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Abstract: This paper suggests that human pose estimation (HPE) and sustainable event classification
(SEC) require an advanced human skeleton and context-aware features extraction approach along
with machine learning classification methods to recognize daily events precisely. Over the last few
decades, researchers have found new mechanisms to make HPE and SEC applicable in daily human
life-log events such as sports, surveillance systems, human monitoring systems, and in the education
sector. In this research article, we propose a novel HPE and SEC system for which we designed a
pseudo-2D stick model. To extract full-body human silhouette features, we proposed various features
such as energy, sine, distinct body parts movements, and a 3D Cartesian view of smoothing gradients
features. Features extracted to represent human key posture points include rich 2D appearance,
angular point, and multi-point autocorrelation. After the extraction of key points, we applied a
hierarchical classification and optimization model via ray optimization and a K-ary tree hashing
algorithm over a UCF50 dataset, an hmdb51 dataset, and an Olympic sports dataset. Human body
key points detection accuracy for the UCF50 dataset was 80.9%, for the hmdb51 dataset it was 82.1%,
and for the Olympic sports dataset it was 81.7%. Event classification for the UCF50 dataset was 90.48%,
for the hmdb51 dataset it was 89.21%, and for the Olympic sports dataset it was 90.83%. These results
indicate better performance for our approach compared to other state-of-the-art methods.

Keywords: context-aware features; human pose estimation; K-ary tree hashing; pseudo 2D stick
model; ray optimization; sustainable events classification

1. Introduction

Human posture estimation (HPE) and sustainable event classification (SEC) are the most interesting
and challenging areas of current research. Researchers put in a tremendous amount of effort to find a
way to obtain ever better performance and results from HPE systems by applying different machine
learning methods. Digital globalization means an immense amount of data is uploaded on social
media, safe city projects, daily activity monitoring systems, hospital data, educational intuitional
data, virtual reality, and robotics. These data need to be processed, evaluated or investigated by
researchers in order to find human pose estimations, human motion information, and sustainable
event classification [1–4]. On social media, a huge amount of video and image data is uploaded and
shared for human-human and human-machine interaction. Human posture analysis enables us to
identify human motion information and to estimate human postures such as walking, running, sitting,
standing, and rest positions. Sustainable event detection is used to identify and classify human event
information such as playing, sitting, running, handshaking, to name a few classifications from social
media data [5–9].
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Safe City Projects provide one of the best examples of security surveillance systems. Using safe city
data, we can detect anomalous events in daily human life-log environments. When an anomalous event
occurs, the system generates an alarm and activates nearby emergency service institutions [10–13].
These projects help save lives, time, manpower, and cost, but it remains a challenging domain for
researchers. Using SEC, professionals can monitor the activities of patients, doctors, and other staff

members inside hospitals. It is also helpful in sports events where indoor and outdoor activities can be
monitored and classified. SEC systems can identify classes of sports using video data but there remain
difficulties in classifying human events due to their complex nature and sometimes camera position is
a critical factor. The identification of sustainable events and human posture estimation still need to be
improved in the domains of feature mining, human skeleton extraction, and classification [14–16].

In this research article, we present a novel method for sustainable event detection and human pose
estimation in which we propose a pseudo-2D stick model based on a view-independent human skeleton,
full-body, and key points context-aware features extraction. After features extraction, ray optimization
was applied for data optimization and K-ary tree hashing was applied for sustainable event classification.
In features extraction, we extracted two main types of features. At first, features were extracted from
the full human body; these features included energy features, sine features, distinct motion body parts
features, and a 3D Cartesian view of smoothing gradients. Features which were extracted from human
body parts are rich 2D appearance features, angular point features, and multi-point autocorrelation
features. Furthermore, we applied a hierarchal optimization model in which we first applied ray
optimization as a data optimizer, while event classification was archived by a K-ary hashing algorithm.
The key contributions in this paper are:

• Due to the complex movement of the human body and complex events, 19 human body key
points were detected using frame size, human silhouette size, and a change detection approach.

• We propose a pseudo-2D stick model using the information from detected key points, 2D stick
model, volumetric data, degree of freedom, and kinematics. This produced much better accuracy
for sustainable event classification.

• Context-aware feature extraction based upon the full human body and human body key points
was applied. Energy features, sine features, distinct motion body parts, and a 3D Cartesian view of
smoothing gradients were extracted from the full human silhouette. Rich 2D appearance features,
angular point features, and multi-point autocorrelation features were extracted using human body
key points information. With the help of the extracted feature vector, we produced more accurate
sustainable event classification results.

• The hierarchical optimization approach is adopted in this paper where ray optimization was used
for data optimization and K-ary tree hashing was applied for sustainable event classification.

The organization of this paper is as follows: Section 2 describes related works. In Section 3,
SEC system methodology is discussed. Section 4 presents the experimental setup and results plus a
comparison with state-of-the-art methods. In Section 5, conclusions and future directions are outlined.

2. Related Work

Cameras and various types of sensors provide the key parameters for SEC research in HPE and
sustainable event classification systems. In this section, we discuss previous works in SEC based on
2D/3D images and body-marker sensors.

2.1. Sustainable Event Classification via 2D/3D Images

In sustainable event classification using 2D or 3D images, cameras play a vital role in monitoring
human interaction in different places such as sports grounds, indoor and outdoor activities, shopping malls,
educational institutions, hospitals, and roads. In [17], Li et al. presented a novel technique for event
detection using a low-rank and compact coefficient dictionary learning (LRCCDL) algorithm. The image
background is removed by extracting the histogram of the projected optical flow, then a low-rank compact
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dictionary coefficient is obtained using joint optimization. In the last stage, event detection is performed
using norm optimization and reconstruction cost. In [18], Einfalt et al. designed an approach for event
detection in the motion of athletes with a two-step method in which the extraction of chronological 2D
pose structures from videos are implemented. They designed a convolutional sequence network to
precisely detect the event using translation task categorization. In [19], Yu et al. proposed a heuristic
approach that can identify events through a single move from videos of soccer matches. This is shared
with the replay recognition system to find maximum temporal context features for fulfilling spectator
needs and producing story clips. In [20], Franklin et al. designed a general deep learning method
for normal and anomalous event detection. They obtained results using a graph-based thresholds
technique for classification and segmentation. For time utilization, they found normal and abnormal
features from videos using a deep learning-based approach. In [21], Lohithashva et al. developed a
novel fusion features descriptors method for violent event detection using local binary pattern (LBP)
and gray level co-occurrence matrix (GLCM). They used supervised classification algorithms with
extracted features for event classification. Feng et al. [22] designed a guided attention Long Short
Term Memory (LSTM) system in which they extract the Convolutional Neural Network (CNN)based
features and temporal location in complex video data. To detect humans in videos they used the
You only Look Once YOLO v3 model while event detection is performed by a guided Long Short
Term Memory (LSTM) based approach. Researchers implement these approaches with deep learning,
Convolutional Neural Network (CNN) methods, or an inadequate set of features in video and image
datasets. Our designed approach is based on statistical machine learning classification methods with a
pseudo-2D stick model and seven different context-aware features. For experimental analysis, we used
three publicly available benchmarked datasets.

