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Abstract: This study deals with the optimization of battery energy storage system (BESS) data in
terms of significant characteristics of life and efficiency, and their positive impacts on power system
efficiency in the presence of wind power plants in a microgrid. To this end, a permanent magnet
synchronous generator (PMSG) is used to convert the wind energy by connecting a three-phase
dynamic load to the grid. The main novelty of the proposed method is designing a smart backup
battery branch to improve the efficiency of the wind farm by maintaining the operating constraints
even during the occurrence of harsh faults in the generation section. Additionally, for the first time,
the characteristics of the BESS are optimized using nine evolutionary algorithms, including the
genetic algorithm (GA), teaching–learning-based optimization (TLBO), particle swarm optimization
(PSO), gravitational search algorithm (GSA), artificial bee colony (ABC), differential evolution (DE),
grey wolf optimizer (GWO), moth–flame optimization algorithm (MFO), and sine cosine algorithm
(SCA), and the results are compared with each other. The simulation results of a case study confirm
the robustness of the proposed control strategy for the BESS.

Keywords: battery energy storage system (BESS); robust control strategy; wind power plant;
permanent magnet synchronous generator (PMSG); evolutionary computations; microgrid (MG)

1. Introduction

Nowadays, there is a positive correlation between increasing the world population and using
electricity as a reliable and clean source of energy. Moreover, an ever-growing dependence on the
use of energy, especially in the form of electricity, has resulted in some critical problems such as
environmental concerns, stability problems, and concerns regarding to the reliability of power systems,
which have pushed governments and researchers to find new solutions. Utilizing renewable energy in
the form of a microgrid (MG) as an alternative power source is thus recommended. There is a wide
variety of renewable energy forms, depending on the site location. Wind energy as a renewable source
has significant potential in supplying electricity demands. Wind energy generation can be accessed on
about one fourth of the Earth’s surface, and wind turbines can theoretically exploit ~59% of this energy.
However, this amount is ~50% in real-life conditions [1].

There are various kinds of wind turbines that are used in wind farms. Here, we consider the
permanent magnet synchronous generator (PMSG) turbine. In the PMSG, a permanent magnet instead
of a coil is responsible for providing an excitation field. The synchronous term is related to the fact
that both the rotor and magnetic field rotate at the same speed [2]. The most significant advantages of
employing a PMSG are the high conversion efficiency and high power density [3]. The PMSG has
excellent potential for generating electricity in large-scale wind turbines [4].
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Wind power is an unpredictable and uncontrollable energy in terms of speed and power density
during daytime. These fluctuations generate unsustainable generated electrical power. Such natural
wind characteristics will cause problems, mainly related to the stability of the power system. The variable
generated power creates an upper limit on the percentage of the total electrical power extracted from
wind energy. If wind penetration is <20%, the generated power fluctuations can be mitigated by
natural gas plants or other conventional power plants. On the other hand, if this value increases
to >20%, then the grid power needs to be smoother and more stable when the electrical power is
dispatched [5]. The battery energy storage system (BESS) is employed as an effective solution to this
challenge. A wide range of the BESS’s applications have been studied in [6].

Recently, due to the importance of using BESSs in wind farms, many researchers have focused
on this field. Mahmoud et al. [7], a fuzzy-logic-based technique was proposed to control the time of
charge/discharge and the parameters of the batteries. Also, this study aimed to apply an adaptive
online approach to adjust the economic generation control rules of the microgrid to maintain the secure
operation of the network and control the charging cycles of the batteries. Additionally, the particle
swarm optimization (PSO), genetic algorithm (GA), and flower pollination algorithms have been
employed to solve the economic dispatch problem. Dui, Zhu, and Yao [8] presented a two-stage
optimal power-based method in which the BESS was sized, in both wind farms and thermal plants,
to reduce the operation costs of wind farms and thermal power plants. Xu et al. [9], by applying
the non-grid-connected wind power as a local source of energy production, a hybrid energy storage
system (HESS) consisting of batteries and super-capacitors was studied. This paper proposed a
multi-objective optimization model to obtain the number of batteries and super-capacitors by using
the non-dominated sorting genetic algorithm (NSGA II). Moreover, Meghni et al. [10], have proposed a
model consisting of a PMSG in a variable-speed wind turbine (VSWT) and BESS. Also, a fuzzy-based
algorithm was developed to obtain the maximum wind power, using a second-order sliding mode
control (SOSMC) theory. Wong et al. [11], the whale optimization algorithm (WOA) was considered
to optimize the battery energy storage system (BESS) in terms of optimal placement and sizing.
The proposed method was applied in two phases; at first, the optimal location and sizing were obtained
and, in the second phase, both location and size were simultaneously optimized. In [12], a control
strategy based on PSO was proposed to control charge–discharge states and to damp the oscillations of
the BESS. Chua et al. [13] presented a fuzzy control algorithm for BESSs to reduce peak demands by
predicting the daily load profile and adjusting the power output using the latest state of charge (SOC)
and operation time. Additionally, Khalid et al. [14], have introduced a model for obtaining optimal
power flow dispatch in a grid-connected wind farm including a BESS. The suggested method helps
the power system planners to choose the optimal BESS capacity to maximize the operational profit.
Reference [15] proposed four algorithms, including the ant lion optimizer algorithm (ALO), grey wolf
optimizer algorithm (GWO), krill herd algorithm (KHA), and Jaya algorithm to minimize the cost of
the produced energy. Moreover, three battery technologies, including lead–acid (LA), lithium–ion
(Li–ion), and nickel–cadmium (NI–Cd) were considered and the impacts of the lifetime, the depth of
discharge (DOD), and the relative costs of different battery technologies were modeled. Additionally,
Datta et al. [16], have analyzed the impacts of the BESS on providing primary frequency control to
increase the yield of the wind farm. The mentioned BESS consisted of a storage system connected to
the DC/AC converter and the required power electronics interfaces. The case study was simulated by
DigSILENT/PowerFactory (Gomaringen, Germany) and the results of the system performances were
compared, considering the BESS under a single-phase-to-ground fault. As energy storage systems are
used to adjust the deviations of the produced power, a methodology to control the imbalances occurring
in the wind farm due to the variability of the wind power was proposed by Michiorri et al. [17].
This method can suitably size the storage system to obtain an acceptable level of controllability.
The proposed method was applied to a real case study in French Guyana. Moreover, Simla et al. [18],
were studied some methodologies related to the cooperation of energy storage systems with the wind
turbines. The results confirmed a reduction in energy losses. Liu et al. [19], have suggested an approach
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to optimize the component sizing of the BESS in wind farms with independent system operators.
The proposed method consisted of a hybrid energy storage system considering the capacity fading
of lithium batteries in the cycle life. Moreover, dynamic programming (DP) was applied to optimize
the component sizing of the BESS. Also, the GA and the rule-based method were used for simulation,
and the results showed a significant reduction in the capacity degradation and operation cost of energy
storage systems.

