid and
spectral spread, respectively. The b1 and b2 are the band edges that calculate Spectral Kurtosis.

3.3.4. The Transient Detection Principles Feature

The Transient Detection Principles (TDP) eliminate the area of low background activity and detect
transient events in the signal data. It detects the non-harmonic phase of a signal within short frames of
the signal, as shown in Figure 3. The mean absolute value of the signal is selected as threshold value t,
to eliminate the area of low background activity. The threshold t is calculated as;

TD(t) =
1
N

N∑
i=1

|xi| (12)
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where xi represents the samples of the signal and N is the total number of samples within a given frame.

3.3.5. Envelope Estimation Feature

The Hilbert transform envelope detector is used to detect the envelope of the amplitude of the
signal. The envelope is calculated by first taking the square root of the differentiator f ′(t). The resultant
f ′(t)2 is then summed up with the product of f (t) and f ”(t). The square root is then fed with gain.
Envelope estimation is shown in Figure 4. The final equation is defined as;

EE(Vo) =
1
ωa

√
f ′(t)2

− f (t) f ′′ (t) (13)

3.3.6. Empirical Mode Decomposition Feature

The Empirical Mode Decomposition (EMD) is an adaptive analysis method. It is a data-driven
method that uses the characteristics of the signal to decompose its values. Moreover, it automatically
and efficiently adjusts the scale of the signal. The decomposition process starts by first finding local
maxima and minima values. Moreover, two important conditions are checked: Firstly, zero crossing of
the signal should not exceed the value of one and, secondly, the local mean of the envelope of the signal
should be close to zero. If both conditions are satisfied, we proceed further and extract the intrinsic
mode function (IMF). The envelope of the signal is taken, and we extract the intrinsic mode function
(IMF) from the signal, but only if zero-crossing does not exceed one and the local mean of envelope
of the signal is close to zero, as shown in Figure 5. If it does not meet these two conditions, then the
whole process is repeated until it satisfies the above-mentioned conditions. It is represented as;

Emean(t) = [Eup(t) + Edown(t)]/2 (14)

d(t) = x(t) − Emean(t) (15)

where Emean is the mean of the upper envelope of the signal Eup, and the lower envelope of the signal
Edown. The mean of the envelope Emean is subtracted from the original signal x(t) to get a decomposition
of the signal d(t).
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3.4. Optimization Algorithm: Probability Based Incremental Learning

Probability Based Incremental Learning (PBIL) is a combination of a genetic algorithm (GA) and
competitive learning. GA is mostly known as a function optimizer that works on three complex
operations, i.e., selection, crossover, and mutation [38]. These GA operations are theoretical and
numerically complex. To overcome the disadvantage of GA, a PBIL algorithm is designed that works
like a GA on a binary encoded representation of an optimal problem. The PBIL algorithm works on
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a real valued probability vector from which potential solutions are generated. The population of an
individual is represented by a probability vector. It is defined as;

p1(x) = p1(x1), p1(x2), p1(x3) , . . . . . . . . . p1(xn) (16)

where, p1(xi) represents the probability of ith gene position that has obtained the value of 1. The PBIL
vectors are initialized to 0.5 which produces uniform distribution with an equal probability of 1 and 0
for each bit of chromosomes. Thus, the chromosomes gradually shift toward the solution with highest
fitness value [39].

The evolution process in PBIL works by generating M number of solutions on the basis of current
probability vector p1(x). The results are then evaluated and N best solutions (N ≤M) are selected to
update the probability vector by using a Hebbian inspired rule. It is depicted as;

pl+1(x) = (1− a)p1(x) + a
1
N

N∑
K=1

xl
K.M (17)

where a is the learning rate and it is represented as a ε (0,1]. After the probability vector is updated, a
new set of solutions is generated by sampling from the new probability vector. The process is repeated
until the probability vector for each bit position is either converged to 0.0 or 1.0.