2.2. Sustainable Event Classification via Body-Marker Sensors

In body marker-based SEC approaches, several body-markers are used such as diodes, infrared-based
markers, and other sensors. These sensors are connected to the human body to estimate human body
motion information [23]. Human joints and bones are the key areas to attach these digital sensors.
Medical, sports, activity analysis, and human tracking systems are key fields for detection systems
based on these sensors. In [24], Khan et al. proposed a body-marker-based approach for patients to
provide therapy at home. Body-markers with a color indication system were attached to the human
body joints to record the motion information of 10 patients. For sports activities, motion monitoring
body-marker-based sensors were also used in [25] where Esfahani et al. designed a lightweight trunk
motion approach (TMA) via body-worn sensors (BWS). In this system, 12 attachable sensors were
designed to estimate 3D trunk movements and seven actions were performed. In [26], Golestani et al.
developed a novel wireless system to estimate human physical activities. They tracked human events
via a magnetic induction wire; body-markers were connected to human body key points. Deep RNN
(recurrent neural network) and laboratory estimation were used to improve performance.

3. Designed System Methodology

In this section, we describe our proposed methodology to estimate human posture and sustainable
event classification (SEC). Initially, the pre-processing phase covered the input of videos, noise removal,
and frame sizing tasks. Then, the silhouette extraction, human detection, and human body key points
were detected and represented as a pseudo-2D stick model. After that, seven different types of features
that belong to two major categories (full-body features and key point features) were extracted. Then,
ray optimization was applied to optimize the feature vector. Finally, a K-ary tree hashing classifier
was applied for sustainable event classification. Figure 1 presents the complete model of the proposed
system (SEC) methodology.
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Figure 1. Design architecture of proposed sustainable event classification model.

3.1. Pre-Processing of Data and Human Detection

The primary aim of data pre-processing is to extract useable information to avoid extra data
processing cost. Initially, we transformed video to images, and then converted RGB to gray-scale
images to reduce image noise and unwanted information by applying a Gaussian filter [27]. After that,
the background subtraction phase was achieved in which we applied the Gaussian mixture model
(GMM) and a frame differencing technique to segment the human silhouette as a foreground.
Then, segmentation of the human silhouette was performed which included histogram oriented
human skin pixel thresholding along with Otsu’s method to extract the human silhouette [28].
Equation (1) represents Otsu’s method. Figure 2 shows the RGB image, human silhouette detection,
and human detection.

Om =

 R
(

Thm+Thax
4

)
, i f Thax ≤ 10

R
(

Thm+Thax
2

)
, i f Thax > 10

(1)

where R is the loop variable, Thm is the threshold range which is defined by Otsu’s procedure and Thax

is the highest color frequency value of the defined histogram.

Figure 2. (a) RGB image, (b) human silhouette extraction, and (c) human detection results.
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3.2. Human Posture Estimation: Human Key Points Detection

In order to initially identify human body key points, the torso point was detected by calculating
the center of the detected human silhouette that estimated the outer human shape of the human body
pixels Hsp. For detection of the torso point, Equation (2) was formulated as

Z f
Tp ← Z f−1

T + ∆Z f−1
T (2)

where Z f
sp is the torso point location in any video frame f. It was derived by calculating the frame

differences (See Figure 3). For the detection of the human knee point, we took the point halfway
between the foot and the hip points. Equation (3) represents the human knee point,

Z f
SK =

(
Z f

SF −Z f
SH

)
/2 (3)

where Z f
SK is the human knee point, Z f

SF is the human foot point, and Z f
SH denotes the human body hip

point. For elbow point extraction, we took the point halfway between the hand and shoulder points
which is shown in Equation (4).

Z f
SE =

(
Z f

SHN −Z f
SSD

)
/2 (4)

where Z f
SE is the human elbow point, Z f

SHN is the human hand point, and Z f
SSD was denoted as the

human body shoulder point. Algorithm 1 shows the complete description of human body key point
detection.

Figure 3. The 19 human body key points detection over UCF50, hmdb51, and Olympic sports datasets.

In this section, the human skeletonization [29,30] is considered to be a pseudo-2D stick model.
Figure 4 presents a detailed overview of the pre-pseudo-2D stick model which comprises 19 human body
key points which in turn comprise 3 main skeleton parts: upper body skeleton (Ubs), midpoint (Mp),
and lower body skeleton (Lbs). Ubs is based on the linkage of the head (HImg_H), neck (HImg_N),
shoulders (HImg_S), elbow (HImg_E), wrist (HImg_W), and hand points (HImg_Hn). Lbs is based
upon the linkage of hips (HImg_Hp), knees (HImg_K), ankle (HImg_A), and feet HImg_F). Each key
point takes a specific time t to perform a specific action. Equations (5)–(7) represent the relationships in
the pre-pseudo-2D stick model:

Ubst = HImg_H
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Algorithm 1. Human body key points detection.

