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Abstract: Cycling is a sustainable but vulnerable mode of transportation. Intersections’ bicycle-vehicle
crashes are particularly dangerous. This paper explores the discordance between empirical evidence
and cyclists’ perceptions of the various risk factors of cycling. Ridge regression was adopted to
identify risk factors from bicycle-vehicle conflict data. A questionnaire was distributed to assess
cyclists’ perceptions of safety and danger over the same candidate risk factors. There was indeed
discordance between the data and the questionnaire results. Cyclists appear to misestimate risk
in certain factors such as bus stops and subway stations. Understanding these misestimations can
provide a foundation for safety improvements and for promoting cycling as a sustainable mode
of transportation.
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1. Introduction

Cycling is a sustainable mode of transportation that reduces traffic congestion and carbon
emissions [1,2]. Cycling has been greatly encouraged to promote sustainable development [2]. However,
a major deterrent to cycling is the risk of collision with vehicles [3,4]. Cyclists experience higher rates
of injury and death than motor vehicle drivers [5,6]. For example, in Canada, cycling accidents result
in 2.2% and 4.6% of all road fatalities and injuries, respectively, despite the low proportion of cyclists
on the road [7]. Collisions between bicycles and motor vehicles comprise the majority of reported
fatalities and serious injuries among other modes of transportation [8]. Many bicycle-related collisions
occur in intersections [9,10]. Therefore, improving cycling safety in intersections has become one of the
key issues in promoting sustainable transportation.

Researchers have identified various risk factors in this context, among which exposure is known
to be most important [11,12]. Other risks can mainly be divided into three dimensions: infrastructural,
traffic-related, and environmental. The number of nearby bus stops, for example, positively increases
the risk of cycling [13]. Employment, number of schools, subway stations, land use mixtures,
commercial retail properties, and the presence and proximity of bicycle facilities have positive effects
on risk while average street length and the presence of parking entrances have negative effects [14–16].
Network coverage and recreational density have negative, direct effects on cycling accidents while
their total, indirect effect is positive [17].

Few researchers have attempted to incorporate cyclists’ behavioral perceptions into this context.
It is possible that there are notable disparities between risk factors perceived by cyclists and the risk
factors observed empirically. So how do these disparities affect the cyclist’s safety when passing through
intersections? Some studies have indicated that risk perception is not entirely aligned with the actual
risk of collision [18,19]. Certain risk factors are recognized similarly by both researchers and cyclists,
such as multi-lane corridors [15,20,21] and mixed traffic infrastructures [22–24]. Certain environmental
risks that have been identified by researchers, however, are largely neglected by cyclists; these factors
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include land use patterns [14,15]. Cyclists perceive the volume of bicycles and vehicles on the road as
risk factors [19,25], but statistics reveal a “safety in numbers” (SIN) effect [11,26]. Under the SIN effect,
an increase in cycling accidents does not align with a proportional growth in the number of cyclists.
Accordingly, effective improvements may not increase cyclists’ perceptions of safety and therefore do
not encourage citizens to commute by cycling.

Multicollinearity and overfitting are other noteworthy patterns in this context. Regression analysis
is a common approach to identifying risk factors. Regression analysis techniques include generalized
linear regression [27], Poisson regression [28], and negative binomial regression [29]. Multicollinearity
and overfitting are highly common when operating any regression analysis, and significantly influence
the models’ accuracy, even leading to distortion. We developed a ridge regression technique in this
study to identify risk factors without multicollinearity or overfitting [30–32]. By introducing bias into
the coefficient estimation, ridge regression provides more robust and realistic estimations than other
similar analysis techniques [31]. At present, ridge regression is mainly utilized in the mathematics
field. There is potential for further development in terms of risk identification.

The first objective of this work was to compare the differences in risk factors between cyclists’
perceptions and bicycle-vehicle conflict data. The second objective was to determine whether and why
some effective safety measures do not increase cyclists’ perceptions of safety. Perceived safety can
influence modal choices [21], so our findings may be useful in promoting sustainable and safe cycling.
We also hope to enrich the literature with regard to risk identification in cycling.