The PBIL algorithm efficiently works on the data. Still, a major drawback of PBIL is that it often
gets trapped in a local optimum as a single probability vector which is used to generate the complete
population. To overcome this issue, the updated PBILs proposed in [41] are used in this paper. In the
updated PBIL, each individual vector uses different probability vectors to generate its own children.
Moreover, to further speed up the convergence, the neighborhood updates its probability vectors on a
random basis, as shown in Figure 6. It is depicted as;

PBIL(i) = pi(i) − (1.0− LR).pi(i) + LR.r.best(i) + LR.(1.0− r).neigbest(i) (18)

where LR is the learning rate, best(i) and neigbest(i) are the best solution of ith string. While, r is the
random parameter selected from the interval of [0, 1].
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3.5. K-Ary Tree Hashing Classifier

The K-Ary Tree Hashing (KATH) classifier is a graph classification algorithm that obtains
competitive accuracy with a fast run time, especially for large scale graphs. The main idea of KATH is
that the whole graph is projected on a set of optimized features in a common feature space without
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having any prior knowledge of subtree patterns. Later, a traversal table is constructed that keeps
track of similar patterns within the optimized data. It performs recursive indexing for a N number
of optimized data to generate (n − 1) depth optimized data to uniquely specify the patterns. Finally,
MinHash is applied to classify the sub-patterns to discriminate against different human activities [42].
After analyzing the KATH algorithm, two favorable properties of KATH are obtained: Firstly, the bound
of convergence rate tends to become tighter as the KATH algorithm steps into higher resolution.
Secondly, the KATH kernel is robust in that it tolerates drift between graph chunks over a stream [43,44].
The experimental results show that KATH can classify data from significantly different activities other
than the generic framework, e.g., SVM and logistic regression, as shown in Figure 7. Algorithm 1
depicts the pseudocode of the KATH algorithm. The input includes a graph represented by g = (ν, ∈,`),
the number of iterations is represented by R while M represents the feature space. The nodes ν are
relabeled and only consider their neighboring nodes Nv to assign a new label `(r). The traversal table is
generated and stored in T. The algorithm works in three steps, as shown in Algorithm 2. The First
Traversal Table is constructed (Lines 1–7), where each leaf is extended to new leaves (Lines 8–13) based
on the indexing of optimized data. Finally, a MinHash scheme is applied (Lines 15–16) to classify the
data into different human activities. The results of DALIAC, PAMAP2, and IM-LifeLog datasets at
k iterations are depicted in Table 2. PCA (Principle Component Analysis) is used as a dimensional
reduction algorithm to plot the clustering results in a 3D feature space. We construct a dxk dimensional
transformation matrix W that allows us to map a sample vector x onto a new k-dimensional feature
subspace that has fewer dimensions than the original d-dimensional feature space as shown in the
below equation.

x = [x1, x2, . . . , xd], x ∈ Rd

xW, W ∈ Rdxk

z = [z1, z2 , . . . . . , zk], z ∈ Rk
(19)

where x is the array of sample vectors from x1 to xd, and z is the array of sample vectors from z1 to zk
in Rd and Rk dimensional space respectively.

Algorithm 2. KATH Classifier.

Input: g = (v, ε, `), R,
{
M(r)

}R

r=1

Output:
{
y(r)

}R

r=1
1: V = ν

2: `(V + 1) = ∞
3: T = (V + 1) ∗ ones(V + 1, 1 + K)
4: for v = 1 : V do
5: Nv = neighbor(v)
6: T(v) =

{
v, index([min(π1(`(Nv))) , . . . . . . . . . . . . . . . . . , min(πk(`(Nv)))])

}
7: end for
8: z(1) = [1 : V]T

9: S(1) = `(z(1))
10: for r = 1 : R do
11: if r > 1 then
12: z(r) = reshape(T(z(r−1), :), [1, ∗])
13: S(r) = reshape(`(z(r)), [V, ∗])
14: end if
15: f (r) = [h(S(r)(1, :)) , . . . . . . . . . . . . . . , h(S(r)(1, :))]

T

16: y(r) = [min(πr
1( f (r))) , . . . . . . . . . . . . . . , min(πr

M(r) ( f (r)))]
T
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Table 2. K-Ary tree hashing implementation over DALIAC, PAMAP2 and IM-LifeLog datasets.

Iterations DALIAC PAMAP2 IM-LifeLog

Kth Accuracy Rate Loss Rate Accuracy Rate Loss Rate Accuracy Rate Loss Rate

1 0.697 0.302 0.652 0.347 0.629 0.370
2 0.700 0.299 0.745 0.254 0.645 0.354
3 0.746 0.253 0.786 0.213 0.686 0.313
4 0.782 0.217 0.788 0.211 0.768 0.231
5 0.780 0.219 0.789 0.210 0.769 0.230
6 0.778 0.221 0.787 0.212 0.777 0.222
7 0.804 0.195 0.790 0.209 0.790 0.209
8 0.812 0.187 0.791 0.208 0.861 0.138
9 0.820 0.179 0.800 0.199 0.899 0.100