Input: HES: Extracted human silhouette
Output: 19 body parts, specifically, head, neck, shoulders, elbows, wrists, hands, mid, hips, knees, ankles, and feet.
HES = human silhouette, HS = human shape, HI = height, WI = width, LI = left, RI = right, IH = head, IN = neck

Repeat
For i = 1 to N do

Search (HES)
IH = Human_head_point_Area;
HImg_HI = UpperPoint (IH)
EHI = Human _End_Head_point (IH)
HImg_Feet = Bottom (HS)

HImg_Mid = mid (HI,WI)/2
HImg_Foot = Bottom(HS)& earch(LI,RI)

HImg_K = mid(HImg_Mid, HImg Foot)
HImg_H = HR &search(LI,RI)
HImg_S = search(IH, IN)&search(RI,LI)
HImg_E = mid(HImg_H, HImg_S)
HImg_W = mid (HImg_H, Img_S)/2
HImg_Hp = HImg_Mid &search(RI,LI)
HImg_A = mid (HImg_K, HImg Foot)/4

End
Until largest regions of extracted human silhouette are searched.
return 19 body parts: head, neck, shoulders, elbows, wrists, hands, mid, hips, knees, ankles, and feet.
HES = human silhouette, HS = human shape, HI = height, WI = width, LI = left, RI = right, IH = head,
IN = neck

Figure 4. A few examples of the pre-pseudo-2D stick model over UCF50, hmdb51 and Olympic
sports datasets.

3.3. Pseudo 2D Stick Model

In this section, we propose a pseudo-2D stick model that enables an unbreakable human skeleton
during the movement of the human body [29], and, due to its unbreakable nature, helps us achieve
more accurate sustainable event classification. To achieve this, we detected 19 human body key points,
then self-connection with each node was performed for the interconnection of every node. After this,
we performed a fixed undirected skeleton graph which is called the 2D stick model (Section 3.2).
Scaling of the stick was performed in which we included the upper and down side scaling. If the
scaling limit of 20 pixels is exceeded, the stick model will not perform well. Equation (8) shows the
mathematical representation of the stick model’s scaling.

LbS = Kps
{

1, i f U
∣∣∣∣∣∣ L ≤ 20

0, U|| L > 20

}
(8)

where LbS is denoted as a human 2D-stick model, U is the upper limit, L is the lower limit, and Kps
denotes key points scaling. We used volumetric and kinematic data to allow the skeleton to track
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the human body key points. We used the size of the human silhouette to calculate the upper and
lower distances. Then, frame size, consisting of the height and the width of the frame was estimated.
Equation (9) was used to find the head position;

Z f
Hh ← Z f−1

Hh + ∆Z f−1
Hh (9)

while Z f
Hh is denoted as the head position in a given frame. To achieve pseudo-2D, we considered

human motion direction, frame differencing from frame 1 to the next frame, and change detection which
occurred in frame 1 to the upcoming frame. Human body edge information helped us to apply the
degree of freedom for the angular rotation of the human skeleton while the local and global coordinate
system and histogram of the oriented gradient (HOG) were performed. The detailed description of
HOG is presented in Section 3.4.7.

We applied the Cartesian product [31] to achieve the ultimate results of the pseudo-2D stick model.
Figure 5 shows the results of the pseudo-2D stick model and Algorithm 2 describes the complete
procedure of the pseudo-2D stick model.

Algorithm 2 Pseudo 2D stick model.

Input: Human body key point and 2D stick model
Output: Pseudo 2D stick model (p1, p2, p3, . . . , pn)
HD = human key points detection, SN = self-connection with each node, SS = scaling of sticks,
FG = fix undirected skeleton graph, VD = volumetric data, HK = human body key points tracking and
kinematic dependency, KE = key points and edges information, DF = degree of freedom, LG = local and global
coordinate system, CP = Cartesian product of skeleton graph.
% initiating pseudo 2D %
Pseudo 2D stick model← []
P2DSM_Size← Get P2DSM_Size ()
% for loop on segmented silhouettes frames of all interaction classes %
For I = 1:N
P2DSM_interactions← GetP2DSM(interactions)
%Extracting HD, SN, SS, FG, VD, HK, KE, DF, LG, CP%
Human key points← HD(P2DSM_interactions)
Self-connection with each node← SN(P2DSM_interactions)
Scaling of sticks and key points← SS(P2DSM_interactions)
Fix undirected skeleton graph← FG(P2DSM_interactions)
Volumetric data← VD(P2DSM_interactions)
Key points tracking← HK(P2DSM_interactions)
Key points and edges information← KEP2DSM_interactions)
Degree of freedom with root position← DF (P2DSM_interactions)
Local and global coordinate system← LG(P2DSM_interactions)
Cartesian product of skeleton graph← CP(P2DSM_interactions)
Pseudo 2D stick model← Get P2DSM
Pseudo 2D stick model.append (P2DSM)
End
Pseudo 2D stick model← Normalize (pseudo 2D stick model)
return Pseudo 2D stick model (p1, p2, p3, . . . , pn)
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Figure 5. Pseudo-2D stick model results over the UCF50 dataset.

3.4. Context-Aware Features

In this section, we explain the complete overview of context-aware features that includes full-body
features and three human body key points features for SEC. Algorithm 3 explains the procedure of
context-aware feature extraction.

Algorithm 3 Context-aware feature extraction.

Input: N: Segmented silhouettes frames of RGB images
Output: context- awarefeature vectors(f1,f2,f3, . . . ,fn)
% initiating feature vector for sustainable event classification %
context-awarefeature-vectors← []
Fearurevectorsize← GetVectorsize ()
%for loop on segmented silhouettes frames of all interaction classes %
For i = 1:N
Featuresvectors_ interactions← Getfeaturesvectors(interactions)
% extracting energy features, disting motion body parts flow, 3D cartesian view smoothing gradient, sine
features , multi points auto correlation, rich 2D appearance feature%
Energy Features← ExtractEnergyFeatures(Featuresvectors _interactions)
Disting Motion Body Parts Flow←ExtractdistinctMotionBodyPartsFlowFeatures (Featuresvectors _interactions)
3D Cartesian View Smoothing Gradient←
Extract3DCartesianViewSmoothingGradientFeatures(Featuresvectors _interactions)
Sine Features← ExtractSineFeatures(Featuresvectors _interactions)
Multi Points Auto correlation← ExtractMultiPointsAutocorrelation(Featuresvectors _interactions)
Rich 2D Appearance Feature← ExtractRich2DAppearanceFeatures(Featuresvectors _interactions)
Vectors Angle Point features← ExtractVectorsAnglePointFeatures(Featuresvectors _interactions)
Feature-vectors← GetFeaturevector
Context-aware Feature-vectors.append (Feature-vectors)
End
Context-aware Feature-vectors← Normalize (context-aware Feature-vectors)
return context-awarefeature-vectors(f1,f2,f3, . . . ,fn)

3.4.1. Full Body: Energy Feature

The full-body context-aware energy feature En(t) estimates human body key points movement
in the energy matrix, which contains a set of indexes [0–10,000] over the detected human silhouette.
After the distribution of energy indexes, we gathered only higher energy indexes using the thresholding
method and mapped them all in a 1D vector. Energy distribution is represented in Equation (10) and
the results of energy features are shown in Figure 6.