Martinez-Rico et al. [20], have addressed decreasing the impacts of the unpredictable nature of
renewable resources by employing an energy storage system. It was confirmed that the batteries could
manage the system by shifting the needed energy and selling it to the consumers at a time when the
cost of energy was more expensive than the rest of the day. Additionally, a bidding optimization
algorithm was used to improve profitability and minimize the value of battery loss. Also, the impacts
of employing the BESS in solving the unpredictable renewable energy behavior problem were detailed
by Kocer et al. [21]. Furthermore, a review of the improving BESS approaches and their applications
were analyzed, and finally, a case study in Turkey, was studied.

Guan Wang et al. [22] proposed a method to decrease the uncertain impacts of energy produced by
wind power and photovoltaic cells. Moreover, the time-of-use (TOU) prices and BESS were integrated
into the optimal management of a power system in the planning of wind and photovoltaic power plants.
Additionally, the Pareto optimal front (POF) was employed to obtain the global solution of simulating
an IEEE 30-bus system. Furthermore, Shigenobu et al. [23], have addressed a decision framework
for optimal programming of a BESS connected to a distributed generation (DG) with an inverter and
voltage control instruments. To be more detailed, a two-step simulation was considered, including the
effectiveness of the BESS, which was connected to the smart grid (SG) under fault conditions, and the
active SG using LPC (loop power flow controller) was proposed by applying the PSO algorithm to
optimize the relevant objectives.

The literature review confirmed that there are few studies related to the optimization of the
practical chrematistics of the BESS, especially the state of charge (SOC) and the operation time of
the battery. These two parameters are crucial for designing relevant storage systems. Furthermore,
BESSs have usually been optimized by applying only one algorithm or control strategy. As there is no
further comparison, it is challenging to choose the best characteristics and battery types.

In the present study, the results obtained by applying nine evolutionary algorithms were detailed
and compared. Also, the type of the BESS was assumed to be lithium–ion, which can be easily changed
to other types due to the flexibility of the proposed model. Also, the relevant constraints of batteries
related to the turbine wind speed were considered. This relation is depicted in Figure 1.

Figure 1. Turbine power characteristics.



Sustainability 2020, 12, 10257 4 of 21

The main novelties of this study are

• Designing an improved control strategy for the BESS of a wind farm, including a PMSG consisting
of a backup battery branch in the standby mode;

• Optimizing the results of simulating the BESS in the MATLAB environment using nine evolutionary
algorithms (GA, teaching–learning-based optimization (TLBO), PSO, gravitational search
algorithm (GSA), artificial bee colony (ABC), differential evolution (DE), GWO, moth–flame
optimization algorithm (MFO), and sine cosine algorithm (SCA)); and

• Comparing the results of the optimization process of the BESS with the results without the
optimization procedure.