The remainder of this paper is organized as follows. Section 2 describes our methodology; Section 3
presents our collected data; and Section 4 presents the results of our analysis. Section 5 provides a deeper
discussion and concluding remarks.

2. Methodology

2.1. Regularization Technique: Ridge Regression

In this study, we developed a ridge regression technique to identify risk factors. Ridge regression is
a linear regularization method which penalizes the size of regression coefficients to prevent overfitting
and multicollinearity [31,33].

A general regression problem can be defined as follows [34]:

L(ω) =
n∑

i=1

(yi − ŷi)
2 =

n∑
i=1

(yi −ωxi)
2 (1)

where L(ω) is the loss function to be minimized (e.g., square error); Rm is the attribute set; and m is the
number of attributes. Given a set of n vectors, x1, . . . ., xn in Rm. yi denotes real values and ŷi denotes
the predicted values; ŷi = ωxi,ω ∈ Rm. The new samples are recorded as yn+1 = ω̂0xn+1.

Ridge regression involves adding a regularization L2 to reduce the variance with least squares:

L(ω) =
n∑

i=1

(yi −ω× xi)
2 + L2 =

n∑
i=1

(yi −ω× xi)
2 + λ‖ω‖22 (2)

where L2 is a bound norm controlled by the shrinkage parameter λ(λ > 0).
There are two main advantages to the ridge regression approach. First, when the sample dataset

is small, least square fitting may result in high-variance regressions. The importance of different risk
factors can vary greatly when the sample data slightly changes, so this technique may not effectively
explain risk factors. By introducing a small bias, ridge regression can reduce the variance of the fit as
well as the sensitivity of the result [35]. The dataset we used in this study is limited by the number of
intersections, which is relatively small, so ridge regression is more reasonable, stable, and explanatory.

Second, as shown in Equation (2), regularization L2 is a squared term and ridge regression does not
eliminate any variables. Instead, less important variables are assigned smaller parameters. Therefore,
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ridge regression retains nearly all parameter information and can clearly show the importance of each
variable. This helped us to compare the differences in each variable between the statistical data and
cyclists’ perceptions.

2.2. Bicycle-Vehicle Conflicts

Traffic accident data generally take a long time to collect. Traffic conflicts, conversely, are fairly
frequent and of minor social cost [36], making conflict data a promising alternative measure in safety
research. There are mainly two indicators to measure the probability of a collision: time-to-collision
(TTC) and post-encroachment time (PET). TTC reflects “the time required for two vehicles to collide if
they continue at their present speed and on the same path” [37]. Vehicles’ paths change continuously,
so the TTC value changes continuously. TTC requires real-time measurement and depends on motion
predictions. PET is defined by the time differences between two moments: the first road-user leaves
the potential conflict point and the second reaches this point [38,39]. Compared with TTC, PET only
requires two time stamps to measure conflicts. Its values are precisely defined with no need to include
vehicle path choices or changes. PET measures the relative closeness to a collision, making it adaptable
for analyzing conflicts at intersections because there are a lot of intersecting trajectories. TTC is more
useful in road segments and can only be applied when there is a definite collision course. We used PET
as a basic measure in this study and developed it to respond to the needs of our cycling safety analysis.

2.3. Video Conflict Data Collection Method

Many previous researchers have collected video traffic data [40–42]. The open-source software
Traffic Intelligence [43] is often utilized for object-tracking; which can automatically extract trajectories
of road users from video recordings. Trajectories show each road user’s position and speed over a
series of individual video frames. The speed, appearance, and other features of road users shown
in the videos can then be used to characterize the pedestrians, cyclists, and vehicles. In this study,
we used Traffic Intelligence to extract all vehicle and cyclist trajectories in the investigated intersections.
We identified each bicycle/vehicle pair sharing a crossed trajectory and calculated their PET values.
Generally, when PET > 3 s the probability of a collision is very small [44,45], so all PET values higher
than 3 s were excluded.