En(t) =
w∑
0

ImgR(i) (10)
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where En(t) indicates the energy vector, i expresses index values, and ImgR denotes the index value of
assured RGB pixels.
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3.4.2. Full Body: Distinct Motion Body Parts Flow Features

In this subset of a context-aware feature that is based upon full human body features, we estimated
the motion flow of human body parts from frame 1 to frame n using motion estimation and changes
detection methods. After obtaining the motion flow of human body parts we mapped the flow of all
the distinct motion body parts in a 1D vector and then concatenated with energy feature. Equation (11)
shows the correlation between distinct body parts flow.

f (Dmb f ) =
n∑

n = 1

(snM || EnM) (11)
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where Dmb f is denoted as distinct motion body parts flow vector, n denotes the index integer, S is the
starting index of motion flow, E is the ending index of motion, and M shows the motion flow. Figure 7
shows the distinct motion body parts features.

Figure 7. Distinct motion body parts features flow from starting as pink in color and ending in green.

3.4.3. Full Body: 3D Cartesian View Smoothing Gradient Features

From these full-body features, we determined the smoothing gradient of the detected human
silhouette and calculated the gradient values of the refined full-body silhouette. After this, a 3D
Cartesian product of the smoothing gradient values was obtained and the 3D Cartesian view was found
so that we could obtain the 3D values. We then found the difference between every two sequential
frames f and f − 1 of the human silhouettes Hs. Equation (12) shows the mathematical formula for the
3D Cartesian view smoothing gradient. After extracting 3D values, we mapped them in a vector and
concatenated with the main feature vector as;

CVTSF( f ) =
∣∣∣∣Hs f

TSF −Hs f−1
TSF

∣∣∣∣ (12)

where CV denotes the Cartesian view vector, and TSF is the top, side, and front views of the 3D
Cartesian view smoothing gradient. Figure 8 shows the 2D and 3D Cartesian view smoothing gradient.

Figure 8. 2D and 3D representation of 3D Cartesian view smoothing gradient.

3.4.4. Full Body: Sine Features

To analyze the human body key points, we projected the human body key points in the x,y planes.
In this way, we obtained the row and column values of the human body key points and applied
trigonometric addition using sin (α + β). Equation (13) represents the sine features:

sin(α + β) = sin α cos β + sin β cos α (13)

After extracting the sine features, we mapped them in a vector and a concatenate sine feature
vector with the main feature vector. Figure 9 shows the results of sine features over two different classes:
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Figure 9. 1D representation of sine feature vector.

3.4.5. Key Body Points: Angle Point Feature

Angle point features were based on key body points. We divided the human silhouette into six
main parts: part (A) contained the head, right shoulder, and right hand points; part (B) contained the
head, left shoulder, and left hand points; part (C) contained neck, mid, and right knee points; part (D)
contained neck, mid, and left knee points; part (E) contained right knee, right ankle, and right foot
points; and, finally, part (F) contained left knee, left ankle and left foot points. By using these points,
we got six triangles and determined the area. Equation (14) represents the area of human body parts
and Figure 10 represents the angle point features

Area =
1
2
{
H1(RH2 −RS2) + RH1(RS2 −H2) + RS1(H2 −RH2)

}
(14)

where Area is defined as the area of a triangle, H1, H2 is denoted as the head point, RH1, RH2 is denoted
as the right-hand point, and RS1, RS2 is denoted as the right shoulder point. We considered the same
equation with different parameters to estimate the area of the remaining triangles.
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3.4.6. Key Body Points: Multi-Points Autocorrelation Features

In the multi-points autocorrelation feature, we applied the windowing method on the 19 detected
human body key points. We considered certain points as centers and took a 5 × 5-pixel window from
the center in frame 1 to frame n. We then repeated this method for all detected human body parts.
After obtaining a 5 × 5 window of all human body key points, we determined the autocorrelation.
To find the mean of data xi, . . . , xn is

X =
1

n
∑n

i = 1 Xi
(15)

where X is the mean, Xi is the input data, and lag p for p ≥ 0 of the time is represented as

Rp =
Sp

S0
(16)
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where S0 is the variance of data, and Rp is the correlogram furcation. Figure 11 shows the results of the
multi-points autocorrelation of various event-based classes.

Figure 11. Results of multi-points autocorrelation on various human body key points.

3.4.7. Key Body Points: Rich 2D Appearance Feature

Context-aware rich 2D appearance features were based on key body points. Regarding these
features, we applied a window of 10 × 10 pixels from the center point of the detected human body
key point and repeated the same step for the other 18 human body key points. We then mapped
these on a 2D stick model and found the histogram of the oriented gradient (HOG) for each 10 × 10
window from frame 1 to frame n with the spatial Gaussian window with σ = 10 pixels. Considering the
horizontal gradient kernel range [−1, 0, 1] and a vertical gradient kernel range is [−1, 0, 1] we applied
the following formula;

R2d = Wbp || Lbs || HOgb

{
Hgk [−1, 0, 1]
VGK[−1, 0, 1]t

}
(17)

where R2d are rich 2D features, Wbp represents the windows of human body key points, Lbs is the
human 2D stick model, HOgb is the histogram of the oriented gradient, Hgk is the horizontal gradient
kernel, and VGK is the vertical gradient kernel. Figure 12 shows the complete description of the 2D
rich appearance feature along with the windowing process, 2D stick, and HOG.