2. The Proposed Method

The PMSG of type D shown in Figure 2 was used in the wind farm because it has the best protective
effect on whole devices of the power system. In addition, if a fault occurs on the grid side, it will
not damage the generator. In the same way, if a fault occurs on the generator side, the transmission
line will not be affected. This is because of the power electronic devices that are employed in the
proposed wind turbine. The structure of the control strategy for designing the batteries is based on
the remaining lifetime of the battery and the value of the depth of discharge (DOD) of each branch.
First, the correlation between the SOC and the loss of power of each branch is mentioned as the
objective function. Then, by minimizing the loss of power of the BESS, the SOC of each branch will
be maximized.

f = min
Nobj∑
i=1

(KDOD)i × gi(x) (1)

where Nobj is the number of objective functions, the DOD value is considered as a coefficient known as
KDOD, which is formulated as Equation (12), and gi(x) is defined as the objective function to minimize
by using the evolutionary algorithms, and is reformulated as:

OF = min

Nbranch∑
i=1

(KDOD)i × |Ii|
2Ri

 (2)

where Nbranch is the number of branches, (KDOD)i is a coefficient obtained from Equation (12), Ii and
Ri are the current magnitudes crossing the ith branch and the internal resistance of the ith branch,
respectively. It should be noted that the KDOD is a parameter related to the temperature of each branch
of the BESS during the energy storage process; that is why it is considered in the objective function
as a coefficient. Since the purpose of the optimization function is to minimize the loss of power of
each branch of the BESS, which causes the maximum value of the SOC, the Nobj in Equation (1) is
considered as the Nbranch in Equation (2). This makes the objective function more flexible to minimize
the power loss of each branch of the BESS independently, which leads to the best global solution for
the SOC value of the whole BESS package.

There are two significant constraints during the optimization of the objective function, as follow:

Pmin
BESS ≤ PBESS ≤ Pmax

BESS, (3)

Vmin
DC-link ≤ VDC-link ≤ Vmax

DC-link (4)

where PBESS is the BESS power and VDC-link is the voltage of the DC-link connected to the BESS pack.
By analyzing the connected load to the system and the BESS characteristics, the final objective function,
which is based on the SOC and power loss, is derived from Equations (5)–(20) to be optimized with
nine evolutionary algorithms.
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The generation power of the wind farm when the BESS is connected to the PMSG conforms to the
following Equation (5):

N∑
i=1

(
Pt

i + Et
i

)
= Demand(t) + Ploss (5)

where Pt
i is the generated power of the ith PMSG of the wind farm, Et

i is the amount of the stored energy
in each BESS pack connected to the PMSG, Demand(t) is the demand load, and Ploss is the power loss of
the whole system. According to Equation (7), the Pmax

loss is determined by considering all the Li–ion cells
in all branches of the proposed BESS. This value is directly affected by the type of battery cells used in
the BESS, as well as the power system losses also added to the mentioned BESS’s power loss to obtain
the value of Pmax

loss . This equation is defined to mention the power balance by the following constraints:

Pmin
i ≤ Pt

i ≤ Pmax
i , (6)

0 ≤ Ploss ≤ Pmax
loss . (7)

Since a three-phase dynamic load is applied as the demanding load of the system, active power
(P) and reactive power (Q) absorbed by the load vary as a function of positive-sequence voltage (V)
according to the following equations:

1. If V > Vmin, P and Q vary as below:

P(t) = P0 ×

(
V
V0

)np(
1+Tp1.S

1+Tp2.S )

, (8)

Q(t) = Q0 ×

(
V
V0

)nq(
1+Tq1.S

1+Tq2.S )

. (9)

2. If V < Vmin, the same equations as (8) and (9) with np = nq = 2 (constant impedance load).

In these equations, V0 is the initial positive-sequence voltage; P0 and Q0 are the active and reactive
powers at the initial voltage, respectively; np and nq are the active and reactive coefficients; and Tp1,
Tp2, Tq1 and Tq2 are the time constants. As the proposed model for the BESS relies on the DOD and
battery life, there are some remarkable equations to find the remaining battery life and the time that
each battery branch can be connected to the DC-link. The following equations are applied to formulate
the energy exchange between the BESS and DC-link [5]:

Eex =

∫ τ

0
P(t)KDODdt, (10)
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P(t) =
∣∣∣Pgen(t) − Pref

∣∣∣, (11)

KDOD =
life cycles at DOD 0%

life cycles at present DOD of each branch
, (12)

in which τ is equal to 60 min. Also, the value of Pref is 3.5 MW for 60 min. The battery connected to the
wind turbine is displayed in Figure 2. The batteries are categorized based on power density, life cycle,
and energy density. Hence, the life cycle of a battery and DOD are two important features to distinguish
when battery life ends. In this study, these important factors are optimized with nine algorithms.
The equivalent model of the proposed battery is illustrated in Figure 3. Generally, lithium–ion batteries
need to be replaced after 200 to 1000 charge–discharge cycles [5]. This process usually takes at least 4 to
5 years, making this type of battery an economical choice for real conditions. The electrical equivalent
of a battery is depicted in Figure 4. The control strategy is planned as a flexible trend, which is based
initially on Equation (7). For example, if the rated power of each branch is assumed to be 1 MW,
and the result of Equation (7) is equal to 3 MW, three branches of the BESS must be connected to
the converter, and the standby branch would be offline. Also, the standby branch is designed to
stabilize the operation of the wind farm. Especially when a fault or a transient condition occurs in
the network, this branch contributes the whole BESS to control and store a percentage of the surplus
energy. This prevents the power plant from shutting down in critical conditions by injecting the energy
stored in the grid. In other words, the ability of the proposed BESS control strategy leads to keeping
the rate of the store and consuming the produced energy at a rather constant profile, which results in
the robustness of the proposed BESS in terms of SOC and remaining expected life (REL).
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Moreover, as transient conditions or different faults may occur in the network, the BESS pack
might be exposed to different DOD values during a charge/discharge cycle. That is why it is crucial
to consider the calculation of the loss of power of battery branches. It is also worth mentioning that
minimizing the power loss is the most important reason for employing the evolutionary algorithms
(EAs) in advance.