10 0.834 0.165 0.823 0.176 0.923 0.076
11 0.828 0.171 0.844 0.155 0.934 0.065
12 0.828 0.171 0.869 0.130 0.946 0.053
13 0.837 0.162 0.873 0.126 0.944 0.055
14 0.830 0.169 0.893 0.106 0.953 0.046
15 0.840 0.159 0.898 0.101 0.958 0.041
16 0.859 0.140 0.899 0.100 0.964 0.035
17 0.863 0.136 0.909 0.090 0.923 0.076
18 0.869 0.130 0.939 0.060 0.959 0.040
19 0.873 0.126 0.943 0.056 0.968 0.031
20 0.875 0.124 0.945 0.054 0.951 0.048
21 0.883 0.116 0.953 0.046 0.953 0.046
22 0.884 0.115 0.884 0.115 0.960 0.039
23 0.890 0.109 0.897 0.102 0.961 0.038
24 0.894 0.105 0.898 0.101 0.961 0.038
25 0.895 0.104 0.902 0.097 0.960 0.039
26 0.896 0.103 0.899 0.100 0.961 0.038
27 0.897 0.102 0.901 0.098 0.962 0.037
28 0.898 0.101 0.922 0.077 0.962 0.037
29 0.926 0.073 0.928 0.071 0.963 0.036
30 0.932 0.067 0.916 0.083 0.963 0.036
31 0.941 0.058 0.935 0.064 0.963 0.036
32 0.940 0.059 0.938 0.061 0.964 0.035
33 0.942 0.057 0.940 0.059 0.964 0.035
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4. Experimental Results and Analysis

4.1. Experimental Testing and Datasets Descriptions

A platform is established to evaluate the performance of the proposed methodology using inertial
sensors to attain data on human daily life activities. All datasets are applied in real-time situations,
especially in health care assessments of physical exercises and daily life-log routines. All datasets
are evaluated using a Leave One Subject Out (LOSO) cross-validation method over training and
testing data.

Three datasets are used for experimental evaluations. The DALIAC dataset [45] is taken from four
sensors placed on the right hip, chest, right wrist, and left ankle of thirteen healthy subjects. The age of
the subjects ranged between 8 to 26 years, and their weight ranged between 14 kg to 75 kg. Thirteen
activities were performed by the participants: sitting, lying, standing, washing dishes, vacuuming,
sweeping, walking, ascending stairs, descending stairs, treadmill running, bicycling on ergometer
(50 W), bicycling on ergometer (100 W) and rope jumping.

The PAMAP2 dataset [46] was performed on IMUs inertial sensors that consist of accelerometer,
gyroscope, and magnetometer signal values. Three IMU sensors are placed on the subject’s wrist, chest,
and ankle. We performed experiments over thirteen activities: lying, sitting, standing, walking, running,
cycling, nordic walking, watching TV, computer work, car driving, ascending stairs, descending stairs,
and vacuum cleaning.

The IM-LifeLog dataset [47] is our self-annotated human life-logging dataset. Three IMU sensors
were placed on the subject’s body at the ankle, elbow, and chest. A total of nine subjects performed
ten activities: taking breakfast, working on computer, eating, reading an article, exercise, watching tv,
taking call, cleaning, taking medicine, and lying down. Each activity was performed for one minute
duration. The age of the participants ranged from 10 to 45 years and the weight range was 15 to 80 kg.

4.2. Hardware Platform

Three IMU sensors and an NRFL01 module were interfaced with Arduino UNO; these are known
as the sender modules. The three sender modules were mounted on the participant’s ankle, elbow,
and chest, as shown in Figure 8. The fourth setup is comprised of only the NRFL01 interfaced with an
Arduino UNO, which is known as the receiver module. All three sender modules were mounted on
the human body in order to send the IMU sensor data to the fourth module, the receiver modules.
Arduino software (IDE) was used to develop the software for the complete setup. The fourth module,
the receiver, was interfaced with a Visual studio 2015 application for simulation in the real-time
environment. The IMU sensors consisted of a 3-axis accelerometer, a 3-axis gyroscope, and a 3-axis
magnetometer in a small package. The main limitation in this setup was the 9-volt battery, which
could only operate for up to two days. This limitation can be overcome by recharging or replacing the
battery at appropriate times.