Figure 12. Functional structure of 2D rich appearance feature and 2D stick model.
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3.5. Sustainable Event Optimization: Ray Optimization

The ray optimization (RO) algorithm consisted of several variables of a given problem [32].
These variable agents were represented as light rays which were based on the law of light refraction
derived by Snell’s law. Light refracts and changes its direction when it travels to a darker medium
from a lighter medium. Every transparent material has refraction indexes; lighter material indexes are
shown as Lm, and darker material is denoted by Dm. Equation (18) expresses Snell’s law:

Lm. sinθ = Dm. sin∅ (18)

where θ and ∅ are present as the angles of the normal surface. Lm and Dm are refracted ray vectors. The RO
has several agents representing the parameters of the layout dilemma, as any other meta-heuristic
mechanism. The ray-tracing, which would be the primary basis of the RO, was discussed in two and
three-dimensional structures as stated earlier, but a method for executing the algorithm’s steps in
high dimension spaces had to be implemented. We assumed there were four specification variables
for an objective function. The target function for this objective function is calculated in the first step.
Now, based on the RO algorithm, this solution vector had to be replaced by a new location in the
search space. To accomplish this, the key value was split into two members of each group and then the
respective participants were transferred to the new positions as shown in Equation (19)

Ai j = A j.min + Rnd
(
A j.max −A j.min

)
(19)

where Ai j is the ith agent of jth variable, A j.max and A j.min are the minimum and maximum limits,
and Rnd denotes the random number with a limit of 0 to 1. A certain agent should now be relocated
to its new location. The point that each entity transfers had to first be calculated. The core of this
argument is called cockshy and it is defined by:

Bk
i =

(iat + k).BG + (iat−K)BLi

2.iat
(20)

where Bk
i denotes the ith agent of the origin, iat is the limit of total iterations while BG and BL are the

local and global top agents. Figure 13 shows the RO flow chart, and Figure 14 shows the results over
various event classes.

Figure 13. Ray optimization flow chart.
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Figure 14. Results of ray optimization of (a) diving and (b) golf swing over UCF50 dataset.

3.6. Sustainable Event Classification: K-ary Tree Hashing Algorithm

The K-ary tree hashing algorithm is based on a rooted tree in which every node has maximum k
children [33]. For the classification, the min hashing approach was applied as the pre-step of K-ary
tree hashing in which a similarity check between two sets Ai and A j was performed. A set of B

hash functions {ñb}
B

b = 1
for A∗ was applied, therefore the min hash function for A∗ was (ñb(A∗)).

To generate a permutation index we had:

ñb( j) = mod((Ld j + Md), Nd) (21)

where Ld j, Md, Nd were the random permutations from the dataset, from set |A|, 0 j was the index.
To find the best solution, the K-ary tree hashing algorithm adopts two approaches; to fix the number of
neighboring nodes, a naïve approach is adopted, while for size fixing of any number, MinHashing is
applied. The naïve approach is defined in Algorithm 4.

Algorithm 4 Naïve approach.

Require: L, Ni
Ensure: T(v)
% N is neighbor, L is Data, and T is size fixing approach%

1. Temp← sort (L(Ni))
2. j←min(j,|Ni|)
3. t(i)← [i, index(temp(1 : j)]

Figure 15 shows the basic and graphical model of the K-ary hashing algorithm.
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Figure 15. An example and classification model of the K-ary tree hashing algorithm.

4. Experimental Results and Analysis

In this section, we present complete details of our experimental model and data evaluation.
Event classification accuracy of human body key points detection was used for the performance
evaluation of the proposed system over available challenging publicly datasets. We used Matlab to
carry out the experiments and a hardware system with an Intel Core i5 CPU at 1.6 GHz and 8 GB
of RAM. To evaluate the performance of our proposed event classification system, we used three
different publicly available datasets: UCF50 [34], hmdb51 [35], and Olympic sports [36] datasets.
Other descriptions, the experimental data, and comparative analysis of the proposed datasets with the
sustainable event classification method and other state-of-the-art event classification approaches are
given below.

4.1. Datasets Description

4.1.1. UCF50

UCF50 is a famous publicly available action/event recognition dataset with 50 different classes,
consisting of realistic videos that are taken from a famous YouTube website. UCF50 dataset’s 50 classes
collected from YouTube are baseball pitch, basketball shooting, bench press, biking, billiards shot,
breaststroke, clean and jerk, diving, drumming, fencing, golf swing, playing guitar, high jump,
horse race, horse riding, hula hoop, javelin throw, juggling balls, jump rope, jumping jack,
kayaking, lunges, military parade, mixing batter, nunchucks, playing piano, pizza tossing, pole vault,
pommel horse, pull-ups, punch, push-ups, rock climbing indoor, rope climbing, rowing, salsa spins,
skateboarding, skiing, skijet, soccer juggling, swing, playing table, TaiChi, tennis swing, trampoline
jumping, playing violin, volleyball spiking, walking with a dog, and yo-yo. Figure 16 shows examples
of images from the UCF50 dataset.

Figure 16. A few example frames from the UCF50 dataset.
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4.1.2. hmdb51

The sports dataset known as hmdb51 is a publicly available dataset, collected from various sources,
mostly from movies, and a small proportion from public databases such as the Prelinger archive,
YouTube, and Google videos. The dataset contains 6766 clips divided into 51 classes: cartwheel, catch,
clap, climb, climb_stairs, dive, draw_sword, dribble, fall_floor, fencing, flic_flac, golf, handstand, hit,
hug, jump, kick, kick_ball, pick, pullup, punch, push, pushup, ride_bike, ride_horse, run, shake_hands,
shoot_ball, shoot_bow, shoot_gun, situp, somersault, swing_baseball, sword, sword_exercise, throw, turn,
and walk. Figure 17 shows examples of images from the hmdb51 dataset.

Figure 17. A few example frames from the hmdb51 dataset.

4.1.3. Olympic Sports

The Olympic sports dataset contains videos of athletes practicing in different sports. We obtained
all video sequences from YouTube. They represent 16 sports classes: high jump, basketball_lay_up,
long jump, bowling, triple jump, tennis serve, pole vault, platform diving, discus throw, springboard
driving, hammer throw, snatch, javelin throw, clean and jerk, shot put and gymnastic vault. Figure 18
shows examples of images from the Olympic sports dataset.

Figure 18. A few example frames from the Olympic sports dataset.

4.2. Experimental Analysis

Three experimental measures were used to evaluate the performance of the system: accuracy of
human body key points detection, the mean accuracy of sustainable event classification, and comparisons
with other existing systems. The proposed SEC system achieved better performance compared to
existing state-of-the-art methods.