To be more detailed, the power loss of the battery packs is formulated below:

Ploss-battery pack = Rinternal-battery pack × I(t)2 (13)

where I(t)2 is the squared current passing each battery branch of the BESS. Also, as the loss of power
of the BESS depends on the BESS temperature constraints, as the temperature of the battery packs
increases in different DODs, the losses force the battery packs to release more energy to compensate for
the deficiency of the required power of the DC-link.

The EA algorithms are employed to optimize the BESS parameters. The proposed algorithms aim
to minimize the power loss of the BESS in different temperature conditions, as well as to minimize the
DOD values of each battery branch to increase the efficiency and lifetime of the BESS. Additionally,
the values of the final SOC and the remaining expected life (REL) are optimized, and this improves the
efficiency of the wind farm.

To formulate the objective function of the problem, the deviations of the temperature of each cell
should be considered in the power loss formulation as follows:

Rinternal-battery pack(T) = Rinternal-ideal × (1 + α(T2 − Tconstraint)

−20 ◦C ≤ Tconstraint ≤ +60 ◦C
(14)

where T is the instantaneous temperature of the battery cell, and T2 is the temperature of the battery
cell after connecting the BESS to the wind farm, and Tconstraint is the operating temperature of the
battery cell. It should be noted that the value of the α parameter for each cell of the battery branch is
selected based on the type of battery cells [24]. The current passing through each branch is a function
of its SOC as following:

I(t) =
Voc(SOC) −Vt

Rinternal-battery pack(T)
(15)

where Voc(SOC) represents the SOC value in the charging/discharging process of the battery branches,
and Vt is the terminal voltage of each branch connected to the DC-link. Moreover, the correlation
between the energy stored in the BESS and the SOC of each branch is formulated as:

Eex = (SOCt − SOCmin) × Emax. (16)

Also,
SOCmin ≤ SOCt ≤ SOCmax (17)

where SOCt is the instantaneous SOC during the charge/discharge process, SOCmin is considered as
the reference SOC value, and Emax is the maximum energy stored by considering the backup branch
connected to the DC-link. To determine the charge or discharge time of the BESS pack during the
power storage process, two binary values are assumed during the optimization procedure as follows:

θC
t ∗ Emin ≤ EC

ex ≤ θ
C
t ∗ Emax, (18)

θD
t × Emin ≤ ED

ex ≤ θ
D
t × Emax, (19)

(θC
t + θD

t ) ∈ [0, 1] (20)

where θC
t and θD

t are the binary parameters that indicate the state of the BESS pack in terms of charging
or discharging, respectively. Moreover, when the θC

t is equal to 1, the battery branches are charging and
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when the θD
t is equal to 1, the battery branches are discharging. Emin and Emax are the minimum and

maximum battery energy storage during the charging and discharging process. Finally, by analyzing
the equations, the objective function proposed for minimizing the power loss is a quadratic equation:

SOCBESS
i = αi + βiP

loss
i + γi(P

loss
i )

2
(21)

where αi, βi, and γi are the parameters regarding the power loss in terms of temperature and DOD
deviations of BESS pack i, which are randomly produced during optimizing the objective function
to obtain the best global solution. In addition, the values of αi, βi and γi are varied in the range of
[0,1], [0,1], and [0,1.5], respectively. SOCBESS

i denotes the state of charge of the ith BESS pack, and Ploss
i

represents the power loss of the ith BESS pack.
Accordingly, due to the great changes in the value of the power loss through the test period time

(60 min), it is recommended that the average of the value of power loss be used to optimize the SOC
value. The objective functions are defined as Equations (22) and (23):

SOCBESS-avg
i =

αi + βiP
loss-avg
i + γi(P

loss-avg
i )

2

Ploss-avg
i

, (22)

Ploss-avg
i =

Ploss-max
i

2

1 +
Ploss-min

i

Ploss-max
i

. (23)

By optimizing the mentioned objective function, we minimized the power loss of the BESS to get
the maximum SOC of each battery branch of the BESS.

The modified schematic of the open-circuit voltage for each cell of the branches in the BESS is
shown in Figure 4 [25]. It should be noted that the electro-thermal model is employed in this paper.

A brief explanation of the optimization algorithms consisting of GA, TLBO, GSA, PSO, ABC, DE,
GWO, MFO, and SCA is presented. The GSA, TLBO, and PSO algorithms were investigated in detail in
our previous study [26]. It is also worth mentioning that the objective function obtained from Equation
(23) was used to optimize the BESS data by applying the suggested algorithms. As an important note,
the application of different evolutionary algorithms to various power system optimization problems
is a significant challenging issue whose advantages/drawbacks should be discussed and addressed,
but the concept is beyond the scope of this research. Interested readers are referred to [27] as an
appropriate example of the details of the different subjects in this regard.

2.1. The Genetic Algorithm (GA)

The GA is a heuristic evolutionary algorithm based on natural principles to be used as a practical
algorithm for hybrid search and optimizing problems. GA can be divided into binary and continuous
GA. All the rules of this algorithm are presented in [28,29].