The accuracy of individual sensor groups with their location is investigated by placing the
sensors at seven different locations, specifically, upper arm, elbow, wrist, chest, hip, thigh, and ankle.
These configurations create 12 different combinations that are investigated using the proposed
methodology. The sensors mounted at joint locations, wrist, ankle, and elbow, provide the information
of 3D motion capture data regarding human body movement. The sensor mounted at the wrist captures
the 3D rotation of hand movement. Similarly, by placing the sensor at the ankle position, four ankle
movements can be monitored: plantar flexion (PF), dorsiflexion (DF), inversion (INV), and eversion
(EVR) which are further used to capture the accurate leg movement. The results regarding the position
of the sensors are evaluated and the best accuracy on our model is achieved by placing the sensors
at the chest, elbow, and ankle as shown in Table 3. Hence, the elbow, ankle, and chest position are
recommended for recognizing human activity classification.
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Table 3. Sensors location at different body position.

Sensors Location DALIAC PAMPA2 IM-LifeLog

Wrist + Thigh + Hip 72.47% 76.35% 83.88%
Wrist + Thigh + Chest 90.66% 93.40% 91.06%
Wrist + Ankle + Hip 88.61% 89.08% 84.34%

Wrist + Ankle + Chest 79.09% 88.17% 79.42%
Upper Arm + Thigh + Hip 74.54% 92.87% 76.55%

Upper Arm + Thigh + Chest 89.25% 73.36% 89.59%
Upper Arm + Ankle + Hip 74.69% 79.50% 86.69%

Upper Arm + Ankle + Chest 91.85% 89.32% 88.58%
Elbow + Thigh + Hip 88.04% 91.02% 87.40%
Elbow + Ankle + Hip 76.03% 84.09% 93.97%

Elbow + Thigh + Chest 90.79% 78.61% 82.42%
Elbow + Ankle + Chest 94.23% 94.07% 96.40%

4.3. Experimental Results and Evaluation

Experiments are conducted on three benchmark datasets to evaluate the performance of the
proposed HBM model. Table 4 presents the confusion matrix of 13 activities in the DALIAC dataset,
where accuracy of 94.23% was obtained. On the other hand, Table 5 depicts the mean accuracy of
94.07% over 13 different activities in the PAMAP2 dataset. Table 6 shows the confusion matrix of the
IM-LifeLog dataset over 10 activities, where accuracy of 96.40% over the KATH classifier was achieved.
Finally, Table 7 presents the comparison results of the proposed approach over DALIAC, PAMAP2,
and IM-LifeLog datasets, respectively.
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Table 4. Confusion matrix of human behavior modeling (HBM) accuracies over DALIAC dataset.

Dynamic
Activities SI LY ST WD VC SW WK AS DS TR BF BT RJ

SI 0.98 0 0.02 0 0 0 0 0 0 0 0 0 0
LY 0.02 0.96 0.01 0 0 0.01 0 0 0 0 0 0 0
ST 0.02 0.01 0.97 0 0 0 0 0 0 0 0 0 0

WD 0 0 0 0.93 0.03 0.01 0.01 0 0 0 0 0 0.02
VC 0 0 0 0.01 0.95 0.03 0.01 0 0 0 0 0 0
SW 0 0 0 0 0 0.98 0 0.01 0.01 0 0 0 0
WK 0 0 0 0 0.02 0 0.96 0.01 0.01 0 0 0 0
AS 0 0 0 0 0.04 0 0.01 0.91 0.03 0 0 0 0
DS 0 0 0 0 0.01 0 0 0.04 0.92 0 0 0.03 0
TR 0 0 0 0 0 0 0.01 0 0 0.94 0 0 0.05
BF 0 0 0 0 0 0.02 0 0.03 0 0 0.91 0.03 0
BT 0 0 0 0 0.01 0 0.03 0 0 0 0.06 0.90 0
RJ 0 0 0 0.01 0 0 0 0 0 0.05 0 0 0.94

Mean Accuracy = 94.23%

SI = Sitting, LY = Lying, ST = Standing, WD = Washing dishes, VC = Vacuuming, SW = Sweeping, WK = Walking,
AS = Ascending stairs, DS = Descending stairs, TR = Treadmill running, BF = Bicycling on ergometer (50 W),
BT = Bicycling on ergometer (100 W), RJ = Rope Jumping.

Table 5. Confusion matrix of HBM accuracies over PAMAP2 dataset.