3. Data Collection

3.1. Conflict Data from Video Recordings

We collected conflict data from 20 intersections in Nanjing, China. All intersections had more
than one bicycle-vehicle accident within the past two years and were not undergoing construction
at the time. All intersections also had common intersection shapes; 30% were unsignalized while
70% were signalized, and four were T-shaped while the other 16 were cross-shaped. No stereo
intersections were included. The intersections had sufficient space and other qualities (legal allowances,
weak electromagnetic conditions, low wind speeds) for the launching and landing of unmanned aerial
vehicles (UAVs). The specific features of each intersection are shown in Figure 1.

Figure 1. The specific features of each intersection.
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We collected data for seven days at the end of November 2019, between 11:00 A.M. and 12:00 A.M.
Two UAVs were alternately deployed in each intersection to record traffic conditions. We avoided
the morning peak hours (normally between 7:00 A.M. and 12:00 A.M.) because intersections tend
to be congested during that time, vehicles tend to pass more slowly, and traffic police are more
likely to be present. These qualities make the intersection deviate from its usual state. All data
was acquired from late October to early November in 2019, during which time there were almost
no inclement weather events (e.g., fog, rain) in the surveyed area. This allowed us to minimize any
environmental disturbances.

After recording videos, we used Traffic Intelligence to extract all vehicle and cyclist trajectories,
then calculated the PET values (>3 s) of all conflicts. Figure 2 shows the PET and total conflicts
collected in each intersection. We observed a total of 1401 conflicts and an average of 70 conflicts in
each intersection (a maximum of 171 and a minimum of 27). The total variance in PET values was 0.16
and the maximum variance was 0.22 in the intersection grouping.

Figure 2. Post-encroachment time (PET) values and total conflicts collected in each intersection.

3.2. Candidate Risk Factors

Bicycle-vehicle accidents in intersections involve various factors related to road users and the
built environment [46]. For the purposes of this study, we collected candidate risk factors in traffic and
environmental dimensions based on the literature [11–16].

The traffic variables we collected include the average flow of bicycles, vehicles, and pedestrians.
We used Annual Average Daily Traffic (AADT) to define these traffic characteristics. AADT data are
widely used in accident analyses [13,47,48]. They are provided by the road management department
based on their in situ traffic flow monitoring equipment. However, pedestrian and bicycle traffic is
generally not counted. We calculated the traffic of bicycles and pedestrians during the investigation
period based on our UAV traffic recordings.

The environmental datasets were collected from Nanjing’s Urban Plan (2018–2035) [49] and an
open data source-Baidu map [50]. A radius of 500 m was considered to be a proper walking distance
for taking buses and subways [51,52]. In a given transfer between a bus and subway, the search area fell
within a 500 m radius [53,54]. We applied the 500 m search radius rule in calculating the influence area
of buses and subways. Detailed descriptions, statistical analysis results, and the values of dependent
variables for all intersections are shown in Table 1.
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Table 1. Descriptive statistics of various explanatory variables and all values of dependent variables.

Dependent Variable Description Min Max Mean S.D.
Intersections’ ID

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Average hourly traffic
of bicycles

Average hourly traffic
of bicycles in each

intersection
50 844 291.25 196.72 208 406 155 452 126 72 332 563 78 427 171 284 518 844 375 306 164 147 50 147

Annual average daily
traffic of vehicles

Annual average daily
traffic of vehicles 1296 13,590 5805.9 3373.55 9576 3708 13,590 8136 2268 1296 5976 10,134 1404 7686 3078 5112 9324 4392 6750 5508 2952 2646 9936 2646

Average hourly traffic
of pedestrians

Average hourly traffic
of pedestrians in each

intersection
12 462 198 134.95 276 90 216 264 318 42 390 432 54 192 318 228 42 168 120 12 12 462 126 198

Numbers of bus stops
in 500 m area

Bus stops within
500 m radius 1 8 4.85 1.62 1 4 5 2 5 6 6 8 5 4 3 7 6 4 6 5 4 6 6 4

Numbers of subway
(metro) stations in

500 m area

Subway (metro)
stations within 500 m

radius
0 2 0.65 0.65 0 2 0 0 1 1 0 0 1 1 2 1 0 1 1 0 0 1 1 0

Signalized type

Signalized
intersection was

recorded as “1” and
unsignalized was
recorded as “0”