2.2. The Artificial Bee Colony (ABC) Algorithm

ABC is a heuristic algorithm originating from honey bees’ behavior to intelligently search for
locating the nectar in their surroundings [30]. It proposes a feeding cycle based on the population,
in which individual food locations vary by bees’ ability to track and find the positions of the food
sources with the highest nectar to formulate the ABC algorithm. Some variables such as population of
bees (PB), maximum cycle number (MCN), objective function, and their variables should be defined.
The testing functions related to probability, fitness, and optimization are also highlighted as described
in [31].
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2.3. The Differential Evolution (DE) Algorithm

This algorithm consists of five significant steps known as initialization, mutation, recombination,
crossover, and selection [32]. In the initialization step, the initial value is randomly defined in deterministic
areas, including upper and lower limits, to be optimized by the parameters. Additionally, both the
mutation and recombination steps aim to generate a population of the number of population (NP) vector
trail. The crossover seeks to organize a crossover vector of the parameter value, which is reproduced on
two vectors, namely, the initial vector and the mutation vector. The last step, i.e., the selection stage, is used
to distinguish the vectors in a way that they can serve as the population for the next iterations [33,34].

2.4. The Gravitational Search Algorithm (GSA)

The GSA is one of the most powerful evolutionary algorithms and simulates the behavior of an
isolated system of masses based on the Newtonian laws of gravitation and motion in a small sample of
masses as an artificial world. The masses obey the law of gravity and the law of motion, as described
in [26]; all the formulas of this algorithm are defined in [26].

2.5. The Teaching–Learning-Based Optimization (TLBO) Algorithm

This algorithm was introduced in [35]. Since then, the TLBO algorithm has been applied as a
popular and practical optimization strategy to optimize problems in many engineering fields. The TLBO
algorithms were inspired by nature and are originally based on the teacher–student interplay method
in a class, which converges to a global solution. The working process of the TLBO consists of two
phases: the teacher phase and the learner phase.

2.6. The Particle Swarm Optimization (PSO) Algorithm

The PSO is based on the population and uses particles to express possible solutions. The projected
position of the ith swarm’s particle xi and the mentioned particle’s velocity vi at the (t + 1)th iteration
are described and updated as the following two equations [36]:

vt+1
i = vt

i + c1r1
(
pt

i − xt
i

)
+ c2r2

(
gt

i − xt
i

)
, (24)

xt+1
i = xt

i + vt+1
i (25)

where i = 1, . . . , n and n are the swarm’s size, c1 and c2 denote the positive constant values (both assumed
to be 2), r1 and r2 represent random numbers uniformly dispensed in the range [0,1], t is the iteration
number, pi determines the best former position of the ith particle, and g indicates the best particle
among the other particles in the swarm. The best position of the swarm will be selected as the
problem’s solution.

2.7. The Grey Wolf Optimizer (GWO)

The GWO algorithm is based on the leadership hierarchy and hunting mechanism of the grey
wolf in nature. Four types of grey wolves, including alpha, beta, omega, and delta, are considered
to simulate the leadership hierarchy. Moreover, in this algorithm, searching for prey, encircling the
prey, and attacking the prey are assumed as their main steps of hunting. This algorithm is completely
detailed in [37]. Accordingly, the number of agents is considered to be 6 when setting the algorithm,
and the results are validated under the benchmark function, which is defined as F10 in [37].

2.8. The Moth–Flame Optimization Algorithm (MFO)

The MFO algorithm is a nature-inspired optimization method obtained from the behavior of the
moth fly at night. Transverse orientation is the main inspiration for this optimizer, which is explained
in [38]. The number of dimensions in this optimization is considered to be 6 for this algorithm, and the
benchmark function, which is defined as F8 [38], is applied to validate the results.
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2.9. The Sine Cosine Algorithm (SCA)

The SCA algorithm is a novel population-based optimization method that creates multiple initial
random candidate solutions and makes them fluctuate and converge to the best solution based on the
sine and cosine functions [39]. The results obtained from optimizing the BESS parameters under the
SCA algorithm are validated under the benchmark function, which is defined as F14 in [39].

3. Case Study Simulation

We selected the proper BESS capacity. If the capacity of the BESS is very small, the process of
extra energy storage does not make sense and results in generating more power compared to the rated
one. On the other hand, an energy storage system (ESS) with a large capacity may not be affordable for
application. There are some important definitions, such as [5]:

• Cycles of charge and discharge: It determines the battery life. If this amount surpasses the
specified number, the rated power is not produced by the battery. In this study, by employing a
lithium–ion battery, the life cycle was up to 730 cycles per year [40].

• Depth of discharge (DOD): The range of the life cycle is wide in terms of the type of lithium–ion
batteries. To find the exact life cycle, it is necessary to calculate the accurate battery life.
The minimum range of the battery life cycle occurs when operating at high DOD and vice versa.

• Rate of discharge: It is related to battery life. If the battery is charged or discharged at a higher
rate, it can significantly reduce battery life. However, if the battery is used at or below its rated
value, it can remarkably increase the battery life.