4.2.1. Experiment 1: Human Body Key Points Detection

To test the efficiency of the proposed human body key points system, we estimated the Euclidean
distance between the ground truth and labeled human body parts via the Euclidean range [37].
The threshold range of the ground truth where the error margin is set as 14 was used to find mean
accuracy thus:

ECD =

√√√ N∑
N = 1

(
XGN
SGN

−
YDN

SDN

)2

(22)
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where XGN is the defined ground truth, YGN is denoted as a detected point of the proposed method and
ECD denotes Euclidean distance. For estimation of human body parts accuracy, we used Equation (23):

Ahp =
100
N

 N∑
N = 1

{
1, i f ECD ≤ 14

0, ECD > 14

 (23)

where Ahp is the estimated accuracy of the N human body part. If the estimated distance of a detected
human key point was higher than 14, that detected body point was ignored. Otherwise the detected
human body key point was included in the evaluation method. We repeated this procedure for all
detected human key points from 1 to N in the UCF50 dataset as 80.9%, in the hmdb51 dataset as 82.1%,
and the Olympic sports dataset as 81.7%. Table 1 shows that the proposed SEC model has the best
human key points detection mean accuracies compared to other state-of-the-art methods.

Table 1. Human body key points detection accuracy.

Body Key Points Distance UCF50 Distance Hmdb51 Distance Olympic Sports

HP 9.3 91 11.3 85 9.9 90
NP 9.5 84 9.7 87 10.8 83
RSP 9.7 81 9.3 83 10.7 82
REP 11.0 76 10.2 78 12.1 80
RWP 9.4 72 10.7 75 9.7 75
RHP 12.3 83 11.3 84 11.4 80
LSP 11.2 82 12.7 84 13.2 81
LEP 10.3 77 12.9 79 11.1 80
LWP 11.5 71 10.8 77 12.5 74
LHP 9.3 82 10.3 86 8.8 85
MP 10.3 92 9.3 92 11.0 91

RHP 11.7 74 10.6 80 10.9 79
LHP 13.0 74 11.5 76 13.4 80
LKP 12.1 85 13.2 83 11.3 80
RKP 11.9 87 9.8 86 12.9 82
RAP 10.2 78 11.5 78 9.7 79
LAP 10.5 74 13.5 76 12.7 70
LFP 9.9 85 10.8 91 11.3 90
RFP 8.2 90 9.3 80 10.2 92

Mean Accuracy Rate 80.9% 82.10% 81.7%

HP = head point, NP = neck point, RSP = right shoulder point, REP = right elbow point, RWP = right wrist point,
RHP = right hand point, LSP = lift shoulder point, LEP = left elbow point, LWP = left wrist point, LHP = left hand
point, MP = mid-point, RHP = right hip point, LHP = left hip point, LKP = left knee point, RKP = right knee point,
RAP = right ankle point, LAP = left ankle point, LFP = left foot point, RFP = right foot point.

4.2.2. Experiment 2: Event Classification over the UCF50 Dataset

In the first step of event classification, we applied the K-ary tree hashing algorithm over-optimized
feature vectors of the UCF 50 datasets and we got a 90.48% mean accuracy rate. Table 2 shows the
accuracy table of K-ary tree hashing over the UCF50 dataset and Table 3 shows the precision, recall,
and F-1 score over the UCF50 dataset.
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Table 2. Mean accuracy result of K-ary hashing over the UCF50 dataset.

Event Acc Event Acc Event Acc Event Acc Event Acc Event Acc Event Acc

BP 0.9 BB 1.0 BE 0.9 BK 0.8 CJ 0.7 DI 0.8 FE 1.0
GS 1.0 HJ 0.9 HR 0.9 HO 0.8 HH 0.9 JT 0.9 JB 0.9
JJ 1.0 JR 0.9 KK 0.9 LU 0.8 NC 0.9 PT 0.9 PV 0.9

PH 0.9 PU 1.0 PU 0.9 PU 0.9 RD 1.0 RC 1.0 RO 0.9
SS 0.9 SB 0.9 SK 0.9 SK 0.9 SJ 1.0 SW 0.9 TA 1.0
TS 0.8 TD 0.9 TJ 0.9 VS 1.0 WD 0.9 YY 0.8

Mean event classification accuracy = 90.48%

BP = baseball pitch, BB = basketball, BE = bench press, BK = biking, CJ = clean and jerk, DI = diving, FE = fencing,
GS = golf swing, HJ = high jump, HR = horserace, HO = horse riding, HH = hula hoop, JT = javelin throw,
JB = juggling balls, JJ = jumping jack, JR = jump rope, KK = kayaking, LU = lunges, NC = nunchucks, PT = pizza
tossing, PV = pole vault, PH = pommel horse, PU = pull ups, PU = punch, PU = pushups, RD = rock climbing
indoor, RC = rope climbing, RO = rowing, SS = salsa spin, SB = skateboarding, SK = skiing, SK = skijet, SJ = soccer
juggling, SW = swing, TA = TaiChi, TS = tennis swing, TD = throw discus, TJ = trampoline jumping, VS = volleyball
spiking, WD = walking with dog, YY = yo-yo.

Table 3. Precision, recall and F-Score over UCF 50 dataset.

Events Precision Recall F1-Score Events Precision Recall F1-Score

Baseball pitch 0.429 0.900 0.581 Pull ups 1.000 0.769 0.857
Basketball 0.714 0.714 0.714 Punch 0.900 0.750 0.870

Bench press 1.000 0.818 0.900 Push-ups 0.900 0.900 0.818
Biking 0.727 0.800 0.762 Rock climbing indoor 1.000 0.833 0.900

Clean and jerk 0.778 0.636 0.700 Rope climbing 0.769 0.769 0.909
Diving 0.320 0.800 0.457 Rowing 0.900 0.900 0.769
Fencing 1.000 0.833 0.909 Salsa spin 0.818 0.692 0.900

Golf swing 1.000 0.769 0.870 Skateboarding 0.750 0.900 0.750
High jump 0.692 0.750 0.720 Skiing 1.000 0.900 0.818
Horse race 0.750 0.750 0.750 Skijet 0.750 1.000 0.947

Horse riding 0.400 0.800 0.533 Soccer juggling 1.000 0.909 0.857
Hula hoop 1.000 0.818 0.900 Swing 0.900 0.818 0.952

Javelin throw 0.563 0.750 0.643 TaiChi 1.000 0.833 0.857
Juggling balls 1.000 0.900 0.643 Tennis swing 0.800 0.818 0.909
Jumping jack 0.909 0.833 0.947 Throw discus 0.750 0.818 0.809

Jump rope 0.900 10.000 0.870 Trampoline jumping 0.692 0.750 0.783
Kayaking 0.900 10.000 1.651 Volleyball spiking 0.909 0.769 0.720

Lunges 0.889 0.727 1.651 Walking with dog 1.000 0.818 0.833
Nunchucks 0.818 0.750 0.800 Yo-yo 1.000 0.800 0.900

Pizza tossing 1.000 0.900 0.783 Pommel horse 1.000 0.750 0.857
Pole vault 1.000 0.750 0.947

4.2.3. Experiment 3: Event Classification over the Hmdb51 Dataset

After the first step of event classification, we applied the K-ary tree hashing algorithm over the
optimized feature vector of the hmdb51 datasets and we got a mean accuracy rate of 89.21%. Table 4
shows the accuracy table for K-ary tree hashing over the hmdb51 dataset and Table 5 shows the
precision, recall, and F-1 score over the hmdb51 dataset.
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Table 4. Mean accuracy result of K-ary hashing over hmdb51 dataset.