0 3 1.7 0.64 1 2 3 2 1 2 2 2 2 2 2 2 2 2 2 1 1 1 0 2

Density of
commercial land use

in 50 m area

Density of
commercial land use
was measured within

50 m radius

0 0.272 0.077 0.06 5.53% 4.03% 12.37% 2.56% 3.63% 9.65% 9.77% 27.15% 13.10% 0.00% 7.69% 8.33% 6.55% 2.71% 2.41% 3.34% 4.90% 3.61% 21.11% 5.56%

Density of residential
land use in 50 m area

Density of residential
land use was

measured within
50 m radius

0 0.268 0.1179 0.09 0.00% 4.05% 17.05% 0.00% 26.81% 5.56% 4.45% 0.00% 7.73% 0.00% 13.56% 10.23% 16.64% 14.22% 11.60% 15.63% 19.07% 26.42% 19.96% 22.80%

Presence of bicycle
lanes

Exclusive bicycle lane
was recorded as “2”
and shared bicycle
lane was recorded

as “1”

1 2 1.35 0.48 2 2 2 1 1 1 2 1 1 1 1 2 2 1 2 1 1 1 1 1

Total number of
vehicle lanes

Vehicle lanes were
summed for all

approaches in the
intersection

9 35 18.1 6.67 19 24 21 20 9 12 26 21 10 21 17 17 35 26 24 13 13 12 10 12

Total approaches The sum of all
directions of approach 3 4 3.8 0.40 4 4 4 4 3 4 4 4 3 4 4 4 4 4 4 3 3 4 4 4

Pedestrian signal

Pedestrian signal was
recorded as “1”;
otherwise was
recorded as “0”

0 1 0.8 0.40 1 1 1 1 1 1 1 0 1 0 1 1 1 1 1 1 1 0 0 1

Minimum crossing
Angle

The minimum
crossing angle 18 90 76.65 19.40 90 90 90 68 90 90 63 36 90 18 69 90 60 83 90 79 78 90 90 79
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3.3. Cyclists’ Safety Perception from Questionnaire Survey

From June to July 2020, we distributed questionnaires to cyclists at the investigated intersections.
The respondents were asked to self-report their perceptions of a series of listed risk factors. For each
risk factor, two questions need to be answered:

Firstly, if this factor exists or increases, will your cycling be safer or more dangerous?
Secondly, please rank the level of your perception with a minimum of 0 (very low) and maximum

of 10 (extremely strong).
The listed risk factors are consistent with the candidate risk factors in Section 3.2. Sociodemographic

information (gender, age, and income level) was also collected in this survey. We determined the
safety/danger grade of each factor by averaging all the reported perception levels, respectively. A total
of 400 questionnaires were distributed, with an average of 20 at each intersection. We received 312
questionnaires (78%), excluded any incomplete or inaccurate questionnaires (22%), and ultimately
retained at least 12 questionnaires for each intersection. In six of the intersections we received 100%
valid questionnaires. The minimum number of respondents for our investigation can be calculated
using Equation (3) [55]:

n =
z2
× cv2

E2 (3)

where n is the sample quantity, z is the standard constant (1.96 under 95% confidence), E is the allowable
error margin (10%), and cv is the coefficient of variation, which is the ratio of the standard deviation
(number of cyclists) to its mean. Based on the standard deviation and mean value of V1 (Figure 1),
cv was equal to 0.58. The minimum number of respondents under 95% confidence was 129. Our sample
size (n = 312) was higher than the minimum (n = 129).

We used Myer’s index [56] to evaluate the representativeness of our sample. Assuming there
is one population with no data preferences, the age’s mantissa should have a uniform distribution.
We calculated the difference between the actual distribution and the theoretical distribution in the age
mantissa in our investigated population; the sum of their absolute values is the Myer’s index. When a
Myer’s index is higher than 60, the sample is unrepresentative. Figure 3 shows the actual distribution
of the age mantissa in our case, where the Myer’s index is 10.40; this is lower than 60, so our sample
was fairly representative.

Figure 3. Age mantissa distribution.

4. Results

4.1. Risk Factors from Ridge Regression and PET Data

The ridge-regression risk factor identification results are shown in Table 2. The ridge regression
parameter was chosen by an automatic method [57].
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Table 2. Ridge regression result.