The proposed model of BESS is depicted in Figure 5, in which the standby battery branch of the
BESS is determined by the red block. This design process for BESS was applied to keep the BESS
voltage at a value that was very close to the DC-link. For operating the buck–boost converter at
high efficiency, the voltage of the BESS branches should be the same as the DC-link ideal voltage.
To simulate the BESS impacts on the wind farm, including the PMSG, it was necessary to apply a
power trend on the system produced by the wind turbine. This power profile is presented in Figure 6.
The rated power of each battery was 1 MW. The difference between the generated power and the
reference power determines the amount of power that is precisely used or discharged from the battery.
Three lithium–ion batteries were considered. To reduce the total planning cost of the system, only a
reserved battery was connected to the system in emergency states. The rated power of the BESS,
considering the standby battery, was 4 MW. It is also worth noting that all the battery branches consisted
of a group of battery cells connected in a series to raise the voltage capacity. Moreover, the branches
were connected in parallel to the battery package (BESS) to increase the total capacity of the BESS.
Moreover, the results of optimizing the BESS characteristics were obtained when the wind farm was
exposed to a single-phase-to-ground fault.

The designed BESS also focused on ending all battery lives at the same time. To satisfy this
condition all the DODs of each branch (even the backup branch) should be kept at the same level.
This idea was employed during the design of the proposed BESS to prevent cycling currents from
being produced between the battery branches during the charge and discharge process.
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The proposed model is introduced in Figure 7. This model was developed by designing an efficient
BESS system, which was entirely different from that presented in [5]. The system can optionally apply
both the generated power profile and reference power to consider the wind turbine, according to
Figure 6. It should be noted that a sample power profile, considering the parameters of the wind speed
and turbine power according to Figure 1, was applied to the wind turbine. Additionally, the sample
power profile, which is depicted in Figure 6, was considered during all optimization processes. As well,
the optimization process was applied to optimize the characteristics of the BESS pack.
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4. Results and Discussion

All the simulations were conducted in a computer with an Intel Core i7 CPU of 3.1GHz, a RAM of
8 GB, a 64-bit processor in the MATLAB 8.1.0.604 (R2013a) environment. The results were related to
optimizing the characteristics of the BESS and comparing them with the results of [5]. Accordingly,
the values of the wind turbine applied in proposed model is presented at Table 1.

Table 1. The values of the parameters of the wind turbine used in the proposed model.

Power
Factor (PF)

Base Wind
Speed (m/s)

Nominal Mechanical
Output Power (MW)

Base Power of the Electrical
Generator (MVA)

Base Rotational
(Generator) Speed (p.u.)

0.9 11 7 8.75 1.2

Additionally, the PMSG and BESS parameters used were based on Tables 2 and 3, respectively.
Moreover, the initial SOC and the life of three batteries connected to the system in parallel were defined
differently to test the confirmation of the BESS under severe conditions. The results are given in Table 4.
It should also be kept in mind that the obtained results depicted in Table 4 were obtained under the
harsh operating condition of a single-phase-to-ground fault in the test study system, as well as a
variable three-phase dynamic load. Nonetheless, with decreasing the final SOC, the values of the REL
of each branch were still acceptable. Moreover, in fact, the real power systems will rarely be operated
continually under these abnormal conditions due to the protection system actions.
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Table 2. The PMSG parameters.

Number of
Phases

Stator Phase
Resistor (Rs)

Armature
Inductance VL−L Toperate Generator Speed Rotor Type

3 1.76 Ω 0.006373 H 400 V 3.3079 N.M 4250 RPM round

Table 3. The BESS data.

Nominal Voltage Rated Capacity Capacity at
Nominal Voltage

Fully Charge
Voltage

Nominal
Discharge Current

Internal
Resistance

200 V 6.5 Ah 5.837 Ah 232.598 V 2.986 A 0.378 Ω

Table 4. The values of initial and final battery lives.

Battery Initial State of
Charge (SOC) (%) Final SOC (%) Initial Life (%) Remaining Expected

Life (REL) (%)

A 80 55.70 70 68.03
B 70 59.26 75 73.15
C 75 56.81 85 82.38

During the simulation process, some parameters can affect the results more than the other
parameters. In other words, these parameters have a significant role in changing the final results,
or the obtained results are more sensitive to their changes during simulating the proposed model.
In addition, the internal resistance of each cell of the batteries is the most significant factor affecting
both power loss and the SOC. Applying some changes to this parameter results in some undesirable
values in power loss, if the changes are not reasonable or are out of the range. To be more detailed,
this item determines the type of the battery cells in terms of the electrochemical process. That is why
calculating and regulating this parameter should be attentively considered.

The operation time of the BESS for 60 min is expressed in Table 5. The number of batteries
connected to the system for 60 min without optimization and the backup branch is presented in
Figure 8.

Table 5. The operation time of each battery for 60 min.

Battery Operation Time #Battery Connected Operation Time

A 23.6 min One 32.4 min
B 20.2 min Two 23.23 min
C 30.2 min Three 4.34 minSustainability 2020, 12, x FOR PEER REVIEW 14 of 21 

 
Figure 8. Number of batteries connected to the power system for 60 minutes without optimization 
and the backup battery branch. 