Event Acc Event Acc Event Acc Event Acc Event Acc Event Acc Event Acc

CW 1.0 CA 0.9 DA 1.0 DI 0.9 DS 0.8 DI 1.0 DS 0.8
DB 0.9 FF 0.9 FC 0.8 FF 0.9 GO 1.0 HS 0.8 HI 0.9
HU 0.9 JU 1.0 KI 0.8 KB 0.9 PI 0.8 PU 1.0 PU 0.9
PU 0.8 PU 1.0 RB 0.8 RH 0.9 RU 1.0 SH 0.8 SB 0.9
SB 0.8 SG 0.9 SU 1.0 SS 0.8 SB 0.8 SW 1.0 SE 0.9
TH 0.9 TU 0.8 WA 0.9

Mean event classification accuracy = 89.21%

CW = cartwheel, CA = catch, DA = dap, DI = dimb, DS = dimb_stairs, DI = dive, DS = draw_sword, DB = dribble,
FF = fall_floor, FC = fencing, FF = flic_flac, GO = golf, HS = handstand, HI = hit, HU = hug, JU = jump, KI = kick,
KB = kick_ball, PI = pick, PU = pullup, PU = punch, PU = push, PU = pushup, RB = ride_bike, RH = ride_horse,
RU = run, SH = shake_hands, SB = shoot_ball, SB = shoot_bow, SG = shoot_gun, SU = situp, SS = somersault,
SB = swing_baseball, SW = sword, SE = sword_exercise, TH = throw, TU = turn, WA = walk.

Table 5. Precision, recall and F-Score over hmdb51 dataset.

Events Precision Recall F1-Score Events Precision Recall F1-Score

Cartwheel 0.909 0.833 0.870 Punch 0.900 0.900 0.900
Catch 0.900 0.750 0.818 Push 0.889 0.889 0.889
Dap 0.909 0.833 0.870 Pushup 0.909 0.909 0.909

Dimb 0.750 0.900 0.818 ride_bike 0.889 0.889 0.889
dimb_stairs 0.800 0.889 0.842 ride_horse 1.000 0.750 0.857

Dive 0.909 0.909 0.909 Run 0.909 0.909 0.909
draw_sword 0.727 0.889 0.800 shake_hands 0.727 0.889 0.800

Dribble 1.000 0.818 0.900 shoot_ball 0.900 0.900 0.900
fall_floor 0.900 0.900 0.900 shoot_bow 1.000 0.889 0.941
Fencing 0.889 0.889 0.889 shoot_gun 0.818 0.818 0.818
flic_flac 0.750 0.900 0.818 Situp 1.000 0.833 0.909

Golf 0.769 0.833 0.800 Somersault 0.889 0.889 0.889
handstand 0.800 0.889 0.842 swing_baseball 0.889 0.800 0.842

Hit 0.900 0.818 0.857 Sword 0.909 0.909 0.909
Hug 1.000 0.900 0.947 sword_exercise 1.000 0.900 0.947
jump 0.909 1.000 0.952 Throw 0.818 0.818 0.818
Kick 0.889 0.889 0.889 Turn 0.800 0.889 0.842

kick_ball 0.900 0.900 0.900 Walk 1.000 0.900 0.947
Pick 0.727 0.800 0.762 Pullup 0.667 0.833 0.741

4.2.4. Experiment 4: Event Classification over the Olympic Sports Dataset

In the last step of event classification, we applied a K-ary tree hashing algorithm over the optimized
feature vectors of the Olympic sports datasets and we got the mean accuracy rate of 90.83%. Table 6
shows the accuracy table of K-ary tree hashing over the Olympic sports dataset and Table 7 shows the
precision, recall, and F-1 score over classes of the Olympic sports dataset.

Table 6. Mean accuracy result of K-ary hashing over the Olympic sports dataset.

Event Acc Event Acc Event Acc Event Acc Event Acc Event Acc Event Acc

BO 1.0 DT 0.9 DP 0.9 HT 0.8 JT 0.9 LJ 0.9 PV 1.0
SP 0.9 SN 0.8 TM 0.9 TJ 1.0 VA 0.9

Mean Event Classification Accuracy = 90.83%

BO = bowling, DT = discus_throw, DP = diving_platform_10m, HT = hammer_throw, JT = javelin_throw,
LJ = long_jump, PV = pole_vault, S P = shot_put, SN = snatch, TM = toolbox-master, TJ = triple_jump, VA = vault.
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Table 7. Precision, recall and F-Score over the Olympic sports dataset.

Events Precision Recall F1-Score Events Precision Recall F1-Score

Bowling 0.769 0.833 0.800 pole_vault 1.000 0.909 0.952
discus_throw 0.692 0.900 0.783 shot_put 1.000 0.818 0.900

diving_platform_10m 1.000 0.750 0.857 snatch 1.000 0.800 0.889
hammer_throw 0.889 0.727 0.800 toolbox-master 0.750 0.818 0.783
javelin_throw 0.900 0.900 0.900 triple_jump 0.769 0.909 0.833

long_jump 0.643 0.900 0.750 vault 1.000 0.900 0.947

4.3. Comparison Analysis

4.3.1. Experiment 5: Comparison Using Various Classifiers

In this section, we applied various data classification algorithms such as an artificial neural
network (ANN), genetic algorithm (GA), and AdaBoost over feature vectors. Table 8 shows better
performance via the proposed K-ary tree hashing algorithm over other well-known statistical classifiers.

Table 8. Classifiers comparison table for datasets UCF50, hmdb51, Olympic sports.