Dependent Variable Estimate Scaled Estimate Std. Error (Scaled) t Value (Scaled) Pr(>|t|)

(Intercept) −86.39 - - - -
Annual average daily traffic

of vehicles 0.59 493.79 130.91 3.77 0.00

Average hourly traffic
of bicycles 0.09 54.22 130.99 0.41 0.68

Average hourly traffic
of pedestrians 3.35 336.50 123.52 2.72 0.01

Numbers of bus stops in
500 m area 9.70 70.30 122.80 0.57 0.57

Numbers of subway (metro)
stations in 500 m area −110.35 −322.67 124.32 2.60 0.01

Signalized type 41.89 119.97 126.15 0.95 0.34
Density of commercial land

use in 50 m area 1156.52 335.27 128.65 2.61 0.01

Density of residential land
use in 50 m area 187.17 72.09 128.14 0.56 0.57

Presence of bicycle lanes 38.15 81.38 130.53 0.62 0.53
Total number of

vehicle lanes −2.63 −78.34 131.90 0.59 0.55

Total approaches −10.25 −18.34 132.39 0.14 0.89
Pedestrian signal −111.53 −199.52 126.03 1.58 0.11

Minimum crossing angle 3.10 269.15 125.58 2.14 0.03

R-Square: 0.8893
Adj. R-Square: 0.6496

Ridge regression parameter: 0.19

As can be observed in Table 2, annual average daily traffic of vehicles, average hourly traffic
of pedestrians, number of subway (metro) stations, density of commercial land use, and minimum
crossing angle show significant correlation with bicycle-vehicle conflicts.

Notably, the annual average daily traffic of vehicles shows the highest positive influence on
conflicts. The number of subway (metro) stations shows a very large negative effect on conflicts due to
its high parameter estimate (−322.67). Interestingly, though the bicycle is a crucial participant in these
conflicts, bicycle traffic appears to have no statistical correlation with bicycle-vehicle conflicts (p = 0.68).

4.2. Risk Factors from Cyclist Perceptions

The cyclists’ perceptions of various traffic and environmental factors are shown in Figure 4.

Figure 4. Safety and danger grades of all variables of cyclist perceptions, aggregated by average,
sorted by grade.
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As shown in Figure 4, nearly all the cyclists who responded to our survey stated that vehicle
traffic flow, density of commercial land, intersection approaches, and crossing angles negatively affect
their perceptions of safety, almost without objection. These four factors consistently scored highest for
danger, though some cyclists stated that residential land density, number of bus stops, pedestrian traffic
flow, and number of subway stations also have certain effects on safety. Understandably, pedestrian
signals, the presence of bicycle lanes, and signalized infrastructure appear to provide the cyclists with
a sense of security.

Comparing with the statistical identifications presented in Section 4.1, the risk factors reported by
cyclists show higher danger grades and vehicle traffic consistently shows the highest risk. The cyclists
who responded to our questionnaire perceive substantial danger in areas with more bus stops and
certain intersection approaches, while these two factors showed little significance in the statistical
analysis. The cyclists gave a high danger grade to bus stops (6.20) and subway stations (4.65). However,
statistically, bus stops show no significant relation to cyclist-vehicle collision probability and subway
stations are actually negatively related to cyclist-vehicle conflicts. These effects merit further research.

5. Discussion and Conclusions

This study was conducted to explore the differences in risk factors between statistical bicycle-vehicle
conflict data and cyclists’ perceptions of risk. Ridge regression was adopted to identify risk factors
from in situ conflict data and a questionnaire was distributed to evaluate cyclists’ self-reported
perceptions of safety and danger based on numerical aggregation. Many previous researchers have
investigated the risk factors of cycling, but few have compared statistical data with cyclists’ real-world
perceptions. Our results suggest that cyclists may misestimate the risk of certain factors. In other words,
improvements in certain risk factors may not improve cyclists’ perceptions of safety and therefore may
not promote cycling as an effective mode of transportation [58].