Optimizing the BESS Characteristics and the Number of Batteries Connected to the System 

We analyzed the results obtained from optimizing the BESS using the nine algorithms. To obtain 
better results, all the initial values for the SOC in each battery of the BESS (Battery A, B, and C) were 
assumed to be 100% in the optimization process; this was because, in setting the parameters of each 
evolutionary algorithm to obtain the best global solution, all the target variables should be set at 
100%. All the numerical results obtained from the optimization algorithms and related to the battery 
characteristics are tabulated in Table 6, as well as the results depicted in Figures 9, 10, and 11 as the 
bar plots. Moreover, the energy used (from the maximum power profile of the wind), the power 
produced by the wind turbine using the optimization algorithms, and the stored energy of the BESS 
during the optimizing are presented in Table 7. Additionally, the run-time of each algorithm is 
presented in Table 8. By comparing the results obtained from Table 4 (without optimizing) and Table 
6 (with optimizing), it was confirmed that the applied optimization methods had an impressive 
impact on improving the final SOC values of each battery branch as well as enhancing the REL. 
However, in algorithms such as the GA, the obtained results were not sufficiently desirable, but they 
were negligible. Accordingly, Figures 12, 13, and 14 display the number of batteries connected to the 
power system when the BESS was being optimized with the ABC, DE, GSA, PSO, GA, TLBO, GWO, 
SCA, and MFO algorithms. It should be noted that the sampling steps for the optimization process 
were selected equal to 0.01 seconds. 

Table 6. The numerical results of the battery characteristics under optimization with evolutionary 
algorithms. 

Bat. No Technique Final State of Charge 
(SOC) (%) 

Remaining Expected 
Life (REL) (%) 

A 

Artificial bee colony (ABC) 82.22 81.84 
Differential evolution (DE) 79.16 80.34 

Gravitational search algorithm (GSA) 82.78 83.92 
Genetic algorithm (GA) 64.69 58.32 

Particle swarm optimization (PSO) 77.18 80.20 
Teaching-learning based optimization 

(TLBO) 
87.18 87.95 

Sine cosine algorithm (SCA) 85.01 86.12 
Moth–flame optimization (MFO) 82.01 81.04 

Grey wolf optimizer (GWO) 89.31 88.53 

B 

ABC 74.18 80.17 
DE 75.10 82.86 

GSA 83.87 80.53 
GA 56.52 74.57 
PSO 71.29 79.32 

TLBO 84.02 85.13 
SCA 87.03 85.18 
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Optimizing the BESS Characteristics and the Number of Batteries Connected to the System

We analyzed the results obtained from optimizing the BESS using the nine algorithms. To obtain
better results, all the initial values for the SOC in each battery of the BESS (Battery A, B, and C)
were assumed to be 100% in the optimization process; this was because, in setting the parameters
of each evolutionary algorithm to obtain the best global solution, all the target variables should be
set at 100%. All the numerical results obtained from the optimization algorithms and related to the
battery characteristics are tabulated in Table 6, as well as the results depicted in Figure 9, Figure 10,
and Figure 11 as the bar plots. Moreover, the energy used (from the maximum power profile of the
wind), the power produced by the wind turbine using the optimization algorithms, and the stored
energy of the BESS during the optimizing are presented in Table 7. Additionally, the run-time of
each algorithm is presented in Table 8. By comparing the results obtained from Table 4 (without
optimizing) and Table 6 (with optimizing), it was confirmed that the applied optimization methods had
an impressive impact on improving the final SOC values of each battery branch as well as enhancing
the REL. However, in algorithms such as the GA, the obtained results were not sufficiently desirable,
but they were negligible. Accordingly, Figure 12, Figure 13, and Figure 14 display the number of
batteries connected to the power system when the BESS was being optimized with the ABC, DE, GSA,
PSO, GA, TLBO, GWO, SCA, and MFO algorithms. It should be noted that the sampling steps for the
optimization process were selected equal to 0.01 s.

Table 6. The numerical results of the battery characteristics under optimization with evolutionary algorithms.

Bat. No Technique Final State of
Charge (SOC) (%)

Remaining Expected
Life (REL) (%)

A

Artificial bee colony (ABC) 82.22 81.84
Differential evolution (DE) 79.16 80.34

Gravitational search algorithm (GSA) 82.78 83.92
Genetic algorithm (GA) 64.69 58.32

Particle swarm optimization (PSO) 77.18 80.20
Teaching-learning based optimization (TLBO) 87.18 87.95

Sine cosine algorithm (SCA) 85.01 86.12
Moth–flame optimization (MFO) 82.01 81.04

Grey wolf optimizer (GWO) 89.31 88.53

B

ABC 74.18 80.17
DE 75.10 82.86

GSA 83.87 80.53
GA 56.52 74.57
PSO 71.29 79.32

TLBO 84.02 85.13
SCA 87.03 85.18
MFO 83.04 80.98
GWO 89.12 87.16

C

ABC 84.36 80.52
DE 74.69 81.07

GSA 74.52 74.15
GA 72.58 67.84
PSO 83.31 79.62

TLBO 84.10 78.96
SCA 84.13 83.10
MFO 85.02 80.67
GWO 88.93 88.46
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Figure 10. The numerical comparison between final SOC (%) and REL (%) by applying the evolutionary
algorithms for Battery B.
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Table 7. The comparison of the energy efficiency parameters under optimization with evolutionary algorithms.