Dynamic
Activities LY SI ST WK RN CY NW WT CW CD AS DS VC

LY 0.96 0.02 0.01 0 0 0 0 0.01 0 0 0 0 0
SI 0 0.98 0.02 0 0 0 0 0 0 0 0 0 0
ST 0.01 0.02 0.97 0 0 0 0 0 0 0 0 0 0

WK 0 0 0 0.94 0.03 0 0.02 0 0 0 0 0 0.01
RN 0 0 0 0.04 0.92 0 0.02 0 0 0 0.01 0.01 0
CY 0 0 0 0 0 0.95 0 0 0.02 0.02 0 0 0.01
NW 0 0 0 0.05 0 0 0.94 0 0 0 0 0 0.01
WT 0 0.01 0 0 0 0 0 0.96 0.02. 0.01 0 0 0
CW 0 0 0 0 0 0.01 0 0.05 0.92 0.02 0 0 0
CD 0 0.02 0 0 0 0 0 0.02 0.03 0.93 0 0 0
AS 0 0 0 0 0.02 0 0.02 0 0 0 0.92 0.03 0.01
DS 0 0 0 0 0.03 0 0.04 0 0 0 0.06 0.87 0
VC 0 0 0 0 0 0 0.01 0 0 0 0.01 0.01 0.97

Mean Accuracy = 94.07%

LY = Lying, SI = Sitting, ST = Standing, WK = Walking, RN = Running, CY = Cycling, NW = Nordic walking,
WT= Watching TV, CW = Computer work, CD = Car driving, AS = Ascending stairs, DS = Descending stairs,
VC = Vacuum cleaning.

Table 6. Confusion matrix of HBM accuracies over IM-LifeLog dataset.

Dynamic
Activities TB WC ET RA EX WT TC CL TM LD

TB 0.97 0 0.03 0 0 0 0 0 0 0
WC 0.01 0.96 0 0.02 0 0.01 0 0 0 0
ET 0.02 0 0.98 0 0 0 0 0 0 0
RA 0 0.03 0 0.94 0 0.01 0 0 0.02 0
EX 0 0 0 0 0.98 0 0 0.02 0 0
WT 0.01 0 0 0 0 0.96 0.02 0 0 0.01
TC 0.02 0.01 0 0.03 0.01 0 0.93 0 0 0
CL 0.01 0 0.01 0 0 0 0 0.98 0 0
TM 0.02 0 0.02 0 0 0 0 0 0.96 0
LD 0 0 0 0.02 0 0 0 0 0 0.98

Mean Accuray = 96.40%

TB = Taking breakfast, DC = Driving car, WC = Working on computer, ET = Eating, RA = Reading an article,
EX = Exercise, WT = Watching TV, TC = Taking call, CL = Cleaning, TM = Taking Medicine, LD = Lying Down.
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Table 7. Comparison of the proposed method’s accuracy with the state-of-the-art methods using
DALIAC, PAMAP2, and IM-LifeLog datasets.

Methods Recognition Accuracy
Using DALIAC (%)

Recognition Accuracy
Using PAMAP2 (%)

Recognition Accuracy
Using IM-LifeLog (%)

Classification using Deep
Convolution LSTM [35] - 87.50% -

Classification using
CNN and RNN [36] - 93.50% -

Classification using
CNN [37] - 93.70% -

Diversified
forward-backward [48] 91.2% - -

Classification using
Logistic Regression [49] 93.4% - -

Classification using
Bidirectional LSTM [50] - 64.1% -

Classification using
Random Forest [51] - 90.11% -

Proposed Method 94.23% 94.07% 96.40%

5. Conclusions and Future Works

In this paper, we proposed novel frequency and time domain features for an HBM system that
recognizes life-logging activities transmitted from inertial IMU sensors. These features examined
the Discrete Hartley Transform, Local Mean Decomposition, Spectral Kurtosis, Transient Detection
Principles, Envelope Estimation, and Empirical Mode Decomposition features. Such features are
optimized using Probability Based Incremental Learning (PBIL) and are then classified using a K-Ary
based Tree Hashing classifier (KATH). The proposed model is evaluated on three benchmark datasets
that give an accuracy of 94.23%, 94.07%, 96.40% over DALIAC, PAMAP2, and self-annotated IM-LifeLog
datasets, respectively. Our proposed methodology achieved remarkable accuracy rates over current
state-of-the-art methods.

As future work, the proposed method will be further improved by adding features from different
domains. Additionally, we are planning to develop datasets for elderly healthcare using inertial and
optical sensors.
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