Classifiers Dataset Accuracy Dataset Accuracy Dataset Accuracy

ANN UCF50 84.63 hmdb51 83.94 Olympic sports 85.8
G.A UCF50 86.34 hmdb51 86.31 Olympic sports 83.3

Adaboost UCF50 85.36 hmdb51 88.42 Olympic sports 86.6
K-ary Tree UCF50 90.48 hmdb51 89.21 Olympic sports 90.83

4.3.2. Experiment 6: Comparison of Various Features Combinations

We tested K-ary tree hashing over three features such as energy features, distinct motion body flow,
and sine features. Then, we applied K-ary tree hashing over five features: 3D cartesian view smoothing
gradient, angle point features, multi-points autocorrelation, rich 2D appearance features, and sine
features. Finally, we applied K-ary tree hashing over seven features: 3D cartesian view smoothing
gradient, angle point features, multi-points autocorrelation, rich 2D appearance features, sine features,
energy feature, and distinct motion body flow, and obtained better mean classification accuracy.
The pseudo-2D stick model helped us find sufficient accurate key points and the context-aware features
helped us to estimate human posture, and it also helped us with sustainable event classification. Table 9
shows the comparison results for the three, five, and seven features sets over the UCF50, hmdb51,
Olympic sports datasets using K-ary Tree hashing.

Table 9. Features comparison table for the datasets UCF50, hmdb51, Olympic sports using K-ary
tree classifiers.

Features Name UCF50/Accuracy hmdb51/Accuracy Olympic Sports/Accuracy

EF,DMBF, SF 76.09 74.21 75.83
3D-CVM, APF, MPA, R-2DA, SF 82.68 80.78 81.66
EF,DMBF, 3D-CVM, APF, MPA,

R-2DA, SF 90.48 89.21 90.83

3D-CVM = 3D Cartesian view smoothing gradient, APF = angle point features, MPA = multi-points autocorrelation,
R-2DA = rich 2D appearance features, SF = sine features, EF = energy feature, DMBF = distinct motion body flow.

4.3.3. Experiment 7: Event Classification Comparison with State-of-the-Art Methods

In [38], M. Jain et al. proposed a novel dense trajectories method to achieve enhanced performance
and accuracy but their weak features extraction method is one of the main drawbacks of the system.
Shi et al. [39] designed an Histogram of gradient (HOG), Histogram of Flow (HOF), HOG3D and Motion
Boundary Histograms MBH descriptors-based approach which works on a random sampling technique,
however, existing features are one of the main reasons for low accuracy. In [40], J. Uijlings et al. designed
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a robust approach to optimize the HOG, HOF, MBH-based features for classification; existing features
affect the overall performance of the system. H. Wang et al. [41] proposed a motion estimation model
with an explicit camera to enhance the dense trajectory features. They used the Speed-up Robust
Features (SURF) descriptor and optical flow for the extraction of feature vectors but the drawback
of the system is its small number of features. K. Hara et al. [42] developed a Convolutional Neural
Network CNNs-based approach to recognize human events in video and image data; although the
overall system is robust, the issue is the weak model of the system. Y. Li et al. [43] proposed a
novel spatio-temporal based deep residual neural network via categorized attentions (STDRN-HA)
for human video event detection and classification. In [44], Q. Meng et al. proposed the Support
Vector Machine SVM classification based novel features extraction method for event classification
and detection, however, single SVM is the reason for the system’s low accuracy. In [45], S. Sun et al.
developed a guided optical flow feature extraction approach via Convolutional Neural Network
(CNN) for human event detection. Here, limited and full-body features are the cause of low mean
accuracy for event detection. E. Park et al. [46] proposed the feature amplification method using
the Convolutional Neural Network (CNN) map for a handcrafted features and spatially fluctuating
multiplicative fusion approach with Convolutional Neural Network (CNN)s for event detection and
classification. D. Torpey et al. [47] designed a simple approach using local appearance and gesture
features along with Convolutional Neural Network (CNN); while classification is accomplished using
SVM, local and existing features are the main weak points of the system. Y. Zhu et al. [48] described a
detailed system architecture for identifying events in human-based videos. By using deep learning
and fusing trajectory analysis, the system comprises its computing cost and Graphical Processing Unit
(GPU). L. Zhang [49] presented a novel two-level neural network-based learning approach for human
video event classification. For the first level, Convolutional Neural Network CNNs are trained to provide
information using video to an event, which understands the important content of the video. At the
second level, they use a Long Short Term Memory (LSTM) and Gated Recurrent Unit (GRU)based
technique to handle both temporal and spatial information. In [50], A. Nadeem proposed a robust
structure approach that discovers multidimensional features along with body part representations;
for human pose estimation they used quadratic discriminant analysis with extracted features and for
classification they used a maximum entropy Markov technique. Table 10 shows the comparison of the
proposed system with state-of-the-art methods. Overall results show that the proposed SEC approach
produces the best classification accuracy rates.

Table 10. Event classification comparison with state-of-the-art methods.

Methods UCF50 Methods hmdb51 Methods Olympic Sports

J. Uijlings [40] 81.8% M. Jain et al
[38] 52.10% L. Zhang [49] 59.1%

F. Shi [39] 83.3% H. Wang [41] 60.10% S. Sun [45] 74.2%
Y. Zhu [48] 83.1% D. Torpey [47] 62.80% M. Jain et al. [38] 83.2%

D. Torpey [47] 86.4% Y. Li [43] 70.69% E. Park [46] 89.1%
L. Zhang [49] 88.0% K. Hara [42] 70.20% H. Wang [41] 89.6%
H. Wang [41] 89.1% Y. Zhu [48] 76.30% A. Nadeem [50] 88.26%
Q. Meng [44] 89.3% A. Nadeem [50] 89.09% — —

Ours 90.48 89.21 90.83

5. Conclusions

Event classification and detection are two of the challenging tasks of the current era. In this
research article, we proposed a novel technique for the classification of sustainable events. We proposed
a pseudo-2D stick model along with full body and key points context-aware features. For classification,
we used ray optimization for pre-classification and K-ary tree hashing for sustainable event classification
achieving the mean accuracy rate of 90.48% for the UCF50 dataset, 89.21% for the hmdb51 dataset,
and 90.83% for the Olympic sports dataset. In the future, we will develop the distributed classification
of gait event detection and scene-aware intensity features.
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