Algorithm Used Energy (MW) Produced Energy (MW) Saved Energy (MW)

ABC 7.0 5.936 3.121
DE 7.0 6.021 3.069

GSA 7.0 6.118 3.236
GA 7.0 5.421 2.981
PSO 7.0 5.868 3.098

TLBO 7.0 6.553 3.672
SCA 7.0 6.432 3.496
MFO 7.0 6.318 3.392
GWO 7.0 6.731 3.897

Table 8. The run-time of different optimization algorithms in this work.

Algorithm GWO TLBO PSO ABC GSA MFO SCA GA DE

Run-time (s) 393.422 318.293 275.475 120.287 116.765 107.273 93.831 84.061 79.252
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As an important note, here the setting parameters for the abovementioned algorithms were
detailed. In the GA algorithm, population size, iteration, generation, and time limit were respectively
selected equal to 100, 200, 10, and 180. Additionally, the ABC algorithm was programmed in this
pattern: the colony size = 6, cycles = 100, error goal = 1e − 20, dimension = 6, lower bound = 50,
and upper bond = 100. Moreover, the proposed normalized function of the DE algorithm was
assumed as in Equation (15). The parameters for the DE algorithm were assumed as: lower bond = 50,
upper bond = 100, variable = 6, population = 10, Nmax = 10, and γ = 0.1.∑

N

(n) = 0.1×
(
γ× e(−r0×n)/Nmax) + µ

)
. (26)

Also, in the GSA algorithm, the gravitational constant function was selected as:

G = G0 × e(−α×
iteration

maximum iteration ). (27)

The constants assumed to set the function of the GSA algorithm were considered to be 200, 50,
100, 6, 110, and 20 for maximum iteration, lower bond, upper bond, dimension, G0, and α, respectively.
In addition, the values for the TLBO algorithm were: Ps (number of students) = 2, nd (number of
dimensions) = 6, iteration = 100, and ng (number of generations) = 10.

As shown in Figure 12, Figure 13, and Figure 14, the number of batteries connected to the wind
farm could be increased up to four. These batteries were sorted into four parallel branches as a unique
BESS. All the evolutionary algorithms increased the percentage of the REL and final SOC of the BESS.
However, the TLBO and GWO algorithms had a unique advantage in comparison with the other
seven algorithms. As shown in Figures 13b and 14a, the optimized BESS under the TLBO and GWO
algorithms specified that there was only a short period in which the BESS forced the fourth branch
battery to be used in the standby mode. Also, the desired DOD for the proposed BESS, consisting of
lithium–ion cells for each branch, was 10% to 20%. Therefore, according to Table 6, the TLBO and
GWO algorithms had more impact on increasing the values of both the final SOC and the life of all
three batteries, compared with the other five algorithms. Moreover, the parameters optimized by
the TLBO and GWO algorithms were the best solutions for satisfying the precondition of the DOD.
These specifications made the design of the BESS more economical to be employed in wind farms
because the backup branch could be changed to or replaced with another type or another branch due
to the sufficient resting time.

5. Conclusions

A BESS model was proposed to be easily applied to a PMSG wind turbine in the grid-connected
mode. In addition, some evolutionary algorithms, namely, the TLBO, PSO, GA, DE, ABC, GSA,
GWO, SCA, and MFO algorithms were employed to optimize the BESS characteristics. The presented
method had some advantages in comparison with other BESSs, including its ability to increase the
REL of the batteries, increase the final SOC of the batteries, and minimize the number of batteries,
reducing the costs of the entire system. Also, the analysis of the data confirmed that applying
evolutionary algorithms to the BESS led to a better REL and final SOC. Moreover, the results showed
that the TLBO and GWO algorithms were among the best algorithms in terms of increasing the REL
and final SOC, and minimizing the operation time of the standby battery. This was mainly because the
TLBO and GWO algorithms had the appropriate logic and structure for the global solution because of
the special method of searching. However, it should be noted that the GWO and TLBO algorithms
had some drawbacks, mainly due to the difficulty of parameter setting as well as requiring too much
programming. According to Table 8, the run-time of the mentioned algorithms was longer than
the other algorithms, in similar conditions. The results also confirmed the operation validity of the
proposed BESS under transient and fault conditions.
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Abbreviations

ABC Artificial Bee Colony
ALO Ant Lion Optimizer
BESS Battery Energy Storage System
DE Differential Evolution
DG Distributed Generation
DOD Depth of Discharge
DP Dynamic Programming
GA Genetic Algorithm
GSA Gravitational Search Algorithm
GWO Grey Wolf Optimizer
HESS Hybrid Energy Storage System
KHA Krill Herd Algorithm
LA Lead–Acid
Li–ion Lithium–Ion
LPC Loop Power Flow Controller
MFO Moth–Flame Optimization
MG Microgrid
Ni–cd Nickel–Cadmium
PMSG Permanent Magnet Synchronous Generator
PSO Particle Swarm Optimization
REL Remaining Expected Life
SCA Sine Cosine Algorithm
SOC State of Charge
SOSMC Second-order Sliding Mode Control
TLBO Teaching–Learning Based Optimization
TOU Time-of-use
VSWT Variable-speed Wind Turbine
WOA Whale Optimization Algorithm
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