We find that cyclists may overestimate the risk of bus stops and subway stations, which is
consistent with previously published research [59]. One possible explanation is that an increasing
number of bus stops leads to more interactions between buses/passengers and cyclists. Buses interfere
with cycling routes when they stop as well, and in certain cases force passengers to cross over the
bicycle lane when deboarding. The number of bus stops is indeed an important risk factor for
cycling [13,15,17,60,61]. In our investigated intersections, either few buses pass by or the bus transit
lane is separate; it is possible that buses have relatively little influence on cycling safety in these cases.
Our questionnaires show that cyclists are concerned for their safety at bus stops (danger grade of 6.20),
which indicates that cyclists’ perceptions may depend on certain aspects of the cycling process itself
rather than the specific characteristics of intersections. Improving a single intersection’s safety may not
improve the cyclist-perceived safety there, which is consistent with previous research as well [62].

Few researchers have used subway stations as a candidate variable when exploring cycling safety
due to a general scarcity of relevant data. We tested the number of subway stations as a variable affecting
cyclist perceptions and found that cyclists appear to misestimate its effects on safety. Statistically,
subway stations show a positive relation with cycling safety; cyclists perceive the opposite. The presence
of a subway line leads to a reduction of other motor vehicles on the road [63], which eases nearby
vehicle traffic. Subway pedestrians can cross the street through underpasses, reducing pedestrian
traffic at these intersections as well. Both phenomena indirectly cause a decline in the risk of cycling.
On the other hand, subway stations continually attract bike-shares and pedestrians [63], which may
give cyclists a sense of danger due to higher flows of other cyclists.

Vehicle traffic, pedestrian traffic, and commercial land density are the most important risk factors
for cycling as reflected in both accident data [13,17,60,64] and cyclists’ self-reported perceptions [19,25].
Bicycle traffic, interestingly, is not significantly related to bicycle-vehicle conflict probability. The cyclists’
perceptions are equivocal, with a safety grade of 5.61 and danger grade of 2.85. The SIN effect may
account for this. As shown in Table 1, the variance of average hourly traffic of bicycles is relatively
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large. This makes the effects of bicycle traffic flow vary at different intersections. In some intersections,
the risk increases when there are more bicycles. In other intersections, the opposite is true.

Our results reveal some noteworthy suggestions for promoting cycling. Intersections may be
improved at the regional level, for example, as improving individual intersections may not enhance
cyclist-perceived safety. The layout of bus stops and subway stations at intersections may be adjusted
for uniformity. Reducing the interactions between buses (or bus passengers) and cyclists can be helpful,
such as by using integrated bay bus stops (i.e., stops on the right of the intersection’s vehicle entrance,
where passengers use crosswalks). Bike boxes and staggering buses and cyclists’ rush hours also may
be helpful, in addition to setting shared bike stops as far away as possible from bicycle lanes and bus
stops. We also recommend that subway stations be designed with convenient underground crossings
and additional entrances, allowing pedestrians to disperse more quickly and reducing the danger that
cyclists may otherwise perceive there.

Further, safety factors should be weighted properly when choosing improvements to a given
intersection’s safety. The space for traffic to flow through any intersection is limited, so numerous
measures may not be possible to implement simultaneously. The objective is generally to maximize
the effects of a certain improvement rather than the quantity of improvement measures taken at once.
However, “maximum improvement” does not necessarily yield the maximum level of perceived
safety. It is also important to improve safety perceptions, not solely the statistical measures of safety,
when determining improvement measures. Using safety weights/grades can be a feasible approach to
this, but the specific effects still need further study.

This work is not without limitations. First, though we selected intersections with bicycle
collision records, we could not obtain specific accident records due to the confidentiality needs of
management departments. This may have harmed the credibility and persuasiveness of our results.
Second, our sample size is relatively small; further research is yet needed to investigate a greater
proportion of the intersections in the investigated district. Some intersections could not be covered
here due to environmental factors (e.g., high winds, strong electromagnetic fields). Despite these
limitations, we believe our results lend meaningful suggestions for promoting cycling as a mode
of transportation. Our results also may be helpful in improving intersection safety. The revealed
problems expand previous research on risk factor identification and the analysis of safety perceptions.
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